
Universal CV Processor

User manual
for firmware version blue-1

February 24, 2022

Contents

1 Quick start 4

2 Installation 5

3 Creating DROID patches 6
3.1 General procedure . 6
3.2 Finding a problem in your DROID patch 7

3.2.1 Examples for error codes . 8
3.2.2 Table of error codes . 9

3.3 Basic structure of the patch file . 9
3.4 Inputs, output and other registers 10

3.4.1 Status dump file . 12
3.5 Numbers and voltages . 13
3.6 Attenuating and offsetting inputs 14
3.7 Internal patch cables . 15
3.8 Using outputs as inputs . 16
3.9 Using inputs as outputs . 16
3.10 The order of the circuits . 17
3.11 Parameter arrays . 17
3.12 Comments & spaces . 17
3.13 How the module’s state is saved . 18
3.14 More than one patch on the memory card 18
3.15 Displaying the value of a register . 19

4 Controllers and Expanders 20
4.1 The P2B8 controller . 21
4.2 The P10 controller . 22
4.3 How to use controllers in your patch 22
4.4 Controller latency . 24
4.5 The G8 expander . 25

5 The X7 expander 26
5.1 Quick start . 26
5.2 General overview . 26
5.3 Installation . 27
5.4 USB access to your SD card . 27
5.5 MIDI . 28
5.6 MIDI through . 31

5.7 Four gate outputs . 32
5.8 Eight multi color LEDs . 32
5.9 Fast patch upload via Sysex . 32
5.10 Software update for the X7 . 34
5.11 Some technical details . 35

6 Firmware upgrade 36
6.1 What version do you have? . 36
6.2 Normal update procedure . 36
6.3 Upgrade from green to blue . 38

7 Calibration, Factory Reset othermaintainance stuff 39
7.1 The maintenance mode . 39
7.2 Factory reset . 40
7.3 Calibration of the outputs . 40
7.4 Using your own SD card . 41

7.4.1 Formatting a micro SD card 41
7.4.2 Speed up cards onMac . 41

8 Hardware 42

9 Reference of all circuits 43
9.1 adc – AD Converter with 12 bits . 44
9.2 algoquencer – Algorithmic sequencer 46
9.3 arpeggio – Arpeggiator – pattern based melody generator 57
9.4 bernoulli – Random gate distributor 63
9.5 burst – Generate burst of pulses . 64
9.6 button – Do all sorts of useful things with buttons 66
9.7 buttongroup – Connected buttons 70
9.8 calibrator – VCO Calibrator . 73
9.9 chord – Chord generator . 77
9.10 clocktool – Clock divider / multiplier / shifter 81
9.11 compare – Compare two values . 83

9.11.1 Equality, analog unprecision 83
9.12 contour – Contour generator . 85
9.13 copy – Copy a signal . 90
9.14 crossfader – Morph between 8 inputs 91
9.15 cvlooper – Clocked CV looper . 92
9.16 dac – DA Converter with 12 bits . 96

2

9.17 droid – General DROID controls . 98
9.18 euklid – Euclidean rhythm generator 99
9.19 explin – Exponential to linear converter 101
9.20 firefacecontrol – Control a RME Fireface interface (experimental) . 103
9.21 fold – CV folder – keep (pitch) CV within certain bounds 106
9.22 fourstatebutton – Button switching through 4 states (OBSOLETE) . 108
9.23 lfo – Low frequency oscillator (LFO) 109
9.24 logic – Logic operations utility . 114
9.25 math – Math utility circuit . 117
9.26 matrixmixer – Matrix mixer for CVs 119
9.27 midifileplayer – MIDI file player 122
9.28 midiin – MIDI to CV converter . 129
9.29 midiout – CV toMIDI converter . 136
9.30 midithrough – MIDI routing through X7 144
9.31 minifonion – Musical quantizer . 145
9.32 mixer – CVmixer . 148
9.33 motorfader – Create virtual fader in M4 controller 149
9.34 notchedpot – Helper circuit for pots (OBSOLETE) 150

9.35 notebuttons – Note Selection Buttons 151
9.36 nudge – Modify – “nudge” – a value using two buttons 153
9.37 octave – Multi-VCO octave animator 155
9.38 pot – Helper circuit for pots . 157
9.39 quantizer – Non-musical quantizer 162
9.40 queue – Clocked CV shift register . 163
9.41 random – Random number generator 164
9.42 sample – Sample & Hold Circuit . 165
9.43 sequencer – Eight step sequencer 166
9.44 slew – Slew limiter . 170
9.45 spring – Physical spring simulation 172
9.46 superjust – Perfect intonation of up to eight voices 174
9.47 switch – Adressable/clockable switch 176
9.48 switchedpot – Overlay pot with multiple functions (OBSOLETE) . . . 178
9.49 timing – Shuffle/swing and complex timing generator 180
9.50 togglebutton – Create on/off buttons (OBSOLETE) 181
9.51 transient – Transient generator . 184
9.52 triggerdelay – Trigger Delay with multi tap and optional clocking . . 186

DROIDmanual for blue-1 3 Table of contents at page 2

1 Quick start

Welcome to the . The is a very flexi-
ble generic CV processor. It can do almost any CV task
you can imagine, such as sequencing,melody generation,
slew limiting, quantizing, switching, mixing, working on
clocks and triggers, creating envelopes and LFOs or other
fancy voltages, or any combination of these at the same
time! While doing this, it is very precise both in voltage
and in timing.

You tell your what to do by means of a simple
text file called “DROID patch”. That file is always named
droid.ini and is located on a micro SD card. No special
software is required forwriting thatfile. A simple text ed-
itor running onWindows, Linux, Mac or any other device
will suffice. If you have an X7 expander attached to your
master, you can access the memory card directly from
your PC or Mac via a USB-C cable.

The building blocks of a DROID patch are called circuits.
Every type of circuit performs some basic task. Just like
a Eurorack module, each circuit has inputs and outputs.
You can wire these either directly to some of the inputs
and outputs of the module or even connect them
internally in order to create more complex networks of
circuits.

Afirst patch example – step by step

Let’s do a first simple DROID patch!

1. Install your DROID master into your Eurorack sys-
tem and power it on.

2. Remove the shipped micro SD card from your
DROID master und put it into the micro SD card
reader that also as been shipped with your DROID.
Insert that reader intoa freeUSBportof youLaptop

or PC. (Alternatively, if you have an X7 attached,
connect the X7 with a free USB port of your com-
puter and put the switch on the X7 to the left).

3. Locate the file droid.ini on that card with your
file browser (Explorer, Finder, whatever) and open
it with a text editor (like Notepad, TextEdit, VIM,
Notepad++, etc.).

4. Delete the current contents of thatfile and type the
following:

[contour]
gate = I1
decay = 0.2
sustain = 0.5
release = 0.3
output = O1

5. Save the file back to the SD card, eject the card
properly and then remove it from the reader.

6. Insert the card back into the DROID master – with
the visible pins facing downwards.

7. Press the button left of the card slot

If you have an X7, simply put the switch back to its cen-
ter position after ”ejecting” the SD card with windows /
Mac. It will then automatically load the new patch with-
out need to press the button.

Your nowwill read in its new patch. If everything
goes well, a LED light goes in one circle around the “dis-
play”. If not, please check your DROID patch and repeat
the procedure. Refer to page 7 for how to find the root
cause of a problem.

This first patch creates an ADSR type envelope that is
triggered at input jack 1 (I1) andoutputs its CVonoutput
jack 1 (O1). For the parameters A, D, S and R fixed values
are being set for the while.

Now within the , every parameter can be con-

trolled via CV. So instead of setting the release to a fixed
value of 0.3 you canuse the second input (I2) for CV con-
trolling that. This is easy:

[contour]
gate = I1
decay = 0.2
sustain = 0.5
release = I2
output = O1

If you have a controller such as the P2B8, the P4B2 or the
P10, you can use pots for controlling parameters. First
of all – for each P2B8 you need one line with the contents
[p2b8]. Likewise for aP4B2youneed the line[p4b2]and
for a P10 the line [p10]. (Note: If youmix P2B8s, P4B2s,
P10s and other controllers, the order of these controllers
in your chain must match the order of the declaration in
your DROID patch.) Now you can access the first pot of
your first controller with P1.1, e.g. in order to control the
sustain of the envelope via that pot:

[p2b8]

[contour]
gate = I1
decay = 0.2
sustain = P1.1
release = I2
output = O1

We didn’t dig into details yet – but you get the idea! The
rest of this manual will show you the wonderful world of
the . First you learn all general ideas and features.
In chapter 9 there is a complete reference of all circuit
types that your offers.

DROIDmanual for blue-1 4 Table of contents at page 2

2 Installation

Controller connector
The connector for the controllers has 6 pins (two
rows of three pins) and is used for connecting a
chain of P2B8, P4B2, B32, P10, M4 and other
controllers. Please refer to page 21 for details.

Programming port

The 6 pin programming port is not mounted in a
box. Caution: Do not connect anything to this
port! It is solely for the initial programming in our
labs. Later firmware upgrades are done via the
Micro SD card.

Expansion port for G8
The connector for theG8expander has 8pins (two
rows of four pins). Here you can add one op-
tional G8 expander for an additional 8 gate in-
puts/outputs. Please refer to page 25 for details.

Power connector

Thepower connector has 10pins (two rowsoffive
pins). Use the shipped 10 pin ribbon cable in order
to connect it with the bus board of your Eurorack
case. Important: Put the red stripe down!

Do not mix up the connectors! This will destroy
your electronics. Do not force in cables in the
wrong orientiation orwith thewrongnumber of
pins! Do not attach anything to the program-
ming port.

DROIDmanual for blue-1 5 Table of contents at page 2

3 Creating DROID patches

3.1 General procedure

Writinga patch iswhatmakes the come to
live. Without a patch your is pretty useless. This
is the general procedure of creating and loading a patch
into your :

1. Create a text file called droid.ini.
2. Copy this file to a micro SD card.
3. Insert the card into your master.
4. Press the button on the master.

If the finds an error in your patch, LEDs will blink
and tell you more about that error. Fix your error and try
again. That’s all.

If you have an X7 expander attached to your master, the
whole procedure is a lot easier. The X7 gives you direct
USB access to the SD card. The card is attached to your
computer by putting the little switch on theX7 to the left.
This is like inserting the card into your computer. Now
you can edit or copy your droid.ini. Afterwards simply
put the switch back to its center position. That will re-
move the card fromyour computer (eject it firstwith your
file browser). Also the patch will be immediately loaded

by your master, no need to press the button.

Procedure in details

Here is the procedure again with somemore details:

1. Use your PC, Mac or Linux box for creating a text
file with the name droid.ini. A text file is not a
MS Word file. In Windows you can create or edit a
text file with Notepad or with some more conve-
nient text editor. Note: some might want to edit
droid.inidirectly on the SD card. This is possible,
of course. It’s always handy, however, to have a
copy of that file on your computer, just in case.

2. When you are finished, copy this file to the micro
SD card your has been shipped with or to
any other micro SD card that is compatible with

. You need a micro SD card reader for this.
Do not use any subdirectories on the card. Put the
file into the main directory. The card needs to be

formattedwith the standard FAT filesystem. If you
buy a new card, it ismost likely formatted thatway
anyway. Hint: If you like, you can create and edit
your file directly on the card, of course. This saves
the extra step of copying it.

3. Insert the micro SD card into the small card slot
of your master. Put it in with the metal
contacts downwards. Be gentle, as always :-)

4. Press the button left of the SD card slot. Of
course your has to be powered up while
you do this. The now reads the file
droid.ini, copies it into its internal flashmemory
and restarts, in order to load and activate the new
patch. If everything is OK, one light will make one
quick circle around the16LEDsandyourpatch isup
and running. After that you can remove the card if
you like. Your does not need it anymore.
Note: If you are using an X7 expander, thememory
card remains in themastermodule all the time. You
also don’t need to press the button on the master,
just use the switch on the X7.

DROIDmanual for blue-1 6 Table of contents at page 2

3.2 Finding a problem in your DROID patch

It is not entirely unlikely that you got something wrong
in your patch, some syntax error, some invalid line, stuff
like that. Humans make errors, but this is no big deal,
since helps you finding the reason and location
of any problem in your patch by twomeans:

1. It creates a file called DROIDERR.TXT on your SD
card.

2. It flashes some LEDs in a certain way.

So if you experience any strange LED blinking after load-
ing your patch, put the card back into your computer (or
put the switch on your X7 to the left again) and look into
the file DROIDERR.TXT, which should be there now. This
file just contains one line, maybe like this one:

ERROR IN LINE 17: Invalid output 'O9'. Allowed
is O1 ... O8

This tells you the exact location and reason of your prob-
lem so that you can easily fix it.

LED blink codes

As an alternative to the error file, the master also
shows the location and reason of the error in form of LED
blink codes. There are two types of errors that you can
make:

1. General errors concern the patch as a whole. The
SD card is missing. You have misspelled the file
name. Things like that. In such a case all LEDs will
flash in the same color. The color indicates the
reason of the error. On the next page you find a
table of all global error codes.

2. Local errors concern just one specific line in your
patch. In that case just some of the LEDs

will flash. Again, the color shows you the rea-
son for the error, according to the table local error
codes. In addition, the LEDs show you the exact
line number where your error occurs. This is done
in the following way:

• The input LEDS 1 … 8 indicate the tens of the
line number. If the error happens to be in line
90, then LED 1 + 8will flash. If it is in line 1 to
9, then no input LED flashes at all.

• The output LEDS 1 … 8 indicate the “ones”
and are added to that number. Again, if a 9
is needed, then 8 + 1 will flash.

• If your patch hasmore than 99 lines, then the
error could be in line 100+. In that case one
of the input LEDs will flash white. That LED
indicates the hundreds of the line number.

• If the error is in some line at 900 ormore, sev-
eral LEDs will flash white. Just add them up.
So e.g. if LED 2 and LED 8 flash white, this
means 10 times 100, hence 1000.

• Themaximum line number that can be shown
that way is, if all eight LED flash white plus
99. That is 100 + 200 + ... + 800 + 99 = 3699.
If your patch has evenmore lines, better look
into thefile DROIDERR.TXT. There you can see
the line number of the error in clear text.

DROIDmanual for blue-1 7 Table of contents at page 2

3.2.1 Examples for error codes

Invalid parameter value in line 81:

Undefined parameter in line 90:

Invalid register in line 99:

Line too long in line 144:

The SD card was not found or could not be read:

Too many circuits or out of memory:

DROIDmanual for blue-1 8 Table of contents at page 2

3.2.2 Table of error codes

All LEDs flashing at once (global error)

yellow Patch not found: This can happen in the following situations:
1. No file with the name droid.ini is present on the memory card.
2. You started without having loaded a patch ever.
3. You did a factory reset without loading a patch afterwards.

orange Empty patch: Your droid.ini file has a size of 0 bytes. Or it could not
be read correctly. Check the file. Maybe re-insert themicro SD card and
try again.

red Toomany controllers: You have declared more than the allowed num-
ber of 16 controllers.

blue Patch is too big: The size of your droid.ini file is too big. The maxi-
mumof the sizewithout spaces and comments is 64,000 bytes –which
is quite a lot.

cyan Out of memory: The circuits in your patch use too much memory. So
youhave toomany large circuits or toomany circuits in total. Themem-
ory consumption of each circuit only depends on its type. The smallest
circuit is bernoulli and has a size of about 200 bytes. The largest cir-
cuits are midifileplayer with 7000 bytes and cvlooper with 18,000
bytes. Most circuits need between 400 and 800 bytes. And the total
available memory is about 110,000 bytes.

magenta Invalid firmware file: The firmware upgrade files because the contents
of droid.fw is invalid. The file is incomplete or corrupted.

white NoSDcard found: No card could be found. Maybe you inserted it in the
wrong way? Or your card is not supported. Or you pressed the button
too early. Sometimes it helps to simple press the button again.

Note: If you get your start animationwith just white LEDs instead of colored ones, your
DAC calibration needs to be redone. See page 40 for details.

Just some of the LEDs flashing (local error in one line in droid.ini)

yellow Unknownregister: Youusedanon-existing register name (registers are
the things like O1, I7 and so on). Please check the list of allowed regis-
ters in this manual on page 11.

orange Unknown parameter name: that circuit does not support that param-
eter. Please check the circuit references in chapter 9.

red Unknown circuit: This type of circuit does not exist. Please check the
exact spelling. Maybe you have an old firmware that does not support
that circuit yet? On page 36 you learn how to do a firmware upgrade.

blue Line too long: One line in your patch exceeded the maximum allowed
line length of 127 characters.

green Internal patch cable misused: One of your internal patch cables (see
page 15) is not properly used:

1. No input: One patch cable is only used as output.

2. No output: One patch cable is only used as input.

3. Double output: One patch cable is used twice as an output.

magenta 1. Invalid header of circuit: was expecting an opening square
bracket [, but found something else.

2. Invalid parameter line: was expecting something like clock
= I7, but found something completely different. Parameters always
start with a letter. Then comes an equal.

3. Invalid parameter value: Your parameter has an invalid value.
Please checkout this manual about allowed values for parameters and
their exact syntax.

3.3 Basic structure of the patch file

DROIDmanual for blue-1 9 Table of contents at page 2

The file droid.ini is a simple text file. This has lots of
advantages:

• You can edit it with nearly every operating system.
• No special software is needed. This will probably
still work in 30 years, when you just have bought
a vintage on ebay for a couple of thousand
bucks.

• You can easily post and share your patches
or patch snippets in our Discord community or on
other internet boards.

• You can copy & paste parts from other one’s

patches.
• You can add comments to your patch.

Here – again – is an example of a patch:

[lfo]
hz = 0.5
triangle = _CABLE_1

[contour]
gate = I1
decay = _CABLE_1

sustain = P1.1
release = I2
output = O1

As you can see the droid.ini is a list of circuit declara-
tions. In the upper example we see two circuits: [lfo]
and [contour]. Each one comes with a list of inputs and
outputswhich are assigned to jacks, fixed values or inter-
nal patch cables.

In the example all jack declarations are indented for bet-
ter readability.

3.4 Inputs, output and other registers

Your has lots of inputs and outputs. Also its LEDs
behave like outputs and buttons and pots behave like in-
puts. All these are called registers, because they behave
like things that can store values. Each register consists of
a special character followed by a number or number com-
bination.

Most important of course are the eight CV input and and
output jacks I and O. With the normalizations N1, N2, …
N8 you can specify a signal or value that should be used
for I1, I2, … I8 when no patch cable is inserted. But we
will come to that later.

When you have attached the G8 expander you get eight
more jacks called G1 through G8. Each of these can either
be used as an input or an output. They are simple gate
inputs/outputs that just know “On” and “Off”, or 0 and 1.
When used as an output they output either 0 V or 5 V.

The stuff on your P2B8, P4B2, B32, P10 and other con-
trollers can also be accessed via registers. Here there is
always a dot in the name, separating two numbers, like
P1.2 or B4.8. The first number is always the number of
your controller. The second number is the number of the
element on the controller. So B4.8 is the 8th button on
the 4th controller. P10 controllers just have P registers,
no B or L registers. Likewise the B32 has just buttons and
thus no P registers.

Please note that each button has two registers: one with
the letter B for the button itself. will set that
to 1.0 while the button is pressed (and hold) and to 0.0
otherwise. The second register is for the LED in the but-
ton and begins with L. This is an output register where
you can write values to. A value of 0.0 will set the LED
off, while 1.0 creates full brightness. But the LEDs also
support any number in-between and will have a bright-
ness according the that number. Negative numbers are

treated like positive numbers here, so -0.5 will produce
the same brightness as 0.5.

As long as you do not actively use the L-registers the
LED in a button will automatically be lit while you hold
it. Please look at the button circuit in page 66 for how
to convert a push button into one that toggles it state on
each press.

Overriding the LEDs ofmaster, G8 and X7

The registers R1 through R32 let you override the func-
tion of the LEDs for the inputs, outputs and gates, also
those of the X7 expander. This is sometimes very useful
when you have a couple of unused inputs (and thus un-
used LEDs). Sending some internal values to one of these
LEDs gives you some feedback about what your
is doing.

DROIDmanual for blue-1 10 Table of contents at page 2

Here is the complete table of all register types:

Register Type Description

I1 I2 I3 I4 I5 I6 I7 I8 input The eight inputs of the master

N1 N2 N3 N4 N5 N6 N7 N8 output The normalization of these inputs. When nothing is patched into an input, the according I-register will take its value
from the matching N- register instead. Any they are 0.0 if you have not set them.

O1 O2 O3 O4 O5 O6 O7 O8 output The eight outputs of the master

G1 G2 G3 G4 G5 G6 G7 G8 input/output The eight gate jacks of the G8 expander. Each can be used either as an input or as an output.

G9 G10 G11 G12 output The four gate jacks of the X7 expander. These are always outputs.

R1 R2 R3 R4 R5 R6 R7 R8 output The colored LED squares in the first two rows (those for the inputs)

R9 R10 R11 R12 R13 R14 R15 R16 output The colored LED squares in row three and four (those for the outputs)

R17 R18 R19 R20 R21 R22 R23 R24 output The colored LED squares on the G8 expander

R25 R26 R27 R28 R29 R30 R31 R32 output The colored LED squares on the X7 expander

P1.1 P1.2 P2.1 P2.2 P3.1 P3.2 … input The pots on your P2B8, P4B2 or P10 controllers. P3.2 is the 2nd pot on your 3rd controller.

B1.1 B1.2 B2.1 … B2.1 B2.2 B2.3 … input The push buttons on your P2B8, P4B2 or B32 controllers. B3.6 is the 6th push button on your 3rd controller.

L1.1 L1.2 L2.1 … L2.1 L2.2 L2.3 … output The LEDs in these push buttons

And here is a table of some colors and their values that you need to send to the R1 .. R32 registers:

0.2 cyan

0.4 green

0.6 yellow

0.73 orange

0.8 red

1.0 magenta

1.1 violet

1.2 blue

DROIDmanual for blue-1 11 Table of contents at page 2

3.4.1 Status dump file

There is an easymethod for getting the current value of all registers! Simply double press
on the masters button – just similar to a mouse double click. If you do this, all LEDs will
flash white once. And on the SD card a file with the name STATES.TXT is being created.
This file will not only show you the current value of all registers but also the values of all
internal patch cable (see page 15).

Here is what such a file looks like:

DROID status

Firmware version: blue-1
Running since: 34.576 sec
Free RAM: 110579 Bytes (97.857%)
Size of patch: 1333 Bytes (2.082%)

Inputs:
I1: 0.3201 I2: 0.8210 I3: 0.0000 I4: 0.0000
I5: 0.0000 I6: 0.0000 I7: 0.0000 I8: 0.0000

Normalizations:
N1: 0.0000 N2: 0.0000 N3: 0.0000 N4: 0.0000
N5: 0.0000 N6: 0.0000 N7: 0.0000 N8: 0.0000

Outputs:
O1: 1.0000 O2: 0.2000 O3: 0.3333 O4: 0.0000
O5: 0.0000 O6: 0.0000 O7: 0.0000 O8: 0.0000

Gates:
G1: 1 G2: 0 G3: 0 G4: 1
G5: 0 G6: 0 G7: 0 G8: 0

RGB-LEDs:
R1: 0.000 R2: 0.000 R3: 0.000 R4: 0.000
R5: 0.000 R6: 0.000 R7: 0.000 R8: 0.000
R9: 0.000 R10: 0.000 R11: 0.000 R12: 0.000
R13: 0.000 R14: 0.000 R15: 0.000 R16: 0.000

Controller 1 [p2b8]:
B1.1: 0 B1.2: 0 B1.3: 0 B1.4: 0
B1.5: 0 B1.6: 0 B1.7: 0 B1.8: 1
L1.1: 0.000 L1.2: 0.000 L1.3: 0.000 L1.4: 0.000
L1.5: 0.000 L1.6: 0.000 L1.7: 0.000 L1.8: 0.000
P1.1: 0.77631 P1.2: 1.00000

Internal patch cables:
_CLOCK: 1.00000
_PITCH: 0.23430
_RELEASE: 0.30000

DROIDmanual for blue-1 12 Table of contents at page 2

3.5 Numbers and voltages

How voltages are converted

is a CV processor that inputs and outputs con-
trol voltages. But internally it works with just numbers,
because this is much more convenient. Here is how the

operates:

1. When reading voltages from the input jacks, these
are converted from the range -10 V to +10 V into
the number range from -1 to +1.

2. All circuits operate one these numbers.
3. When sending numbers to the output jacks, the

numbers are converted back from -1 to +1 to the
voltage range -10 V to +10 V.

This means that if the reads a voltage of 2.5 V at
one of its inputs, in the patch this will appear as
0.25. Or if you send a value of 0.5 to one of the outputs,
that will result in exactly 5.0 V there. This is in fact very
convenient as you will see.

Voltages out of range

The ’s hardware cannot work with voltages be-
yond ±10 V. Anyway, Eurorack is limited to ±12 V and
barely anymodule reaches even 10V at its output (in fact
many digital modules are limited to the range 0 V...5 V,
which I think is a bad idea).

That simplymeans that any voltage out of that range ap-
pearingat an input is simply truncated. Send -10.8Vat an
input and will see it as -10 V. Or send the number
1.1 to an output (which would be 11 V) and it will output
10 V nevertheless.

But: internally – in your patch – numbers can get

arbitrarily low or high. So in intermediate steps it’s abso-
lutely no problem to work with larger numbers. It’s com-
pletely normal. Somecircuits even require suchnumbers.
E.g. in the minifonion (see page 145) you specify the
root note B by saying root = 11. On the side of the jacks
that would mean 110 V, but that’s not relevant here.

For those of you wanting to dig more into the de-
tails of number processing: works inter-
nally with 32 bit floating point values. The ex-
ponent is 8 bits. The largest number is slightly
above 300000000000000000000000000000000000000
(a 3 with 38 zeroes).

The smallest number greater than zero is approximately
0.000000000000000000000000000000000000011
(that’s 37 zeroes after the decimal point). The negative
range is similar.

One word to the G8 expander: it’s outputs can only out-
put two possible voltages: 0 V and 5 V. The rule is: any
number >= 0.1 sent to one of its registers G1 ... G8 will
set its output to 5 V, any other number to 0 V.

Specifying numbers in your patch

Note: you always need to write the numbers in ”plain”
format, for example 0.01 or 12345.67 or -5.0. Scientific
notations like 3.4^-10 are not allowed. It’s also not al-
lowed to write just .5 instead of 0.5.

There are two suffixes that you can attach to a number:
% and V. Appending a percent sign basically divides the
number by 100, so ...

pulsewidth = 45%

... is just the same as

pulsewidth = 0.45

Appending a V divides the number by 10, which is exactly
what you need in order to convert a number to a voltage
to be output at a jack. So:

pitch = 2V

... is just the same as

pitch = 0.2

Sometimes this is easier to read. Pleasebe just aware that
the V is applied just to the number itself. You couldwrite
1/12V, but that is not 1

12 V, but is
1

12V , which is – when
you convert the voltage back to a number – 1

1.2 , which is
0.8333. Whereas 1

12 V would be 0.008333 – a hundred
times smaller!

Some inputs or outputs behave like gates that only know
0 or 1, low or high, on or off. For your ease you can use
the words off – which is just a short hand for 0.0, and on
– which stands for 1.0, if you like. Here is an example:

[contour]
loop = on
output = O1

This is exactly the same as:

[contour]
loop = 1.0
output = O1

DROIDmanual for blue-1 13 Table of contents at page 2

3.6 Attenuating and offsetting inputs

Attenuation / Amplification /Multiplication

Each input of a circuit (not the outputs!) has a built-in op-
tion for attenuation and offsetting. Attenuation is done
bymultiplying the input with a value. Well, if you “atten-
uate” with a number greater than 1, the name attenua-
tion would not really be correct, since the signal in fact
gets amplified and not attenuated.

Let’s assume youwant to control the level parameter of
an LFOwith the first pot of your first controller (see page
109 for details on the LFO circuit). That pot can be ad-
dressed with P1.1:

[lfo]
level = P1.1
output = O1

The pot has a range from0 to 1, which corresponds to 0 V
…10 V. That’s maybe too much for you application. So
let’s limit the range to 5 V, which is the same as 0.5. This
is done by multiplying the pot with 0.5:

level = P1.1 * 0.5

Now levelwill range from 0 V to 5 V.

Theattenuationdoesnotneed tobeafixednumber. Let’s
CV control the level of the LFOwith the external input I1.
Nowwemultiply thatwith thepotP1.1, whichmakes the
latter an attenuator for the CV. How cool is that?

level = I1 * P1.1

Fixed numbers can also be negative. The following line
basically inverts the LFO’s output since its output voltage
is negated:

level = P1.1 * -1

If you like, you can use a short hand for that:

level = -P1.1

But that is really just an abbreviation for -1 * P1.1.
From that follows, that -P1.1 * I1 isnot possible, since
thiswould be -1 * P1.1 * I1, whichwould be twomul-
tiplications!

Division

There is another shorthand: It is allowed to use division,
if the thing you divide by is a fixed number. So Instead of
pitch = I1 * 0.0833333 you can write:

pitch = I1 / 12

Again, this is a short hand for I1 * 0.0833333 and this
its treated as a multiplication. For that reason you can-
not write I1 / P1.1 or anything similar, since here the

would really have to do a dynamic division with
the current value of P1.1. Use the math circuit for such
things (see page 117).

Offsets / Summing

An offset is applied by adding a number. This must be
written after the (optional) attenuation. Let’s have the
level of the LFO set by P1.1 but be at least 2 V:

[lfo]
level = P1.1 + 0.2

Now the level would range from 2 V to 12 V. Since 10 V
is themaximum, we couldmultiply the pot with 0.8 first,
which results in a range from 2 V to 10 V:

level = P1.1 * 0.8 + 0.2

Again you are not restricted to fixed numbers. You can
also use any register you like. In this example
we use P1.1 as a coarse tune and P1.2 as a fine tune (20
times finer) for the rate of an LFO:

[lfo]
square = O1
rate = 0.05 * P1.2 + P1.1

Using + can even be used for mixing together two input
signals. The circuitcopy just copies an input to anoutput,
but since the offset can be usedwith any register you can
build a simple CVmixer:

input = I1 + I2

Note: If you want to summore than two signals, use the
mixer circuit (see page 148 for details).

Subtraction

Mathematics says, that subtraction is nothing else than
the addition of a negative number. So you can subtract
0.5 from P1.1 by writing:

input = P1.1 + -0.5

Since this looks clumsy, you are allowed to write as a
short hand:

input = P1.1 - 0.5

DROIDmanual for blue-1 14 Table of contents at page 2

Note: you can also use the negation on a register:

input = I1 - I2

But note: here this is an abbreviation for -1 * I2 + I1!
So you already have “used up” your multiplication, even
if you don’t see it. The general rule is: If can trans-
form your line into the formA * B +C, everything is good.

Summary and Further notes

• Generally spoken the format is A *B +C. So you are
limited to one attenuation (multiplication) and one
offset (addition / subtraction)

• Each of A, B and C can be a fixed number, any of
the registers or an internal patch cable (for those
see page 15).

• Attenuation must be written first, offset last.
• There are some abbreviations for subtraction and
division. Theywork if the thing can be transformed
into A * B + C.

• No other operations are allowed (no brackets, ad-

ditional operations, divisions, etc.)
• If you needmore complexmath operations, have a
look at the math circuit (see page 117).

Are you curious why does not allow more com-
plex operations here? Why is it so restrictive? The rea-
son is a matter of CPU performance! When your patch is
parsed, everything is converted to A * B + C. If you don’t
use the multiplication, B is set to 1. No offset? Then C
is 0. So when it comes to the real time computation of
these values, it’s just the simple A * B + C. No conditions
to be tested, no if/then/elses or similar stuff. It’s really
super fast. And that’s important because you want your

to have a low latency and smooth envelopes.

3.7 Internal patch cables

Oneof the funpart is the fact, that internally you can con-
nect several circuits without using any real inputs or out-
puts. Instead of an output you simply put a name of your
choice that begins with an underscore. That same name
can be used at another circuit as an input. Here is an ex-
ample of an internal LFO triggering an envelope:

[lfo]
square = _TRIGGER

[contour]
trigger = _TRIGGER
output = O1

This patch cable is always amultiple, so it can be used by
more than one circuit:

[lfo]
square = _TRIGGER

[contour]
trigger = _TRIGGER
attack = 0.0
release = 0.2
output = O1

[contour]
trigger = _TRIGGER
attack = 0.5

release = 0.8
output = O2

Note: There are two rules, which are checked by the
. And it will show an error message in green if one

these are found to be broken (see page 7 for an explana-
tion of the error codes).

1. Each internal patch cable must be used as an input
and as an output (otherwise it would be useless).

2. No internal patch cable may be used twice as an
output. This would make no sense and is in effect
a short cut.

DROIDmanual for blue-1 15 Table of contents at page 2

3.8 Using outputs as inputs

There is another way of connecting circuits: You can use
an output register as an input to another circuit. The
following example creates an LFO that outputs a square
wave to LED R1, in order for it to flash in the speed of the
LFO. R1 is the LED designated for input 1, but we sim-
ply misuse that as a signal LED for our LFO. Then an eu-

clidean rhythm is triggered with that same signal, simply
by using R1 as an input here:

[lfo]
hz = 2
square = R1

[euklid]
clock = R1
length = 12
beats = 5
output = O1

3.9 Using inputs as outputs

Using input registers as outputs is not allowed. And it
would not make any sense. If you try so, you will get a
yellow blinking error message for the according line.

Look at the following example. Here – due to a copy &
paste error – the LED states are sent to the button regis-

ters. That won’t work. And for that reason won’t
allow it:

[buttongroup]
button1 = B1.1

button2 = B1.2
button3 = B1.3
led1 = B1.1 # Argr. should be L1.1!
led2 = B1.2 # Argr. should be L1.2!
led3 = B1.3 # Argr. should be L1.3!

DROIDmanual for blue-1 16 Table of contents at page 2

3.10 The order of the circuits

Youmight ask yourself what role the order of the circuits
plays in your patch file. Well – in most cases it doesn’t
matter at all, in some cases, however, it might cause very
subtle timing differences in the range of a couple of hun-
dred µs. In order to understand this, we need to have a
closer look at how the DROID works:

The basic working process of your DROID is a simple loop
that is repeating over and over again – at a speed of ap-
proximately 180 µs per cycle, which means that is run-
ning at approximately 5.5 kHz! In each cycle of the loop
the following things happen:

• The current values of all inputs, gates, buttons and
pots are read in and stored in the I, G, B and P reg-
isters.

• Each circuits creates a newvalue for eachof its out-
puts. Thatmight includewriting new values into O,
G, L or R registers.

• The contents of the O and G registers are converted
into voltages for the according output jacks. The

contents of the L and R registers are translated into
brightness and color of the according LEDs.

Now let’s look at two circuits that are internally wired:

[bernoulli]
input = G1
distribution = P1.1
output1 = _TRIGGER

[contour]
trigger = _TRIGGER
output = O1

Here an external trigger at G1 (on theG8 expander) is ran-
domly being used to trigger an envelope, which is then
sent to O1. Here – because of the order of the circuits –
the envelope will start in the same loop cycle in which the
trigger is seen at G1.

Now let’s change the order:

[contour]
trigger = _TRIGGER
output = O1

[bernoulli]
input = G1
distribution = P1.1
output1 = _TRIGGER

Now it is different. In the loop cycle inwhich the trigger is
detected at G1 the envelope has already been processed.
It gets its trigger through the internal wire _TRIGGER not
before the next cycle. This introduces a short delay of
up to 160 µs. This is not very long, but it can be easily
avoided.

Note: When your patch contains quit a lot circuits, the
loop time gets longer of course. It is very likely that is is
below 500 µs even then, however.

3.11 Parameter arrays

Some of the circuits have arrays of similar jacks, like
output1, output2, output3 and so on. Here you can al-

ways omit the digit 1 if you just want to address the first
jack in the list. So output is just the same as output1.

3.12 Comments & spaces

You can use comments in your patch by making
use of #. Then all further text until the end of the line is
being ignored: #Here comes the envelope for the foobar
voice

[contour]
trigger = _TRIGGER # wired to sequencer
attack = 0.5 # another comment
release = 0.8

output = O2 # wired to foobar trigger

DROIDmanual for blue-1 17 Table of contents at page 2

3.13 How themodule’s state is saved

If you ask people what’s the number one annoyance that
a module can have, most will answer this: When a mod-
ule is loosing its state when you power cycle your modu-
lar. That’s also the number one reason for people running
their system the whole night through.

Therefore the – of course – will save it’s state al-
ways automatically. But what do I mean with “state” in
the first place? It’s very simple: If you have defined a
button, remembers wether it is currently on or
off. If it is on now, so will it be after a power cycle of your
system or a restart of themodule (the same holds for off,
of course).

Other ciruits have states as well, for example the
algoquencer (state of the step buttons, the accents, the
pattern length), the matrixmixer (state of allmatrix but-
tons), thecalibrator (stateof the calibrationadaption),
the pot (the current value of all up to eight virtual pots)
and so on.

Only the result ofmanual interaction is saved, not for ex-

ample the contents of the cvlooper or the current phase
of an lfo.

Please note: All these states are saved to the micro SD
card into a file with the name DROIDSTA.BIN. That file
is created with a fixed size of 128 KB when your
starts. Allmanual changes toyour circuits are saved there
after a short delay of about 1.5 seconds. Also when you
press the button for loading a new patch, the states are
saved immediately, even if the last change was less than
1.5 seconds ago.

From this follows a couple of things:

• When no memory card is in the , no states
will be saved. But you can always put one there
even if the module is already running for some
time. It will be detected automatically and all
states will be saved after a second or two.

• When you move the SD card from one
to another, the current circuit states will also be
moved.

• If you want to erase all your settings, you can do
this by starting the without and SD card
and inserting it later. The settings file will just be
loaded right at the beginning. If it’s not present, all
circuits start with their default settings.

The format of the file is binary and looks chaotic. You
cannot open or edit it with any software. But the format
is very efficient, so the ongoing saving of states doesn’t
have any impact on the precise timing or performance of
the .

Note: If you forget to have the SD card insertedwhen you
power up your , it will run with default states. In-
serting theSDcard afterwardswillnot load the saved set-
tings but the other way round! It will save the new states
on the card. That way you loose your original settings.
So if you have forgotten to start with the card, power
off the module, then insert the card, then power it on
again. That way you won’t loose your settings.

3.14 More than one patch on thememory card

Sometimes you might want to have more than one
patch on your card and switch back and forth be-

tween these without going back to your computer. This
can easily be done if you have at least one controller with
buttons, such as P2B8, P4B2 or B32.

It goes like this: Put your additional patches on the card
with special filenames droidXY .ini, where X is the
number of the controller and Y the number of the but-
ton. Then droid14.ini will be loaded if you first press

and hold the button 4 on your first controller while then
pressing the load button on the master.

That way if you have one P2B8 you can choose between
nine different patches. If you have a second P2B8 con-
troller, this is extended to 17 patches, because now hold-
ing button 1 on controller 2 will load droid21.ini and
so on. A B32 gives you a total of 32 alternative patches
to load and so on. And yes: if you have 10 or more
controllers and some B32 amongst them, droid124.ini

would be loaded by button 24 on controller 1, but also by
button 4 on controller 12.

Important: It is crucial that every of your patch files con-
tains the appropriate [p2b8] or other controller declara-
tions! Otherwise you won’t be able to switch over to the
other patches since button presseswill not longer be reg-
istered by the master. It will instead fall back to
the normal droid.ini in that case.

DROIDmanual for blue-1 18 Table of contents at page 2

3.15 Displaying the value of a register

In the section about finding errors in your patches we al-
ready talked about the status dump file (see page 12).
That showsyou the exact value of every single input, out-
put, potentiomenter and other register.

But there is another way of showing a current value from
within your patch, and that live. This can be useful, for
example, if youwant to spare a potentiometers and use a
fixed value instead but first need to find out which value
fits best. Maybe you need a simple envelope with a fixed
non-zero attack value. You could try out different values
by changing your patch over and over again. But that’s
quite annoying.

Here the experimental X1 register helps. It’s an output
register. When you send a value there, all the LEDs of the
front panel will show that value in a way similar to the
line-error-encoding of the patch parser. Here is an exam-
ple:

[p2b8]

[contour]
attack = P1.1
release = P1.2
trigger = B1.1
output = O1

[copy]
input = P1.1
output = X1

Now turn the knob P1.1 for setting some nice attack
value. As soon as you remove that from its zero-position,
all LEDs will move around in red and white and show the
current value of P1.1with three digits. Input LEDs are lit
white and red. White digits account for 0.1 and red digits

for 0.01. The red digits at the outputs account for 0.001.
Here are some examples:

The value 0.148:

The digit 9 will be displayed as 8 + 1. So here is 0.951:

A zero digit means of course that no LED is lit in the ac-
cording section. Here is 0.950:

Butwhat if digits in the input section collided? E.g. 0.550
would need the LED of input 5 to be red and white at the
same time. Well, then itwill blink betweenwhite and red:

Once you have found a nice value, simply replace P1.1
with that fixed value and your pot is free for something
else!

Note: When you send 0 to the X1 register, it will be inac-
tive and the LEDs behave like normal and show the actual
values of your inputs and outputs.

DROIDmanual for blue-1 19 Table of contents at page 2

4 Controllers and Expanders

The master can be extended with a ever growing range of controllers and other expanders. These are what makes the ecosystem so flexible. You can attach up to 16
controllers to your .

The P2B8 controller
has two potentiome-
ters (pots) and eight
push buttons – thus
the name P2B8. You
can freely use these
pots and buttons for
any purpose in your

patch. Us-
ing controllers is very
easy and adds lots of
playability.

The P10 is available
since summer 2021
and works very sim-
ilar to the P2B8, just
it hasnotbuttonsbut
10 pots. Two are
large and eight are
small, but all of them
have the same func-
tionality. You can
control any parame-
ter with each of the
pots.

The G8 expander
extends your
by eight gate inputs
or outputs, which
is perfect for clock,
trigger and gate
signals. Every jack
can be used as a gate
input or output. You
can attach one G8 to
your .

The X7 expander pro-
vides three different
functions: MIDI in +
out, both via USB and
DIN/TRS, supporting
both Korg and Arturia
standard (also known
as MIDI-A and MIDI-B),
direct access to the
masters’s SD card via
USB and four additional
gate outputs.

The B32 controller
will also be available
early 2022. It does
not have any pots
but 32 buttons.

TheM4Motor Fader
Unit brings four
motorized faders to
your . These
can be used either
for easy switching
between presets or
for overloading one
fader with lots of
different functions
at the same time.
Theywill be available
in spring 2022.

The P4B2 controller will be
available early 2022 and is
very similar to the P2B8.
The only difference is that
it has four big pots and just
two buttons. They are use-
ful if you needmore controls
of continuous values but the
small pots of the P10 are too
small for you.

DROIDmanual for blue-1 20 Table of contents at page 2

4.1 The P2B8 controller

Using controllers is very easy and adds lots of playabil-
ity to your DROID patch. The P2B8 controller is the most
common and flexible of the controllers and it also
was the first one available. This chapter shows you how
to install and use it. The same does apply for the P4B2,
P10 and B32 controllers – just that the P10 has no but-
tons and the B32 has no pots. The M4 is special and will
be described in an own chapter once it is available.

Installation

1. Wire the controller output of themaster to the first
controller by use of the 6 pin ribbon cable. Make

sure that you attach it to the input header of the
P2B8 controller. Put the red stripe down on both
modules.

2. If you use more than one controller, connect the
output header of each controller to the input
header of the next one.

3. On the last controller, set the jumper to Last.
4. On all other controllers, remove the jumper or set

it to Park.

Note (1): do not mix up input and output. The right
hand connector must be connected to the master, the
left hand one to the next controller.

Note (2): do not use the 6pin programmingheader (the
one without the box) on yourmaster or P2B8!

The controllermodules are poweredby themaster. When
you switch on your system, all controllers will flash the
LEDs for a short time, to show you that you have wired
them correctly.

If you set the jumpers not correctly, the controllers will
power up and flash their LEDs as usual, but the buttons
and pots will not work.

If the LEDs on the first controller behave as they should
but not the buttons and pots then you have probably set
the jumpers incorrectly. Please check.

Another test is pressing a button: If you have correctly
declared your controllers in your patch, the LED
in that button should be lit as long as you hold the but-
ton. This shows that the communicationwith themaster
is working fine.

DROIDmanual for blue-1 21 Table of contents at page 2

4.2 The P10 controller

The P10 controller is very similar to the P2B8 controller.
Please look at page 21 for how to connect the controllers
to your DROID master and how to chain them. The only
difference is that the P10 does not have any buttons (nor
LEDs in these buttons) but instead eight small pots. That
makes a total of 10 pots – all behaving in the same way.
They are numbered from 1 to 10, so if your P10 would be
the first in the chain, these pots are adressed in a
patch by P1.1, P1.2, P1.3 ... P1.10.

The P10 is handy if you need to control lots of continuous
values.

4.3 How to use controllers in your patch

Before you canuse the controllers in your patch, youneed
to declare them right at the top of your patch: Just write
one line with the content [p2b8], [p10], [b32], [p4b2],
[m4] for each for your controllers. Theorder of these dec-
larationsmust exactlymatch theorderof your controllers
in the chain, beginning with the one that is directly con-
nected to themaster. Here is an examplewith two P2B8s
followed by one P10:

[p2b8]
[p2b8]
[p10]

Now you can use the pots, buttons and LEDswith special
registers in your patch as follows:

Px.y potentiometers

Bx.y buttons

Lx.y LEDs in buttons

Replace x with the number of the controller and y with
the number of the pot or button on that controller. Ex-
amples:

• P1.2 is the second pot on the first controller
• B3.8 is the eighth button on the third controller
• L3.8 is the LED in that button

Here is a schematics of the numbering of three P2B8 con-
trollers:

P2B8

P1.1

P1.2

B1.1

B1.3

B1.5

B1.7

B1.2

B1.4

B1.6

B1.8

P2B8

P2.1

P2.2

B2.1

B2.3

B2.5

B2.7

B2.2

B2.4

B2.6

B2.8

P2B8

P3.1

P3.2

B3.1

B3.3

B3.5

B3.7

B3.2

B3.4

B3.6

B3.8

DROIDmanual for blue-1 22 Table of contents at page 2

Look at the following example. Here we have three con-
trollers attached to the master: One P2B8, then one P10
and finally onemore P2B8. Thenwe use some of the pots
of the P10 for controlling the timing of an envelope cir-
cuit: looks like this:

[p2b8]
[p10]
[p2b8]

[contour]
trigger = G1
output = O1
attack = P2.5
release = P2.6

Details on the potentiometers

The potentiometers of the P2B8 and P10 output a num-
ber in the range 0.0 … 1.0. This corresponds to a voltage
from 0.0 V to 10.0 V. Wherever there is a CV parameter
in a circuit (labelled in the table of inputs) you can
set a pot here. An example would be an envelope gener-
ator:

[p10]

[contour]
gate = G1
output = O1
attack = P1.3
decay = P1.4
sustain = P1.5
release = P1.6

If you do not like the range of the pot you can easily
change it by attenuation and offsetting as described on
page 14. Let’s make attack just go from 0.0 to 0.3:

[p10]

[contour]
gate = G1
output = O1
attack = P1.3 * 0.3
decay = P1.4
sustain = P1.5
release = P1.6

[p2b8]

Of course you could use the same pot for more than one
input. The following example use one single pot for at-
tack, decay and release –with different scaling, however!

[p10]

[contour]
gate = G1
output = O1
attack = P1.3 * 0.3
decay = P1.3 * 0.5
sustain = P1.4
release = P1.3 * 0.7

Sometimes you want to use a potentiometer in a bipo-
lar way – e.g. with a range from -1.0 to 1.0. This can be
achieved by multiplication with 2 and subtracting 1:

[p2b8]

[copy]
input = P1.1 * 2 - 1
output = O1

Formore complicated tasks about pots there is the circuit
pot (see page 157). Here are some of its features:

• Make it easy to exactly dial in 0.5 but creating an
artificial notch.

• Overload the same pot with several independent
virtual values.

• Easily create a bipolar pot with access to the left
and right half of the values.

• Use the master’s 16 LEDs for highlighting the cur-
rent pot value

Details on the buttons

The buttons on the P2B8 yield a value of 1.0 while
pressed and hold and 0.0 otherwise. While this is suffi-
cient for using them as trigger, in most cases you want
the button to toggle its state between on and off each
time you press it.

Here the circuit button helps (see page 66). It converts a
push button into an on/off switch. The following exam-
ple uses B1.1 in order to switch an LFO between unipolar
and bipolar:

[p2b8]

[button]
button = B1.1
led = L1.1

[lfo]
bipolar = L1.1
sine = O1

Please note, how the LED L1.1 is set by the button, so
that you have visual feedback of the current state. And
since that register contains 0 or 1 depending on the but-
ton’s state it can directly be used for the input bipolar of
the LFO.

DROIDmanual for blue-1 23 Table of contents at page 2

The button circuit can do much more interesting things,
for example:

• Create buttons with three or four toggle states
• Combining more buttons into a group, similar to
“radio buttons”.

• Overload one button with several independent
functions

• Detect double clicks and long presses

See page 66 for all the details.

4.4 Controller latency

As stated above, you can attach up to 16 controllers to
one master. These controllers are connected via a
ribbon cable with six wires. Four of these wires comprise
a power supply for the controllerswith 5V (except for the
M4 –Motor Fader Unit, which has its own power supply).
The remaining two wires form a digital serial connection
between the modules. The master sends data to the first
controller, the first controller to the second and so on un-
til the last controller sends all collected data back to the
master.

This serial line sends approximately 7200 bytes per sec-
ond. Every controller needs a different number of bytes

per update and for the P2B8 it’s 11 bytes. So if you have
just one P2B8, you get 7200

11 = 654 updates per second.
That’s roughly one update per 1.5 ms – which is pretty
fast. That means that a button press is registered by the
master after 1.5msplus some internal computation time.

If you have the maximum of 16 controllers (which would
be 80 HP of controllers), things slow down a bit, of
course, since now every controller get’s just 1

16 of the
data in the serial connection. In that case a button press
would need about 25ms to be registered. This is still way
fast enough for the typical switching tasks that you typi-
cally dowith the . Playing live drumswith the but-
tonswould not be very tight, however (Iwouldn’t suggest
that anyway).

DROIDmanual for blue-1 24 Table of contents at page 2

4.5 The G8 expander

Simply use the 8 pin ribbon cable that has been shipped
with your G8 and connect the G8 to the 8 pin port of the
master as shown in the following picture. Put the red
stripe down in both modules.

The G8 expander gives you 8 further digital inputs and
outputs. These are accessible via G1, G2…G8. They can be

used as clock and reset inputs, trigger outputs and similar
tasks.

• Each jack can either be used as input or as output.
• When used as input it will read a value of 1 (= 10 V)
at an input voltage of approx 0.75 V or above and
0 otherwise (also for negative voltages)

• When used as an output they output 5Vwhen you
send a value 0.1 or higher to G1 …G8. And 0 V oth-
erwise.

The G8 also has 8 multicolored LEDs. These will indicate
inputs with blue lights and outputs with red lights when
high. You can override the default function of LEDs in or-
der to signal something. Use the registers R17 …R24 for
that purpose.

There is nothing special to do in your droid.ini for set-
ting up the G8 expander. Using G1 …G8 without actually
having the expander will simply behave as if nothing was
patched there.

One question aside: Why do the gates not output 10 V?
Well, while this would be more logical it was actually im-
possible to do in hardware easily since we use a very spe-
cial chip here that is able to switch between input and
output via software. And that chip does not support 10V.
99.9% of all eurorackmodules will happily accept 5 V as a
valid trigger. If that’s not the case for you, simply use one
of the outputs of the master.

DROIDmanual for blue-1 25 Table of contents at page 2

5 The X7 expander

5.1 Quick start

You already know what the X7 is all
about? Want to start immediately? Here
is a super short quick start guide for ex-
perienced users:

1. Wire theX7 to yourmaster just like
a controller. It must be the first in
the chain.

2. Use the MIDI functionality via
the circuits midiin (see page
129), midiout (page 136) and
midithrough (page 144).

3. Access the four gates via G9, G10,
G11 and G12

4. Connect the USB cable and put the
switch left for USB access to the
SD card. Put it back to the middle
position for disconnecting USB and
loading the patch.

5.2 General overview

Features and applications

Welcome to the X7 expander. The X7 gives you USB and
MIDI connectivity for your and also four gate out-
puts with modular levels.

You can process incoming and generate outgoing MIDI
streams, bothvia classicalDINcables andviaUSB.Both in
and out directions support polyphony with eight or even
more voices in parallel.

For size reasons the X7 uses 3.5 mm TRS jacks for MIDI
instead of the classical DIN jacks. But it comes with two
DIN↔ TRS adapters, so you are free to use either form
factor.

As a bonus feature, the X7 provides super fast loading of
patchesviaUSB–without anyneed for putting the

SD card in and out anymore.

Here are some examples of what you can do with the X7:

• Attach an external keyboard to your modular.
• Use an external hardware sequencer for playing
melodies and beats in your modular.

• Use an external MIDI controller to influence your
patch.

• Do the same with a MIDI controller app on your
tablet or phone (via USB).

• Use yourmodular for playing polyphonicmusic and
beats on your hardware synths or software synth
plugins in your DAW, tablet or phone.

• Connect two DROIDs (both with X7) and exchange
real time CVs and triggers.

• Use the four additional gate outputs on the X7 for
sending clocks, gates and triggers and free your
valuable CV outputs for other things.

• Access the SD card in your master just like a USB
stick for direct access to it via your PC,Mac, phone
or tablet.

• Alternatively load new patches to your master via
MIDI sysex from your PC – and get your new patch
ideas up and running in less than a second.

The switch

At the top the X7 has a switchwith three positions. This
switch selects the current function of the USB port:

left Activate USB access to the SD card

middle Don’t use the USB port

right Activate MIDI via USB

Beware: in the left position the master will not work as
usual and does not run your patch. See below for details.

The jacks

The X7 has the following jacks:

• One USB-C port for MIDI via USB and for access to
the master’s SD card from your PC

• One 3.5 mm stereo jack (also called TRS, which
stands for “tip ring sleeve”) forMIDI input, with au-
tosensing for MIDI TRS type A and B

• One 3.5 mm stereo jack for MIDI output

DROIDmanual for blue-1 26 Table of contents at page 2

• Four gate outputs for gate and trigger signals at
modular level

This sums up to a total of seven ports, hence the nameX7
(the original idea of naming it “U1M2G4” was soon aban-
doned, since thatwas too clumsy and alsowouldn’t fit on
the face plate).

The LEDs

Similar to the master, the face
plate hasmulticolor LEDs indicating
what’s going on at the seven ports:

• The top left LED shows the
current state of the SD card in
the master.

• The top right LED shows
what’s going on on the USB
MIDI connection.

• The LEDs in the second row
show incoming and outgoing
MIDI data at the TRS ports.

• The four LEDs labelled 9, 10,
11 and 12 show the current
state of the four gate outputs.

5.3 Installation

The installation of the X7 is very simple. These are the
rules:

1. Wire the X7 to the shrouded 6-pin header on the
top right of the master, just like P2B8, P10 and
other controllers.

2. There is no jumper. You don’t need one here.

3. Always install it as the firstmodule in the chain!
4. Make sure that the switch is in the middle position

when you start.
5. You can only attach one X7 to your master.

Just as all the controllers, the X7 has an input connector,
which is at the top right side if you look from theback. On
the left side is the output connector. Connect the master
with the shipped 6 pin ribbon cable to the input connec-
tor. If you have any controllers, like P2B8, P10 and so on,
wire the first of these to the output connector of the X7.

That’s all. the X7 is powered from the master so there is
no dedicated power cable.

Note: You don’t need to change anything in your
patches for now. Even if the X7 is connected to the mas-
ter like a controller, it does not need to be declared. And
it also does not count when it comes to the numbering of
P1.1 and so on.

5.4 USB access to your SD card

The X7 can give you direct access to the SD card of the
master via USB. Start with the switch in its middle posi-
tion. Andmake sure themicro SD card is in its slot on the
master. The top left LED of the X7 always shows you dim
white light whenever a SD card is present.

Nowconnect theUSB-Cporton theX7withyourPC,Mac,
Linux, phone or tablet (I’ll just say PC for the rest of this
manual) and set the switch on the X7 to the left. This en-
ters “USB stick mode”.

Note: Please use the USB-A ↔ USB-C cable that was
shipped with the X7 or a similar one. USB-C↔ USB-C
cables do not work!

After a few seconds, your PC should detect a new stor-
age device with the exact contents of the micro SD card.
Since X7 is a “class compliant” mass storage device you
don’t need any driver on your PC.

Now you can edit droid.ini directly on the card or copy
a patch from your PC to the card, just as you are used to
when you are working with your SD card reader.

Whenyouarefinished, eject the volume / disk onyour PC.
After that put the switch back to itsmiddle position. This
will remove the USB connection and also automatically
launch the new patch. So you don’t need to press
the button on the master.

A few notes:

• If your patch has an error (blinking LEDs and stuff,
see page 7) put the switch back to the left, wait for

DROIDmanual for blue-1 27 Table of contents at page 2

the SD card window to popup and look for the file
DROIDERR.TXT. Open it and you will see the exact
reason for the error.

• The access to the SD card via the X7 is slightly
slower than using an SD card reader on your PC
since it takes the extra miles via the X7

• If you need to re-format the card for some reason,
better do this in the micro SD card reader that was
shipped with your master. It’s much faster that
way.

• If you are working with Mac and experience that
the access is slow, check out disabling Spotlight on
the card. A script for that can be found on page 41.

5.5 MIDI

MIDI features overview

One key feature of the X7 is workingwithMIDI. The com-
binationof the masterwith theX7probably forms
themostflexible, comprehensive andpowerfulMIDI con-
verter in Eurorack land. Here are some of the key fea-
tures:

• Support for bothMIDI→ CV and CV→MIDI at the
same time.

• Unlimited polyphony (number of simultaneuous
notes) except that you run out of jacks.

• The MIDI streams of USB and TRS can be used in-
dependently in parallel, so you have two input and
two output streams.

• Flexible “MIDI through” routing while splicing in
and out events

• Comprehensive support and access to the vastma-
jority ofMIDI features such as CCs, clocks, the run-
ning state, pitch bend, all types of pedals andmuch
more.

• Automatic pitch stabilization detection in the
CV/gate → MIDI conversion, thus working pre-
cisely with Eurorack sequencers and quantizers.

• Super fast patch upload via USB-MIDI Sy-
sex.

And of course you benefit from ’s own flexibility
when it comes to quantization, LFOs, chord generators,
switches and all that stuff.

MIDI over DIN

For space reasons, the X7 uses 3.5mm stereo jacks (TRS)
for MIDI. But we ship two TRS to DIN adapters with the
X7. Use these for connecting classical DINMIDI devices.

Note: Whenyouuseoneof the shippedadapters for the
MIDI output via DIN, make sure that the switch at the
back of the X7 is set to position B (up).

MIDI over USB

The X7 supports MIDI over USB. Hereby it acts as a USB
device. This does notmean any limitation of being an in-
put or output device. It can be both. Even at the same
time. But the actual limitation is that the X7 cannot pro-
vide power to your MIDI devices and cannot be a USB
host.

Thatmeans thatMIDI devices that are USB devices them-
selves cannot be connected to the X7 via USB, even if you
haveamatching cable. Connect yourMIDI keyboards and
controllers with the TRS jack if USB doesn’t work for you
here.

But the USB port is perfectly suitable for connecting the
X7 to your PC,Mac, tablet or phone. TheMIDI implemen-
tation is “class compliant”. That means that you do not
need any driver software. Simply connect theX7with the
shipped (or any other) USB-C cable to your PC and set the
switch to the right. You now should now see a new MIDI
device, which can be selected as input or as output de-
pending on what you are going to do.

Note: As of now the USB-MIDI standard has a concept of
up to 16 virtualMIDI “cables”. The X7 receives data on all
cables and always sends on cable 0. Future software up-
dates might make this more flexible, if there is demand.

By the way: MIDI over USB is not restricted to the stan-
dard MIDI data rate of 31250 bits per second.

The LEDs

WhenworkingwithMIDI,watch the corresponding LEDs.
Here are what the colors mean:

DROIDmanual for blue-1 28 Table of contents at page 2

black no data transmitted

dim white steady activity

green note on

red note off

blue some other MIDI event

The top right LED shows the status of USB-MIDI:

The third LED showsMIDI data via incoming TRS:

The fourth LED showsMIDI data via outgoing TRS:

MIDI to CV (MIDI input)

Themost common application forMIDI andmodular syn-
thesizers is converting MIDI note events to CV/gate sig-
nals. When you press a key on a MIDI keyboard or when
a MIDI sequencer starts playing a note, a MIDI “note on”
message is being sent over the wire. Likewise at the end
of the note a “note off” message is sent.

A typical MIDI to CV module now receives these mes-
sages and feeds at least two jacks: one with the pitch of
the currently played note in form of the typical 1 volt per
octave scheme. And one gate output which is high (e.g.
at 5 V) while the key is being hold.

Of course there is much more, like clock signals, con-
trollers and so on. This X7 can give you access to the vast
majority of MIDI features.

The hardware connection is done either with the 3.5 mm
TRS jack or via USB (or both at the same time). The X7
comeswith two identical TRS↔DINadapters, so you can
use themuchmorewide spread classicalMIDI cableswith
DIN plugs.

Even if you don’t use our adapters but use the 3.5 mm

jacks directly, you don’t need to care about MIDI “A and
B”. The X7 does autosensing at its input. Either way will
work. Justmake sure youuse stereo cables. Normalmod-
ular patch cables don’t work.

The basic operation is super simple. All is done with the
circuit midiin (see page 129). This example converts
MIDI to a pitch CV at output O1 and a gate at output O2:

[midiin]
pitch = O1
gate = O2

The source is the TRS jack. But you can easily select MIDI
via USB instead with the usb parameter:

[midiin]
usb = 1
pitch = O1
gate = O2

Per default, midiin processes notes from all 16 MIDI
channels. You can select one specific channel with the
channel jack:

[midiin]
channel = 5
pitch = O1
gate = O2

Note: You can use up to 32 midiin circuits in your patch.
So you could add one circuit for each MIDI channel that
you want to process.

For polyphonic patches with more voices simply specify
more pairs of gate and CV. This example supports three
simultaneuous notes:

DROIDmanual for blue-1 29 Table of contents at page 2

[midiin]
pitch1 = O1
pitch2 = O2
pitch3 = O3
gate1 = O5
gate2 = O6
gate3 = O7

If you have a G8 expander (see page 25) you directly con-
trol eight analog voices:

[midiin]
pitch1 = O1
pitch2 = O2
pitch3 = O3
pitch4 = O4
pitch5 = O5
pitch6 = O6
pitch7 = O7
pitch8 = O8
gate1 = G1
gate2 = G2
gate3 = G3
gate4 = G4
gate5 = G5
gate6 = G6
gate7 = G7
gate8 = G8

Notes have velocities, also there are MIDI controllers like
the volume, themodulationwheel ormore. These can di-
rectly be accessed via output parameters:

[midiin]
pitch = O1
gate = O2
volume = O3
modwheel = O4
ccnumber1 = 17 # get CC number 17
cc1 = O5 # output that on O5

Also you get simple access to variousMIDI clocks and the
start and stop status:

[midiin]
clock = G1
start = G2
stop = G3
running = G4 # alternative to start/stop

The MIDI notes needn’t be used for playing voices. The
following example uses the note for selecting a root note
for a minifonion (see page 145):

[midiin]
pitch = _PITCH

[minifonion]
root = _PITCH * 120

You even can useMIDI keys (maybe from controller pads)
as buttons.

[midiin]
note1 = 24 # MIDI note number of C-0
notegate1 = _KEY_C

[button]
button = _KEY_C
onvalue = 0.8
offvalue = 0.2
output = O1

This was just a quick overview and there are much more
inputs and outputs available. Please have a look at page
129 for more details on midiin.

CV toMIDI (MIDI output)

While MIDI to CV interfaces still are the vast majority of
MIDI modules, the other way round becomes more and
more interesting. With more and more complex quan-
tizers, sequencers and other fascinating and inspiring CV
modules people want to integrate existing hardware or
software synths into their modular systems for playing
melodies and beats that are generated by thesemodules.

For that task you need a CV toMIDI converter. That con-
verts pitch and gate information, that is present in form
of CVs, into a streamofMIDI events and sends these over
DIN or USB to the sound modules.

Such CV to MIDI converters are still rare in Euroland and
many of the existing modules have severe restrictions or
instabilities. One crucial problem is thatmost sequencers
do not output gate and pitch information exactly syn-
chronously. Another is that you need to have high quality
jitter free AD converters for precisely catching your pitch
CVs.

The X7 aims to be the most precise, comprehensive and
flexible CV→MIDI converter available and we are confi-
dent that it indeed is. It supports an unlimited number of
voices (even if yourmaster just has eight CV inputs,more
voices can be created internally with all your sequencer,
algoquencer, chords, arpeggio, minifonion and other
circuits). Also it gives you access to almost every con-
ceivable MIDI feature. And it benefits from the master’s
super precise and stable AD converters.

So let’s get started with the hardware. Just as with MIDI
IN, you can choose between USB and TRS. But here there
is a difference. The problem arises from the fact that the
mapping of theMIDI DIN plug to 3.5mm stereo jacks has
been – well – fucked up by the hardware vendors. Some
have chosen the tip of the plug to be the TX signal, others

DROIDmanual for blue-1 30 Table of contents at page 2

have found the ring to be more suitable. So two incom-
patible “standards” haven arisen, which were later called
MIDI “type A” andMIDI “type B”.

While at the input there is an autosensing, at the output
side this is not possible. So this time you need to get it
right. For that reason on the back side of the X7 there is
a small switch where you can select either type A or type
B for your TRS output. If you are unsure which one is the
correct one for your specific device, simply try both.

Note: For our shipped adapters set the switch in posi-
tion B!

Using the CV→MIDI feature of the X7 is simple. Use the
circuit midiout (see page 136) for that purpose. Here is
an example for a monophonic patch with just one voice.
The pitch input is read from I1, the gate from I2:

[midiout]
pitch = I1
gate = I2

Per default, X7 sends on MIDI channel 1 on TRS. You can
change both with the parameters usb and channel:

[midiout]
usb = 1
channel = 7
pitch = I1
gate = I2

Creating a polyphonic patch is simply. Just add more
pitch/gate pairs:

[midiout]
pitch1 = I1

pitch2 = I2
pitch3 = I3
gate1 = I5
gate2 = I6
gate3 = I7

Of course you can use internally generated or shaped
pitch information, as well. In this example the pitch in-
put from I1 is quantized to C minor before sending it to
MIDI (see page 145 for details on the minifonion circuit):

[minifonion]
input = I1
degree = 7
output = _PITCH

[midiout]
pitch = _PTICH
gate = I2

You can even create a MIDI to MIDI quantizer – without
any further eurorack module:

[midiin]
pitch = _INPITCH
gate = _GATE

[minifonion]
input = _INPITCH
degree = 7
output = _OUTPITCH

[midiout]
pitch = _OUTPITCH
gate = _GATE

Of course you can also access all the CCs and other con-
trollers, such as velocity, aftertouch, and polyphonic key

pressure. Also you can send yourmodular clock and reset
signals viaMIDI. Please see page 136 for all details on the
midiout circuit.

And by the way: as always, all parameters are CV con-
trollable and can be changed on the fly – even things like
channel and usb.

I think you can guess all the flexibility of this approach!

5.6 MIDI through

The X7 can forward MIDI data, that are incoming via TRS
or USB, to one of its two outputs (TRS / USB), while still
being able to “splice in and out” MIDI events.

Use the midithrough (see page 144) circuit for forward-
ing data from an input to an output. Here is an example:

[midithrough]
fromusb = 1
tousb = 0 # means TRS jack for output

This will forward MIDI events from the USB port to the
TRS output. Note: All midiin and midiout circuits still
work, so the output streamon the TRS jackwill both con-
tain the original events from MIDI-USB and the events
you create with your midiout circuits.

midithrough cannot do any filter or processing on the
fly. But if it would become an issue, we might add use-
ful feature here in future.

DROIDmanual for blue-1 31 Table of contents at page 2

5.7 Four gate outputs

The X7 has four gate outputs. These are easy to use and
also not very thrilling. But useful. Each of these can out-
put modular level triggers or gates of 5 V.

For using the gates, refer to them as G9, G10, G11 and
G12. Why not starting at G1? Well, the gates G1 ... G8
are reserved for the G8 expander (see page 25), even you
don’t useone. Note: thegateson theX7areonlyoutputs,
whereas the G8 can also use them as inputs.

Of course you can use the gates in combination with
MIDI. Here is an example for outputting three different
MIDI clocks as well as a reset signal at the gates:

[midiin]
clock = G9 # 16th notes
clock8 = G10 # 8th notes
clock4 = G11 # quarter notes
start = G12 # trigger at MIDI start message

5.8 Eightmulti color LEDs

Just as with the master and the G8, you can override
the functions of the eight LEDs on the X7 with your own
choice of colors. Use the registers R25 through R32 for
that purpose.

Here is an example for changing the LED color with a pot:

[p2b8]
[copy]

input = P1.1
output = R25

5.9 Fast patch upload via Sysex

MIDI defines a type of event that is called “Sysex”, which
is an abbreviation for “MIDI System Exclusive Message”.
These are portions of data bytes that just have a mean-
ing to certain types of devices and are not standardized
byMIDI. Thesemessages canmean anything to a device.
In fact one of the original ideas was to load “patches” to
and from a hardware synth.

And exactly that original application is implemented by
theX7: You canupload patches to yourmaster via
MIDI sysex. Why would you do that, if you could simply
use “USB stick mode”? Well, there are a couple of advan-
tages:

• The upload via sysex is really super fast.
• Your does not stop playing music for more
than a fraction of a second.

• You don’t need to touch the switch nor the button
of the master. So it’s a complete remote control.

• You don’t need to do this cumbersome “eject” of
the USB drive.

There is a slight disadvantage, of course. And that is the
fact that the sysex mode is a bit more complicated to

setup and also it needs special software. But if anything
goes wrong you can always fall back to USB stick mode.

Patch upload via sysex on Linux

The best way to setup the patch upload via sysex de-
pends on which operating system you use. Let’s start
with Linux, just because it’s the easiest. On any decent
regular Linux installation there usually is a tool called
amidi. It’s part of the sound driver (ALSA), so it’s usually
already installed. amidi can sendanyMIDI commands in-
cluding sysex.

Now in the Firmware ZIP-file that you find for
download on your shop, you find the directory
utilities/sysex/linux and in there the script
droidpatch. Copy that script to /usr/local/bin and
make sure it is executable.

Now you can upload a patch file by calling droidpatch
with the name of your patch file. It needn’t be called
droid.ini:

user:~ $ droidpatch mypatch.ini

Of course the switch on the X7 needs be on the right
(MIDI). That’s it.

Patch upload via sysex onMac

Now let’s look at the Mac. It’s basically the same pro-
cedure as on Linux just with one change. Mac does not
haveamidi. Insteadyouneedanother tool for doingMIDI
on the command line. I recommand to use sendmidi.
This has several advantages overmore complex software
suites:

DROIDmanual for blue-1 32 Table of contents at page 2

• It is small.
• It is free.
• It is command line based and thus good for au-
tomating things.

You can get sendmidi here: https://github.com/
gbevin/SendMIDI/releases. Choose your operating
system and download and unpack it. Basically there is no
installation necessary since this tool really just consists
of one single file, which is called sendmidi. I suggest that
you copy that file to /usr/local/bin, so that it is always
ready for you to use.

Just as with Linux, in the Firmware ZIP-file you find the
directory utilities/sysex/mac and in there the script
droidpatch. Copy that script to /usr/local/bin and
make sure it is executable. Put the X7 switch to the
right and you can send patches with the new command
droidpatch:

user:~ $ droidpatch mypatch.ini

One side note: sendmidi relies on a MIDI framework
called Juce. And that can be unstable for larger sysex
files – just as those that we need for the . If the
most current version does not work try version 1.0.14.
It worked for me. And we have included a binary of that
in utilities/mac/sysex that you can use.

Patch upload via sysex onWindows

Just as with Mac, the first step is to install sendmidi.
You can get it here: https://github.com/gbevin/
SendMIDI/releases. There is no real “installation”. Just
take the program sendmidi.exe and copy that to the di-
rectory where you keep your patches. If you have
none, it’s a good time to create one now.

Open a terminal window, go to the directory with cd and
try it out by simply calling that program. It should outupt
a version number:

C:\Users\dmmdm\patches> sendmidi
sendmidi v1.0.15
https://github.com/gbevin/SendMIDI

Usage: sendmidi [commands] [programfile]...

Now connect your X7 with USB to your computer. And
put the X7’s switch to the right. Then check if sendmidi
detects the X7, by adding the word list:

C:\Users\dmmdm\patches> sendmidi list
Microsoft GS Wavetable Synth
DROID X7 MIDI

Here it is! Now for every subsequent call to sendmidi add
dev x7 in order to select the X7 as output devices.

Now let’s try the MIDI connection by sending a note
event. This small tool is really cool. In fact you can send
all sorts of MIDI events. You can even create sequences
with lots of notes events and pauses in between. It’s kind
of really low level MIDI sequencing. So let’s play a C2 at
full velocity (value 127):

C:patches> sendmidi dev x7 on c2 127

If everything goes well, you should see the LED 2 on the
X7 shortly flash green:

If this works, you know that the USB-MIDI connection is
working and sendmidi is also ready. The next step is to
convert your patches into MIDI sysex files. To do
this you just need to add a sequence of five specific bytes
at the beginning, then add the patch and one final special
byte at the end.

With the X7 software releases there are the files
sysexhead.txt and sysextail.txt in the subdirec-
tory utilities/sysex/windows. These need to be glued to
the beginning and the tail of the patch in order to form a
MIDI sysex file. I recommand that you copy them to your
patch directory.

Note: For this all to work it is very important that your
patch files don’t contain non-ascii characters. So don’t
use German umlauts or any other special character that’s
not part of the English language (you would do that just
in comments anyway).

On the command line you can use the command copy for
gluing together the head, the patch and the tail. Use a
plus sign between the file names like this:

C:patches> copy sysexhead.txt + yourpatch.ini
+ sysextail.txt yourpatch.syx

DROIDmanual for blue-1 33 Table of contents at page 2

https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases

Write this in one line. This will convert yourpatch.ini
into a new file called yourpatch.syx. That file can easily
be sent via sendmidi:

C:patches> sendmidi dev x7 syf yourpatch.syx

That’s all! Your master should now load the patch, show
a very short restart animation and your patch is up and
running.

5.10 Software update for the X7

Other than the simple expanders like the P2B8or the P10,
the X7 has a rather sophisticated software. Some bugs
might be found. And new feature ideas will be imple-
mented. So The X7 has a software update procedure.

When you start the X7, it shows its current sofware ver-
sion in the 2x2 LED field of the gates. The first released
version is called orange-9 and is indicated by the G9 LED
shining orange:

In order to make things as easy as possible for you, the
software update for the X7 is done by the master. You
don’t need to change anything in your cabling for that.

Leave the X7 attached as the first expander on the mas-
ter.

Here are the steps for an X7 firmware upgrade:

1. Copy the firmware file for the X7 (from Discord
or from our Download page) to the SD card in the
master.

2. Rename it to exactly x7.fw
3. Bring the master into the maintenance mode (see

page 39 for details). Long things short: this is done
by a very long button press.

4. Yourmaintenancemenushould showagreenmenu
item at position 8 (if not, the SD card or the file
x7.fw on it is missing):

5. Now press the button a couple of times until the
blinking cursor is at position 8.

6. Press the button longer in order to start the update
procedure.

If everythinggoeswell, you see akindof progress bar run-
ning through all 16 master LEDs, while the X7 does the
same kind of animation with its 8 LEDs.

In case of an error, all 16 LEDs blink in one color. If all
LEDs blink yellow, the firmware file is missing (which is
strange, because it was there at the beginning):

All blinkingbluemeansan invalid sizeof thefirmwarefile:

DROIDmanual for blue-1 34 Table of contents at page 2

Andorangemeans that thefile could not be read fromthe
SD card:

After the upgrade, you need to leave the maintenance
menu on your master. Do this by navigating the blink-
ing cursor to the white LED 1 and press the button a bit
longer:

5.11 Some technical details

Are you interested in the technical issues of the X7? Here
are some details.

The X7 uses the same micro controller (MCU) as the
master: The STM32F446RET6. It is running at

180 MHz and has a 32-bit hardware floating point unit.
It’s a very powerful processor and hard to get these days
(chip crisis). But it’s worth it for short latencies and high
data rates.

The communication between the master and the X7 is
running at amuch higher bit rate than is used for the con-
troller communication. It’s using 1MBit/sec, whereas the
controller bus is running just at about 50 Kbit/sec. This is
the reasonwhy the X7 needs to be attached as first mod-
ule directly to the master. This higher bitrate allows for
transferring MIDI data with low latency – while the con-
trollers are still being process at the same speed as with-
out the X7.

When you switch to “USB stickmode” (switch to the left),
the bit rate is even increased to 2 MBit/sec in order to
make the access to your micro SD card as fast as possi-
ble.

The auto sensing of the MIDI TRS input is done with a
bridge rectifier, four diodes, so the polarity of the input
is ignored.

DROIDmanual for blue-1 35 Table of contents at page 2

6 Firmware upgrade

6.1 What version do you have?

is an active project, new features are being added,
bugs are beingfixed. Alsonewcontrollermodules require
changes in the software of the master module. All these
things are reasons why, from time to time, we release a
new firmware (software) version for the master.

If youwant touse thenewfeaturesorhave thebugsfixed,
you can update your firmware. You find the newest re-
lease always on our download page and also in our Dis-
cord community .

Unless most other software, uses a combination
of a color and a number in order to name a software ver-
sion. For example the version this manual is written for
is called blue-1.

Whenyourmaster starts you can see your current version
in a short LED animation. Look at the first two rows of
LEDs (which normally show the inputs) and their num-
bers from 1 to 8. One or more of them will light up in a
color. Read these as a number and add the color and you
have the firmware version. The other two lines show a
rainbow animation and are not important.

This is how the version green-8 is being shown:

If two numbers light up, don’t add them but read them as
a number, for example this is blue-13 (not 4!):

6.2 Normal update procedure

Here is how you upgrade the firmware of your :

1. Download the most current firmware
file from the ’s homepage at
https://shop.dermannmitdermaschine.de/droid.

2. Copy that file to your micro SD card and rename it
to droid.fw.

3. Insert that micro SD card into your and
press the button, or power your on while
the SD card is inserted.

Now if everything is well, the 16 LEDs show a dark cyan
color:

Now your reads the contents of the file droid.fw
and burns it into the internal flash memory. While this
is going on the LEDs change their color one by one into
bright cyan:

If everything goes well then at the end all LEDs flash a
couple of times and the starts into normal mode.
Here are some things that could possibly go wrong:

DROIDmanual for blue-1 36 Table of contents at page 2

https://shop.dermannmitdermaschine.de/pages/downloads
https://discord.com/invite/9TUcRmH
https://discord.com/invite/9TUcRmH
https://shop.dermannmitdermaschine.de/droid

Missing firmware file

If you have not copied the file droid.fw or missspelled it
or it cannot be found for some other reason like a defunct
SD card then simply nothing happens. The starts
like usual.

Invalid firmware file

A magenta blink code means that your firmware file
droid.fw is somehow not valid. It has the wrong size.
This usually has one of two reasons:

• You copied to wrong file to droid.fw
• You try to update to ablue versionon a that
currently has a green version. If youwant to switch
to blue, you need one extra step. Please see on the
next page in the sectionUpgrade fromgreen toblue
for details.

Fail to program

If there is someerrorwhenprogramming thefile intoyour
’s memory, all LEDs blink dark red. Retry down-

loading and upgrading the firmware again!

Firmware already up-to-date

If the firmware in the file droid.fw already has been
flashed successfully in a previous update, nothing hap-
pens. The automatically detects this and skips
the update. So it is save to leave the SD card with
droid.fw in the SD card slot.

DROIDmanual for blue-1 37 Table of contents at page 2

6.3 Upgrade from green to blue

After the firmware version green-8 there is a bigger
change. So the next version is not green-9 but blue-
1. The main difference is that blue firmwares are larger
and allow for more cool circuits and other stuff in your

.

In order to make that possible we needed to change the
firmware format. For that reason – if your has a
green firmware installed – you need to update your boot-
loader first. The bootloader is that part of the software
that does the actual firmware upgrade. If your master
came already shipped with a blue firmware, everything
is fine and you can stop reading here.

With the bootloader from the green firmware youwill get
all LEDsflashingmagenta if youwant to update toblue-1
(or any other blue firmware). So in this case you need to
do the following steps:

1. Update to green-8. This is important since only
this firmware has a menu entry for updating the
bootloader.

2. Use the maintenance menu to update the boot-
loader. After which you are on green-8.

3. Update toblue-1 or any other blue firmware just as
described on the pages before.

Here is how step 2works in detail. Do the following steps
for this:

First make sure that you have the firmware file of green-
8 on your SD card. This is probably the case anyway if
you just updated to green-8. Now press the button long
in order to enter the maintenance menu (see page 39 for
details).

If everything goes well, LED 7 must show a new blue
menu entry:

If the bluemenu entry does not appear, it’s for one of the
following reasons:

• The file droid.fw does not match the firmware
that is currently running (update your firmware

first)
• Your bootloader is already uptodate (identical with
the one in droid.fw).

• The file droid.fw is missing on the card.
• The file droid.fw is damaged.
• Thefile droid.fw cannot be read from the card (try
reformatting the card with a FAT filesystem in that
case).

• The SD card is not readable.
• No SD card is present.

Now use short button presses in order tomove the blink-
ing cursor to LED7. There press the button long. Thiswill
start the update. A blue LED will run one cycle around,
the DROID will restart and your are done. This whole
thing should last just a few seconds.

IMPORTANT: Do not switch off your DROID until the
procedure isfinished!!! Doing sowillmake it completely
unusable. It has the be reprogrammed in our labs if that
happens.

If you enter themaintenancemenu again, themenu item
7 should have disappeared, since your bootloader is now
up-to-date.

If you need any help, please post a question on our Dis-
cord community .

DROIDmanual for blue-1 38 Table of contents at page 2

https://discord.com/invite/9TUcRmH
https://discord.com/invite/9TUcRmH

7 Calibration, Factory Reset othermaintainance stuff

7.1 Themaintenancemode

The has a special mode for various maintenance
tasks. This mode is a bit “hidden” so that you do not en-
ter it accidentally. You enter the maintenance mode by
holding the button on themaster for a couple of seconds.
After 1.5 seconds of holding the button, an animation of
light blue LEDs going from O8 over to I1 starts:

When the blue LEDs reach I1, continue holding the but-
ton. DROID restarts. Still hold the button. Now the ani-
mation of the blue LEDs starts in the opposite direction:

When the end is reached – this time at O8 – and you now
release the button, the enters the maintenance
mode. If you let go the button before this you go back
into normal operation.

In maintenance mode you will see a white “cursor” blink-
ing at the LED for I1. Cell I3 is red, Cell I4 is magenta:

The four positions I1 ... I4 represent four different menu
options:

1. WHITE (I1): leave the maintenance mode and
restart the .

2. black: currently unused.
3. RED (I3): reset the to factory mode (but

keep calibration).
4. MAGENTA (I4): start the procedure of calibrating

the voltage of the eight outputs.

A short press of the button moves the cursor to the next
cell. Pressing three times brings you to cell 4:

A long press of the button selects the item the cursor is
currently at. It starts an animation on the LEDs of O1 …
O8 in the same color as the selected item (in this case cal-
ibration mode):

When the animation reaches O8, the item is being se-
lected.

DROIDmanual for blue-1 39 Table of contents at page 2

7.2 Factory reset

The factory reset can help in situations where – due to
some software problem, maybe in a beta or testing ver-
sion – the is stuck and does not want to run
again. The problem might be triggered by the current
saved states of the circuits or by the currently loaded
patch.

Youdoa factory reset in themaintenancemenuby select-
ing position I3 (red).

All circuit states are erased. Also the current patch is
erased from the internal flash memory of the master.

Note: If the patch is still on the SD card, it will immedi-
ately be reloaded after the reset, so if you want to avoid
this, put either a different patch on the card or remove
the card while doing the factory reset.

The calibration of the voltages of the outputs is not lost,
which you make a factory reset!

7.3 Calibration of the outputs

The comes with 8 high precision DA converters
(DACs) that produce highly accurate voltages for the out-
put jacks. These need to be calibrated in order to match
their designed precision. Calibration of the DACs is done
in our labs before we ship the units to you.

There is a super tiny chance that your calibration get’s
lost: When you switch of your rack just in that fraction of
a second when you load a new patch by pressing the but-
ton and at the same time deleting the calibration backup
file on your SD card! However unlikely: if your
does not start with its usual rainbow animation but with
a white LED animation, your DACs are not calibrated an
not very precise anymore. In that case do as described
here.

Otherwise you probably never will need to calibrate your
outputs. If you want to do so anyway, please make sure
that your has warmed up before you start. That
gives the best precision. Calibration is easy and you just
need a patch cable. As a preparation unplug all jacks be-
fore you start.

Now enter maintenance mode and select cell number 4
(magenta):

After entering the calibration mode, the top 8 LEDs are
black and the bottom 8 LEDs are cyan – with the excep-
tion of input 1 blinking magenta and output 1 blinking
cyan.

Now use a patch cable and connect input 1 to output 1.
now tries out different output voltages and mea-

sures thembymeansof theprecisionADCof input1. This
information is being used for the exact calibration. The
result of the calibration is saved to the ’s internal
flash memory.

As soon as channel 1 is calibrated the LED O1 changes to
green. The cursor moves to the next channel:

DROIDmanual for blue-1 40 Table of contents at page 2

Now proceed to the second pair of jacks and connect in-
put 2 to output 2. Do this until all eight channels are
green. will then automatically end calibration
and start normal operation.

If one of the channels will not go green in spite of having
a proper connection between the relevant input and out-
put you might have a hardware problem. Please contact
us.

Hint: If you like you can use eight patch cables and patch

all eight connections at once. Then you just have to wait
for a couple of seconds until everything is calibrated.

By the way: If you are looking onto your SD card, you
will find a file with the name D�ROIDCAL.BIN. This is a
backupof yourDACcalibration. Don’t touch it. Just leave
it there. If you delete it, it will automatically reappear
anyway. If your looses it’s calibration for some
reason (currently there is none I can think of...), starting
the with a cardwith this filewill automatically re-
store the DAC calibration.

7.4 Using your own SD card

7.4.1 Formatting amicro SD card

comes shipped with amicro SD card ready to use,
but you can use your own card if you like. Usually when
you buy a card it should work out of the box. If not, you
might need to reformat it. The followingfilesystem types

are supported:

• FAT 12
• FAT 16

• FAT 32

Exfat is not supported. Also the cluster size (sector size)
needs to be 512 Bytes.

7.4.2 Speed up cards onMac

The AppleMac automatically creates several files and di-
rectories on every storage device it finds, in order to sup-
port spotlight search and a trash bin. Both ofwhich is not
needed for your and substantially slows down the
card access when you use it with the X7.

The card that comes with your master has been prepared
by us in a way that avoids these special Mac features – if
your master came shipped with at least version blue-1. If
you create your own card, or if yours came shipped with

an older firmware version, you can prepare it yourself.

This can be done by the following commands that you
need to enter on the terminal while the card is inserted
into your Mac. Hereby we assume that the name of you
card is Untitled. If not, please adapt the commands to
your name:

mdutil -i off /Volumes/Untitled
cd /Volumes/Untitled

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Please double check what you are typing. Especially the
rm command is very dangerous if you are not in the right
directory or havemistyped one of the dots or curly brack-
ets!

DROIDmanual for blue-1 41 Table of contents at page 2

8 Hardware

Master

Doepfer A-100 compatible “Eurorack” module with 8 HP

• STM32F446Micro controller running at 180MHz
• 8 CV input jacks with a voltage range from -10 V to
+10V, driven by highly accurate low jitter 16 bit AD
converters

• 8 CV output jacks with a voltage range from -10 V
to +10 V, driven by highly accurate low jitter 16 bit
DA converters

• 16 full color LEDs
• MicroSD card reader
• Button for reloading the MicroSD card
• Expansion port for an optional G8 expander
• Expansion port up to 16 controllers

Power consumption:

+12 V rail: 154 mA
-12 V rail: 15 mA

G8 Expander

Eurorack compatible expander for the DROID master,
with 4 HP

• 8 tristate gate/trigger-jacks that can each be used
either as an input or an output

• 8 full color LEDs

Power consumption:

+12 V rail: 41 mA
-12 V rail: 0 mA

X7 Expander

Expander with USB, MIDI TRS in/out, four gates, with
4 HP

• STM32F446Micro controller running at 180MHz
• USB-C connector supporting USB 2.0 device mode
• Four gate outputs with 0 V or 5 V
• Switch for USBmodewithwith three positions: SD
/ off / MIDI

• 8 full color LEDs
• Port for connection to the master
• Expansion port for connection to the controllers

Power consumption:

+12 V rail: 94 mA
-12 V rail: 0 mA

P2B8 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

• STM32F030Micro controller running at 48MHz
• 2 potentiometers
• 8 buttons with LEDs

Power consumption:

+12 V rail: 12 mA
-12 V rail: 0 mA

P4B2 Controller

Eurorack compatible expander for the DROID master,

with 5 HP

• STM32F030Micro controller running at 48MHz
• 4 potentiometers
• 2 buttons with LEDs

Power consumption:

+12 V rail: 11 mA
-12 V rail: 0 mA

B32 Controller

Eurorack compatible expander for the DROID master,
with 10 HP

• STM32F030Micro controller running at 48MHz
• 32 buttons with LEDs

Power consumption:

+12 V rail: 24 mA
-12 V rail: 0 mA

P10 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

• STM32F030Micro controller running at 48MHz
• 2 large potentiometers
• 8 small potentiometers

Power consumption:

+12 V rail: 10 mA
-12 V rail: 0 mA

DROIDmanual for blue-1 42 Table of contents at page 2

9 Reference of all circuits

This is a reference of all circuits that are supported by firmware version blue-1 of . The description of each circuit is made of two parts: a general introduction with some
examples and a table of all input and output jacks that the circuit offers.

Just like real synth modules the input and output jacks of ’s circuits have different characteristics, which are denoted by one of seven symbols in the reference:

Jacks with the symbol work with continous CVs in the full voltage range from -10 V to +10 V.
�
� 1V

Oct This symbol denotes jacks that work on a precise “one volt per octave” base. Such outputs can be patched to the V/Oct inputs of VCOs. Inputs with this symbol expect pitch
information e.g. from sequencers or musical quantizers.

0 1 This jack has a range from 0.0 to 1.0. Input values greater than 1.0 are cut down to 1.0, values below zero are set to 0.0. This input can be seen as a fraction or percentage.
When you use fixed values you can write percentages, for example 55% instead of 0.55. Since potentiometers yield values in exactly that range you can directly assign one
to such a CV. If you control that CV with an external voltage, the range is 0 V … 10 V.

0.50 1 This jack is very similar to that of type 0 1 , but its neutral value is in themiddle position – at 0.5 or 50% or 5 V. An example is the jack distribution of the algoquencer
circuit: At themiddle position beats are distributed evenly in the bar. Left or right of the center the beats aremore oriented to the first or second half of the bar, respectively.
If you assign a pot, the center position of the pot is the neutral position.Values out of the range 0.0 … 1.0 are truncated into that range. Hint: The input notch of the pot
circuit at page 157 helps you exactly centering a pot at 0.5. The range for external voltages is 0 V ... 10 V.

1 2 3 This jack operateswith integer numbers such as 1, 2, 3 and so on. An example is the length input of the euklid circuit. For some jacks 0 can be allowed aswell. One example
is the inputoffset jack of the switch circuit. Any non-integer number will be rounded to the nearest integer. So a value of 0.6 will be interpreted as 1. Wiring an external
input directly to such a jack does not make much sense, since the range 0 V ... 10 V just maps to 0 ... 1. For a 2 you would need 20 V. So you need to add some scaling, for
example somejack = I1 * 10, which converts an external 2 V to the number 2.

This denotes a stepped voltage. That is one that only appears in discrete steps. An example of a stepped output CV is the pitch output of the sequencer circuit.

Jacks with this symbol just know 0 and 1 or on and off. These are things like a gate from an envelope, where the length of the input counts. Some circuits also have switch
inputs or settings of that type that enable features like “looping on”. Also all inputs that are meant to be wired to buttons like B1.1 are of that type, since buttons output
exactly such gate signals. Output jacks of that type always either send 0.0 (0 V) or 1.0 (10 V). Using G1 … G8 for these is also fine, but they output 5 V instead of 10 V.When
you you wire an external input to such a jack, it will see a 1 at a voltage of at least 1 V and and 0 otherwise.

These jacks are trigger inputs or outputs. A trigger input just is interested about points in time where the voltage changes from 0 to some positive value above roughly 1 V.
The duration of the time where the voltage is not zero is not interesting here. A typical use are clock or reset inputs. When the outputs a trigger, is it sends a signal
of 10 V for a duration of 10 ms. Using G1 … G8 from the G8 expander for these is just fine, but the output voltage will be 5 V in that case. For external input voltages use any
reguar clock/trigger/gate signal from your system.

The column Default shows the value a parameter has if you don’t patch anything into it. Here the special symbol+ denotes a certain “intelligent” behaviour when this jack is not
used. Please read the description for details.

DROIDmanual for blue-1 43 Table of contents at page 2

9.1 adc – AD Converter with 12 bits

This circuit converts an inputvalue intoabinary represen-
tation of up to 12 bits. Consider the following example:

[adc]
input = I1
bit1 = O1
bit2 = O2
bit3 = O3

In this example three bits are being used. Three bits can
represent a number from0 to 7. These aremapped to the
input range from 0 to 1 (or 0 V to 10 V) in the following
way:

input bit1 bit2 bit3 bit value

−∞ ... 0.125 0 0 0 0

0.125 ... 0.250 0 0 1 1

0.250 ... 0.375 0 1 0 2

0.375 ... 0.500 0 1 1 3

0.500 ... 0.625 1 0 0 4

0.625 ... 0.750 1 0 1 5

0.750 ... 0.875 1 1 0 6

0.875 ... ∞ 1 1 1 7

Values lower than 0 are treated as 0. Values higher than
1 are treated as one.

In other words: this circuit will convert an analog input
value into three different gate outputs.

The expected range of the input value is from 0 to 1 per
default, but you can change that with the parameters
minimum and maximum. For example you could have just
the range of 0.1 to 0.5 mapped to the three bits:

[adc]
input = I1
minimum = 0.1 # 1V
maximum = 0.5 # 4V
bit1 = O1
bit2 = O2
bit3 = O3

Now the table looks like this:

input bit1 bit2 bit3 bit value

−∞ ... 0.15 0 0 0 0

0.15 ... 0.20 0 0 1 1

0.20 ... 0.25 0 1 0 2

0.25 ... 0.30 0 1 1 3

0.30 ... 0.35 1 0 0 4

0.35 ... 0.40 1 0 1 5

0.40 ... 0.45 1 1 0 6

0.45 ... ∞ 1 1 1 7

If you use more of the bit-outputs you get more resolu-
tion. For example if you use bit1 ... bit8, the total range
will be divided into 256 equal pieces. Since bit 1 is the
most significant bit, adding more and more bits will not
change the way bit 1 is behaving.

The applications of this circuit are various and often sur-
prising. For example using different LFO wave forms as
inputs (other than square) and you will get slower and
faster gate patterns.

Please also have a look at the circuit dac (see page 96,
which does the exact opposite!

DROIDmanual for blue-1 44 Table of contents at page 2

Input Type Default Description

input 0.0 Input signal to convert to binary representation.

minimum 0.0 The lowest assumed input value. This value and all lower values will be converted to the bit sequence 000000000000.

maximum 1.0 The highest assumed input value. This value and all higher valueswill be converted to the bit sequence 111111111111.

Output Type Description

bit1 ... bit12 The 12 bit outputs. bit1 is theMSB – themost significant bit. The LSB (least significant bit) is the highest output that
you actually patch. If you do not need the full resolution of 12 bits, simply just use the first couple of outputs.

One adc circuit needs 116 bytes of RAM.

DROIDmanual for blue-1 45 Table of contents at page 2

9.2 algoquencer – Algorithmic sequencer

TheAlgoquencer is a versatile sequencerwith a strong fo-
cus to liveperformances. It implementsa completelynew
approach: It combines a classical trigger sequencer with
a turing machine and other randomization algorithms in
order to create a very hands on pattern generator for live
improvisation. It’s main tasks are:

• trigger sequencer for drum voices
• pitch sequencer
• melody generator
• generator of repeating random CVs

It can also be used as a simple random number generator
– may it be totally chaotic random numbers or self simi-
lar patterns like those generated by the so called “Turing
Machine”.

There are lots of interesting high-level parameters that
you can easily map to pots on your controllers – such as
Activity, Variation, Déjà-vu and many more. With a turn
of a knob you can instantly increase or decrease the den-
sity or complexity or your patterns in various ways.

Here are some of the features:

• Up to 16 step buttons
• change the pattern length on the fly
• manually editable accents for each step
• ratchets and drum rolls
• fills
• deterministic and chaotic randomization
• simple muting
• fractal sequencing

If you use the Algoquencer for drumming, each
algoquencer circuit plays just one voice – e.g. a snare
drum. For orchestrating a whole drum kit simply use
more Algoquencers with possibly different parameters.

It totally makes sense to use some of the pots and but-
tons will all drum instruments – e.g. a pot for Déjà-vu –
and others on a per-instrument base, like Activity.

Here are some examples of how to use the Algoquencer
circuit.

Pseudo random voltages / Turingmachine

Without any inputs other than clock the algorithmic se-
quencer creates a sequence of random numbers that re-
peat over and over every 16 steps. This is much like the
“TuringMachine”. The voltage range of the pitch output
defaults to 0 V ... 3 V:

[algoquencer]
clock = G1
pitch = O1

You can change the length to any other value up to 64 by
using the length parameter:

[algoquencer]
clock = G1
pitch = O1
length = 12

If youdonot like thedefault output voltage range you can
adjust that with the inputs pitchlow and pitchhigh:

[algoquencer]
clock = G1
pitchlow = 1V
pitchhigh = 4V
pitch = O1

dejavu controls the randomness – or to be more precise
how random values are picked. It has a default of 1.0.
This means that once a random decision has been made
for a certain stepof thepattern itwill be thatway for ever.
The same random pattern will repeat again and again.
Making dejavu smallerwill convert someof the decisions
to be random while others still repeat unchanged over
and over again.

You want to change the entire pattern? You can choose
another one by setting pattern to an arbitrary integer
number:

[algoquencer]
clock = G1
pitch = O1
length = 12
pattern = 5

Another way to change the pattern is to send a trigger to
nextpattern, for example with a button:

[algoquencer]
clock = G1
pitch = O1
length = 12
dejavu = 1
nextpattern = B1.1

Do you like slowly evolving patterns (which is a feature
from the “Turing Machine”? The morphs parameter –
which is usually 0.0 – will introduce random changes to
the repeating pattern in a very controlled way:

• Changes (aka morphs) are introduced each time
the pattern starts (again) – never in-between

DROIDmanual for blue-1 46 Table of contents at page 2

• The exact number of changes is controlledwith the
morphs parameter and is not random.

• The steps where these changes happen and the
changes itself are random.

morphs takes a number between 0.0 and 1.0. At 0.0 no
morphs happen. At 1.0 every stepwill bemorphed – thus
completely changing the pattern every time it would re-
peat. Here is a table of howexactly the parameter affects
the number of morphs per 64 steps. It is done in a way
that is very suitable for mapping it directly to a pot and
gives a very fine resolution at the left half of the pot:

morphs morphs per 100 steps

0.0 nomorphs

0.1 1

0.2 4

0.3 9

0.4 16

0.5 25

0.6 36

0.7 49

0.8 64

0.9 81

1.0 100

As you can see the smallest number ofmorphs – if you set
morphs just a little above 0 – is one per 64 steps.

Note: If you are curious whether morphs are happening
you can wire the output morphled to some LED. It will
flash whenever morphs happen.

Dejavu ormorphs?

Did you get the difference between dejavu and morphs?
Here once again:

• dejavu controls, whether to use just complete
random values (dejavu = 0) or repeating pseudo-
random sequences (dejavu = 1).

• morphs comes into play, when dejavu is > 0 and
modifies the pseudo-random sequences from time
to time a bit so they won’t get boring.

True random voltages

If you do not want the random pitches to repeat you
can set the dejavu parameter to 0. This transforms the
algoquencer into a simple random number generator:

[algoquencer]
clock = G1
pitch = O1
dejavu = 0

It canbevery interesting tomapdejavu tooneof thepots
of your controllers. That way you can change on-the-fly
between structured melodies and complete randomness
– or anything between!

Using the Algoquencer as drum sequencer

This is how you setup the Algoquencer for use as a drum
sequencer. Like in the previous examples you need a
clock signal. Also using a reset input helps you to sync
your drums with some external stuff. A trigger here re-
sets the pattern to the first step:

[algoquencer]
clock = G1
reset = G2

A trigger into clockwill move to the next step of the pat-
tern. One into reset resets back to the first step.

Algoquencer supportsup to16buttons (aka stepbuttons)
for manually setting up a trigger pattern. If you assign
less than 16 buttons then your patterns will be shorter.
Youprobablywant toassign these tobuttonsof your con-
trollers, e.g.

button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4

In order for the LEDs in these buttons to work you also
need to assign the led... outputs:

led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

Please make sure that there is no “hole” in your defi-
nitions. You cannot use button8 if you not also use
button1 through button7.

Note: You can use Algoquencer even without step but-
tons. This is like having an empty pattern, but activity
will still work and create artifical beats if it is not zero.

Last but not least wire the output trigger to the trigger
input of some drum voice.

trigger = O1

DROIDmanual for blue-1 47 Table of contents at page 2

For a simple “normal” trigger sequencer this is enough.
I’d suggest you setup this small example first and once it
is up and running you investigate further features of Al-
goquencer. Here is the example once again complete for
usagewhile we assume that you have an P2B8 controller:

[p2b8]

[algoquencer]
clock = I1
reset = I2
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
trigger = O1

Accents

Algoquencer supports setting or not setting an accent for
each of the steps. For this there is a “second page” of
the buttons where you can edit these accents. In order
to access that accent page you need to wire the input
accentbutton to one of your buttons (e.g. B1.5). Also
wire the output accent to some external output jack and
patch that to the accent input of your drum voice:

accentbutton = B1.5
accent = O3

Now while you hold the accent button the step buttons
will switch over to showing the accents intead of the nor-
mal beats. And you can set and remove accents now.

Note: if you do not want to be forced to hold the button
while editing accents you can convert it into toggle but-
ton using the [button] circuit:

[button]
button = B1.5
led = L1.5
output = _ACCENTS

[algoquencer]
... the other stuff
accentbutton = _ACCENTS
accent = O3

Alternate steps

The Algoquencer just supports 16 steps, but there is a
greatway toextendyourpattern to32ormore steps. The
concept for this is a bit unusual, but all the more musical
and hands on. It goes like this:

There is an alternate page of another 16 buttons. These
are like a third layer of buttons (if youaccount theaccents
for the second layer). Just like with the accents you de-
fine a button for bringing up that layer, for example:

alternatebutton = B1.7

While you hold that button you edit the alternate page
instead of the normal steps.

Now: every active step in the alternate page will flip the
according step in the normal page for every second bar.
That way you can have a variation of the pattern every
second bar but you just edit the differences to the normal
pattern. So adding or removing one beat every second

bar can be done by activating exactly one step in the al-
ternate page.

You are not limited to a pattern of two bars. By setting
alternatebars to another value you can change the fre-
quency of the alternate bar:

alternatebutton = B1.7
alternatebars = 4

Nowbars 1 - 3 areplayednormally andevery forthbar the
alternate page is applied. That basically forms a pattern
of 64 steps.

Pattern length and bars

As you have at most 16 buttons one pattern can have a
length of at most 16 steps. The length of the pattern can
be set in various ways:

• If youwire at least one button1 then the length de-
faults to the number of wired buttons.

• This can be overridden by setting length to any
value (e.g. length = 7).

• If you use the lengthbutton then you can interac-
tively change the pattern length during your per-
formance. This will always override the length in-
put.

Add the button for changing the length is easy:

lengthbutton = B1.6

One bar usually has the same number of steps as your
pattern. But if you set repeats = 2, one bar will consist
of two times the pattern (and thus lasts twice as long).
Bars are useful when you use fills or branches.

DROIDmanual for blue-1 48 Table of contents at page 2

Playing fills

Fills are additional beats the Algoquencer adds at the end
of certain bars in order to play amusically interesting fill.
In order to use this first wire fills to some CV or most
likely to a pot:

fills = P1.1

Now if you crank up that pot clockwise then more and
more beats will be added – with a tendency to the end
of the bar. In music – however – playing a fill each bar is
not very interesting. By setting fillorder to 1, 2 or 3 (or
even a higher number) will make the fills assume a cycle
of 2, 4 or 8 or move bars. Please see below for details.

Activity and random

Four inputs are key features of Algoquencer, since they
extend it fromaplain old trigger sequencer to an algorith-
mic drummer. These are variation, activity, dejavu
and morphs. The latter two already have been discussed
whenusingAlgoquencer as randomgenerator. Theyhave
the same effect here.

The default value of variation is 0.0. That means that
Algoquencer will exactly play the pattern as you have di-
alled it in with your step buttons. If you increase that
value (a pot is handy for doing this, of course) then ran-
domly someof thebeatswillmove toother steps. Setting
various to 1.0 will completely alter your pattern. The
number of beats will stay the same!

activity will change exactly that: the number of trig-
gered beats in one bar. The default value is 0.5 – which
is the center position if assigned to a pot. Here the num-
ber of played beats is exactly the same as you have set in

your pattern. Turn it left to remove (randomly) some of
the beats. Turn it right to add some. At 0.0 no beats are
triggered, at 1.0 there is a beat for every clock cycle.

The activity also has an effect when you create ran-
dom voltages. Here the voltage only changes when a
“beat” happens at that step, even if you are not using the
trigger output.

Further nifty parameters

There are some more interesting parameters like rolls,
offbeats, distribution and branches. Please look at
the table of inputs for more details.

Presets

The algoquencer supports up to 16 presets. Each preset
comprises all settings that can be interactively changed,
i.e. the activated steps, accents, alternate steps, the
manually changed length, the state of the mute button
and also the current random seed (which was modified
by nextpattern, prevpattern or reroll.

There are two ways of switching between presets. The
first way is easy to implement. Simply send the number
of the current preset to the input preset. It has to be a
number from 0 to 15. You can for example use a pot if
you multiply it with 15:

[algoquencer]
preset = P1.1 * 15
...

Now any change you make will immediately be saved to
that current preset. If you change the preset number

by turning the pot, another preset will immediately be
loaded and activated.

The second – more sophisticated – way is to use triggers
for loading and saving. These could be buttons, e.g.:

[algoquencer]
preset = P1.1 * 15
loadpreset = B1.1
savepreset = B1.2
...

Now turning the knob does not load or save any preset.
The input preset is just evaluated when you press B1.1
or B1.2:

• A trigger to savepreset will save the current set-
tings into the preset that is selected with the
preset input.

• A trigger to loadpreset will copy the contents of
the preset selected by preset into the current set-
tings.

Note: In the second mode you effectively have 17 pre-
sets, since the ”current settings” could also be considered
to be a preset.

Sharing buttons betweenmultiple algoquencers

The buttons on your controllers are a valuable ressources
and not to be wasted lightheartedly. And especially the
algoquencer uses quite a lot of buttons. But the good
news is: you can share most of these buttons with other
instances of algoquencer, to create a multi-track se-
quencer with just one set of buttons. You can even share
the buttons with completely other circuits.

The key to this is the select input. If you patch it, all
buttons and LEDs will just be used by this instance of

DROIDmanual for blue-1 49 Table of contents at page 2

algoquencer as long as select gets a high gate signal.
Here is an example (which is just a sketch and not com-
plete):

[algoquencer]
select = _SELECT_1
button1 = B1.1
button2 = B1.2
...
led1 = L1.1
led2 = L1.2
...

[algoquencer]
select = _SELECT_2
button1 = B1.1
button2 = B1.2
...
led1 = L1.1
led2 = L1.2

...

Now you need to make sure that at any given time ei-
ther _SELECT_1 or _SELECT_2 is active. The easiest way
is with a buttongroup, because here you can add more
andmore tracks if you like. Let’s assume that for switch-
ingbetween tracks youuse thebuttonsB2.7 (track1) and
B2.8 (track 2). This would look like this:

[buttongroup]
button1 = B2.7 # select track 1
button2 = B2.8 # select track 2
led1 = L2.7
led2 = L2.8

[algoquencer]
select = L2.7 # becomes 1 if B2.7 is selected
button1 = B1.1
button2 = B1.2

...
led1 = L1.1
led2 = L1.2
...

[algoquencer]
select = L2.8 # becomes 1 if B2.8 is selected
button1 = B1.1
button2 = B1.2
...
led1 = L1.1
led2 = L1.2
...

Please note: the buttons mutebutton and unmutebutton
and their according LEDs are not handled by the select
jack. The idea is that they always get their own dedicated
buttons. This allowsyouquicklymutingorunmuting sev-
eral tracks at once.

Input Type Default Description

preset 1 2 3 0 This is the preset number to save or to load. This circuit has 16 presets, so this number ranges from 1 to 16.

loadpreset A trigger here loads a preset.

savepreset A trigger here saves a preset.

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

clock Clock input. This is mandatory. For each clock pulse the sequencer is advanced by one step.

reset Reset input. A trigger here switches back to step 1.

DROIDmanual for blue-1 50 Table of contents at page 2

Input Type Default Description

button1 ... button16 1st ... 16th step button. Assign these buttons to buttons on your controllers.

length 1 2 3 + Sets the length of the pattern. Note: if you use lengthbutton, this input is ignored as soon as the length button
has been used for the first time. If you have assigned at least one button, the default value of length is the number
of buttons you have assigned. Otherwise it defaults to 16. The maximum length is 64. Any larger number will be
truncated to 64.

pattern 1 2 3 0 Selects a pattern of pseudo random values. If you set dejavu to 1, all “random” decision are deterministic and repeat
again and again. If you do not like these choices, you can choose a different pattern, just by setting this input to any
integer number you like. The default pattern is 0. If you patch a pot here, simplymultiply it by the number of different
patterns you want to select, e.g. pattern = P1.1 * 10. This will allow you to select one of the pattern 0, 1, ... 10.

nextpattern Switches forward to the next pseudo random pattern.

prevpattern Switches back to the previous pseudo random pattern.

reroll Select one of the pseudo random patterns completely by random.

pitchlow 0.0 This set a lower voltage boundary for the pitch output for notes that are randomized.

pitchhigh 0.3 This set an upper voltage boundary for the pitch output for notes that are randomized.

pitchresolution 1 2 3 0 If this is non-zero, it make the pitch output adopt that number of possible discrete values. E.g. if you set it to 2, only
the values set by pitchlow and pitchhigh are possible. A value of 3will allow an additional value in the middle, and
so on.

gatelength 0.1 The gate length in input clock cycles. A value of 0.5 (5 V) thusmeans half a clock cycle. A steady input clock is needed
for this to work. Please note that if the gate length is >= 1.0, two succeeding notes will get a steady gate, which
essentially means legato.

lengthbutton Map this to a button like B1.1. While you press and hold this button the sequencer switches to change length mode.
While in this mode a press of one of the step buttons will change the length of the pattern. Also while in this mode the
LEDs of the step buttons will show the current length. If you do not like to hold the button but switch it on and off,
you can create a toggle button with [button] and send its output here.

repeats 1 2 3 1 Usually one bar has the length of one pattern. Setting this to 2 will consider one bar as a run of two times through
the pattern. So if you have 8 buttons and bars = 2, one bar will be 16 steps, where the 1st and 9th step are set by
button1, 2nd and 10th by button2 and so on.

Why should that be useful? Well – the difference showsupwhenyouuse fills, or branchesorworkwith thealternate
pattern. These three algorithms work based on bars. And repeats = 2makes one bar have 16 steps, even if you just
have eight buttons.

DROIDmanual for blue-1 51 Table of contents at page 2

Input Type Default Description

alternaterepeats 1 2 3 + Are use using repeats and alternatebars / alternatebutton at the same time? Thenwith this input you can specify
a different value for repeats when it comes to selecting the alternate button page.

Assume you have eight buttons and repeats = 2 and alternatebars = 2. Then Algoquencer will play two times
your 8-step pattern normally and two times alternated (since two times the 8 steps form one bar). This results in a
form of A A B B.

If you want your form rather to be A B A B, set alternaterepeats = 1. That way, when it comes to alteration, the
length of one bar is just normal length (8 steps here).

branches 1 2 3 0 Enables the branching feature (sometimes also called fractal sequencing. When branches = 1, then every second bar
will be using other random values – giving a sequence of the bars A B .

With branches = 2 you get a sequence of the form A B A C .

A value of 3 creates an even longer sequence that repeats itself after eight bars: A B A C A B A D .

Note: this only takes effect when deterministic randomnumbers are being used. For this dejavu needs to be> 0. The
largest effect is when it is set to 1. And the you need to use either variation or set activity to a value greater than
0.5. Because otherwise Algoquencer will strictly play the gates that you’ve set with your buttons and then every bar
will be the same, of course.

mutebutton Wire this to a button like B1.2. When you press then button once then all triggers are muted. Pressing again unmutes
them. So this behaves like a toggle [button] in itself. You probably want to wire muteled to the LED in that button,
e.g. L1.2. It show the mute state. The mute button works together with the unmute button (see below). Note: even
if you use the select jack in order to overlay your buttons with several algoquencers, the mutebuttonwill always be
active. The idea is to always have direct access to that button.

unmutebutton A trigger to this jack resets themute button exactly at the beginning of the next bar. While waiting for that to happen,
the output unmuteled will blink. Wire this to the LED in the button. Note: even if you use the select jack in order
to overlay your buttons with several algoquencers, the mutebutton will always be active. The idea is to always have
direct access to that button.

accentbutton While this input is high you are in accent editing mode. This is very similar to the mode where you set the length. But
now for each step you editwhether this step is outputting an accentwhen triggered. Youmightwant to use a [button]
for this function, so you can operate without holding down the button all the time.

alternatebutton If this input is high, you are in alternate editingmode. EveryAlgoquencer has an alternate set of steps. Each step that is
currenty activated toggles the state of the normal step, but only for each even bar. This allows to introduce variations
of the pattern that occur every second bar.

DROIDmanual for blue-1 52 Table of contents at page 2

Input Type Default Description

alternatebars 1 2 3 2 With this input you can change the influenceof thealternatebutton. Per default thepattern alternation is done every
second bar. You can change this to any number you like with this input. Value less than 1 will be considered as one –
which means that every bar is alternated.

accentlow 0.0 This value is output at accentwhen a note without an accent is being triggered or when no note is triggered at all.

accenthigh 1.0 This value is output at accent while a note with an accent is triggered. The value will be kept for the full time of the
clock cycle.

activity 0.50 1 + This is themost important parameter and youwill probablywire it to a pot like P1.1. The activity controls, how “busy”
the sequencer is playing, or in other words how often a step gets an active gate (und thus a changing output pitch).

Let’s first assume that variation is set to 0.0 (which is the default). Then at a value of 0.5 (or pot at 12’clock) Algo-
quencerwill exactly play that pattern that youhave setwith the step buttons. Turning the knobCCWwill removemore
andmore beats from the pattern until it is completely silent at a value of 0.0 (or pot fully CCW). But if you turn up the
knob above the middle position then more andmore additional beats will be placed into you pattern in a randomway
until – at 1.0 – a trigger will happen at every beat.

Note: If you do not use step buttons, this parameter behaves slightly different: A value of 0.5 thenmeans an activity
of 50%, which means that exactly the half of the steps will get an event. This is different from a situation where you
have defined buttons but all are deselected. In that case 0.5means that exactly the number of beats of your pattern
are being played, which is zero in that case.

variation 0 1 0.0 The variation controls how strictly Algoquencer will stick to the pattern that you have set with your step buttons. You
probably want to wire this to a knob. A value of 0.0 (or the knob fully CCW) will allow no variations. Your pattern by
played exactly as it is. If the activity goes beyond 0.5, additional beatswill be placed, of course. And these are random.

If you increase the variation, more andmore beats of your pattern are being replaced with other beats – while keeping
the total number of beats the same. If you set variation to 1.0 (or the pot fully CW) then your pattern is completely
ignored except for the actual number of beats it contains.

dejavu 0 1 1.0 Thedejavuparameter controlswhat random shouldmean. Ifdejavu = 0.0, then all randomdecisions are completely
chaotic – and every time a decision is taken the dice are being rolled again.

At dejavu = 1.0 on the other hand – once a random decision has been taken for a certain step in a certain bar then
it will be always the same from now on. This will lead to repeating exactly the pattern bars over and over again. We
sometimes call this random to be “deterministic”.

Any position in between will make some of the steps use chaotic random and some of the steps and deterministic for
others.

DROIDmanual for blue-1 53 Table of contents at page 2

Input Type Default Description

morphs 0 1 0.0 This parameter is a bit like automatic rerolls from time to time. If you crank it up above zero, then at every start of bar
some of the deterministic random decisions will be rerolled. Setting morphs = 1 will essential disable dejavu, since
all decisions are redone every bar anyway then.

If you know the Turing Machine: In principle that has the same idea, but Algoquencer has a few improvements:

• The number of random changes is exactly controlled by the setting. At each specific setting of morphs exactly
the same number of changes will be done at each bar.

• Changes always only appear at the beginning of each bar. If you use branches then it will appear whenever you
sequence is over.

• Small settings will introduce just one morph each 64th step.

offbeats 0.50 1 0.5 Whenever random beats are being placed then this setting controlls whether downbeats or offbeats should be pre-
ferred. At at setting of 0.5 there will be no difference. If you increase the value then more and more offbeats will
appear. Offbeats are steps with an even number, like 2, 4, 6 and so on. Value smaller than 0.5will prefer downbeats.

Offbeats sound more “complex” and downbeats more simple or “down to earthish”.

distribution 0.50 1 0.5 This is very similar to offbeats, but this time you decide whether beats should be placed rather in the first half of the
bar or in the second half.

fills 0 1 0.0 When this parameter is raised above 0.0 then additional beats will be placed in order to make the beat more “active”.
This happens at musically useful times controlled by fillorder (see below). The additional beats within the bar are
placed in a way that prefers the end of the bar. If there are already too many beats in the bar then the fill will remove
or change some instead.

fillorder 1 2 3 0 This integer number controls how fills are being placed:

0 every bar

1 every second bar

2 small fill in bar 2, big fill in bar 4

3 tiny fill in bar 2 and 6, medium fill in bar 4, big fill in bar 8

rolls 0 1 0.0 This parameter controls if drum rolls (or ratchets as you might call it) are being created. At 0.0 no rolls are being
created. At 1.0 every beat will be converted into a roll. Rolls always happen before the actual beat, they lead to it. If
you using this feature for snare rolls youmightwant to use the output rollvelocity for controlling the snare volume.

DROIDmanual for blue-1 54 Table of contents at page 2

Input Type Default Description

rollcount 1 2 3 1 Number of additional beats for playing the roll. Setting rollcount = 0 would disable rolls. All these beats are dis-
tributed in the clock tick before the beat the roll is leading to. The first beat of the roll is exactly one tick before that
beat – or more if you increase rollsteps.

rollsteps 1 2 3 1 Length of the roll in clock ticks (steps). The total number of additional beats is thus rollcount× rollsteps

rollstartvelo 0.5 Rolls can be played with an increasing velocity. This first beat starts with the velocity set with this parameter. Then
every beat gets a bit louder until the last beat is played with velocity 1.0. The velocity for rolls is output at the jack
rollvelocity.

pitch1 ... pitch16 + You can use these inputs, if youwant the pitches of the pitch output play a certainmelody. That way the Algoquencer
behaves like a normal melody sequencer – but all the algorithmic parameters will be applied. For example variation
will also be applied to these notes. Note: If length is larger than 16, these pitch inputs will be cycled through, so step
17 uses pitch1, step 18 uses pitch2 and so on.

Output Type Description

trigger Here comes the trigger output. Patch this to the trigger input of your drum or synth voice.

gate The gate output is alternative to the trigger and has a variable length. It is useful whenAlgoquencer is used for creating
melodies. Patch the gate input of an envelope or something similar here.

pitch Outputs the (pseudo-)randomvoltage (unquantized) at each stepwith an active gate. This honors all the settings that
control the randomness and variation, like dejavu, variation, fills and branches.

accent Whenever a beat with an accent is being played, the value set by accenthigh is sent here, otherwise accentlow. If
you are wiring this to one of the jacks of the G8 expander then that will output just 0V and 5V of course.

led1 ... led16 1st ... 16th LEDs of the step buttons. Assign these to the LEDs in the step buttons.

barled1 ... barled4 Patch these output to some LEDs in order to show you the current bar in the sequence.

rollvelocity If you enable rolls, then the velocity of the roll beats will be output here. For normal beats this will always be 1.0.

startofbar At the beginning of every bar a trigger is output here.

muteled Wire this to the LED in your mute button. It will then be lit while the voice is muted.

unmuteled Wire this to the LED in your unmute button (if used). It will blink while the unmute is waiting for the start of the next
bar.

morphled This output will get a trigger every time a morph happens. It is intended to be wired to an LED.

fillsled This output will get a trigger every time a fill beat is being played. Wire this to some LED if you like.

DROIDmanual for blue-1 55 Table of contents at page 2

Output Type Description

branch 1 2 3 This output will output the current branch number, e.g. 1, 2, 3 and so on. If you do not use branches then it is always
1.

One algoquencer circuit needs 1960 bytes of RAM.

DROIDmanual for blue-1 56 Table of contents at page 2

9.3 arpeggio – Arpeggiator – pattern basedmelody generator

Introduction

This circuit creates melodic patterns based on simple
rules and many interesting configuration settings, which
can lead to very simple but also most complex pat-
terns. In order to better understand, how the arpeggiator
works, let’s compare four different ways for constructing
melodies:

Sequencer manually composed melodies

Random generator completely chaotic sequences

Turing machine,
Algoquencer

pseudo-random melodies,
which repeat themselves

Arpeggiator melodies constructed from
rules

The rules for the arpeggiator can be as simple as on each
clock tick play the next note in the C minor scale. Addi-
tional parametes are for example the pitch range, i.e. the
start and the end note.

The arpeggiator shares root, scale and interval selection
withchord (see page77) andminifonion (see page145).
If you own a Sinfonion: the arpeggiator in the DROID is
working a bit differently and is more about general prin-
ciples than about preprogrammed patterns. That makes
it more flexible and powerful.

The simplest possible example

As always, we start with the simplest possible example.
And it is simple, indeed, since each of the many parame-
ters has a useful default value. The only input the arpeg-
giator always needs is a clock input. The word clock is
probably a bit misleading since it doesn’t need to be a

steady clock signal. It can be any rhythmic pattern you
like. Each clock tick advances themelody to thenextnote
and a new pitch CVwill be presented at output, which is,
of course, in the typical 1V/oct scheme.

[arpeggio]
clock = I1
output = O1

PatchI1 to anexternal clock andO1 to the1V/oct of some
synth voice. The easiest way is to use the same clock also
for triggering the voice’s envelope.

Now you will hear a C major scale (lydian) being played
step by step in a range from 0 V to 2 V. This makes 15
notes, since the scale consists of the seven notes C, D, E,
F, G, A and B and is repeated over two octaves, but the
C is here three times: at the beginning, in the middle and
at the end:

��� ��� �
�� ����� � ��� � � ��� �

When it reaches the end it immediately starts over again.
So the second “bar” is really just 7 eights here!

Root, scale and interval selection

You probably don’t like lydian C major. Changing that is
easywith the inputs root and degree. Please have a look
at the minifonion circuit (see page 145) for an explana-
tion of these parameters. Let’s go for a Dminor (natural)
scale as an example:

[arpeggio]
clock = I1
output = O1
root = 2
degree = 7

Nowwe get:

��� � �� �
��

�� ��� � ��� � ��� ��

Patterns

This “go through the scale” mode is just one of sev-
eral possible patterns. The pattern is selected with the
pattern input. And the default value of 0 produces the
resultwe just have seen. Let’s lookatpattern1. This goes
two steps forward and one step backward in the scale:

[arpeggio]
clock = I1
output = O1
root = 2
degree = 7
pattern = 1

Since pattern 1 repeats its structure every three notes it’s
best to display it in a metric that is divisible by three:

������ �� �� ���� � � ��
pattern 1

� 86 ���
Pattern 2 is similar, but makes one double step forward
instead of two single steps:

DROIDmanual for blue-1 57 Table of contents at page 2

������ �� � ��� �� ��
pattern 2

� � � � ��� �

Pattern 3 goes a double step forward, a double step back-
ward and a single step forward:

������ � �� � � ��� � ��
pattern 3

� 86 �� �
Pattern 4 is even more sophisticated. It goes a double
step forward, a single step forward, a double step back-
ward and again a single step forward:

����� ��� � ��� �� ��
pattern 4

� � � �����
Pattern 5 is a bit different since for each note it flips a coin
for deciding whether to go one step up or down.

And Pattern 6 simply randomly chooses one of the possi-
ble notes. So strictly spoken this has nothing to do with
“arpeggiation”, but it’s fun, so what?

Note: it’s entirely impossibl that future versions of the
arpeggiator introduce new patterns. So better do not yet
rely on these numbers to be fixed forever.

The range

Perdefault thepattern is played ina rangeof twooctaves.
But that can be set easilywith twoparameters. pitchde-
fines the lowest possible pitch of a note. The arpeggiator
will chose the start note such that it is in the scale and just
at or above this pitch.

And range defines the voltage range the pattern is being
played upwards until it starts again. So if range is 2 V,
you get a range of two octaves. A range of 0 will deform
the pattern into one single note.

For interactive playing,mapping pitch and range to pots
is fun:

[p2b8]

[arpeggio]
clock = I1
output = O1
pitch = P1.1
range = P1.2

Changing the playing direction

So far all patternwheregoingmoreor less upwards. From
lower notes to higher notes. This can be changed by set-
ting direction to 1. Now the arpeggiator starts with the
highest allowed note and reverses the pattern for going
downwards. Why not map this setting to a nice toggle
button?

[p2b8]

[button]
button = B1.1
led = L1.1
output = _DIRECTION

[arpeggio]
clock = I1
output = O1
pitch = P1.1
range = P1.2
direction = _DIRECTION

Another setting that influences the direction is the
pingpong parameter. This is a binary (gate) input, too.
If it is set to 1 the direction of the pattern changes into
the opposite once the end of the range has been reached.
Check this example...

[arpeggio]
clock = I1
output = O1
pingpong = 1
pitch = 0
range = 7/12V

... will create the following melody:

������ ���� � � �
Why is that? Well – 7

12 V is the same as 7 semitones,
which is in turn one fifth. Since no root and degree are
defined we are back at C major lydian. The pattern is
0 (default) – hence the simple note-by-note scale. And
pingpong = 1makes the pattern going down again after
having reached the upper limit.

Octaves up and down

The nice thing about all these parameter is that you can
combine them all. They interact with each other and
most combinationsdouseful things (well,whenusing the
“random” pattern, the direction and pingpong are with-
out effect, of course). And there is one more fun setting:
octaves. This can be 0 (default) or 1 or 2.

When octaves is 1, each note is directly followed by the
same note one octave above. That octave note is ignor-
ing the range-parameter. It is always in addition to the
selected range. Here is an example:

DROIDmanual for blue-1 58 Table of contents at page 2

[arpeggio]
clock = I1
output = O1
range = 1V
octaves = 1

And here is the pattern this creates:

��� �� � �
��� �� ��

octaves = 1

� � � �� �
� �

Set octaves = 2 and you get the same but the octaves
go down instead:

��� ��
� � ���

�
�
��

octaves = 2� �
�

�� �� �

Dropping

The drop input lets you select different schemes of leav-
ing out notes from the original line of scale notes. For ex-
ample drop = 1will leave out every second note. Here is
an example:

[arpeggio]
clock = I1
output = O1
drop = 1

This will create the following melody:

����� �
�� � � � �

If you have a closer look, you will see that in the upper
octave other notes are being played than in the lower oc-
tave. This can sound very interesting!

Droppingcan, of course, be combinedwithotherpatterns
as well. Let’s see the line for pattern 1:

����� � �� � � ��
� � ��� 86 ���

There are more dropping-schemes. Please have a look
into the table of input parameters at the bottom.

Note selection

The most important thing comes last. For didactical rea-
sons! What really makes this arpeggiator so musically
versatile is its interval selection. This is the same as for
the minifonion (see page 145) and the chord generator
(page 77).

The point is that you are not restricted to the seven
notes of a scale. For this there are seven inputs select1,
select3, ... select13 that select the notes of the
current scale and another five inputs selectfill1 ...
selectfill5 that select the notes not in the current
scale. These 12 inputs are binary inputs that expect ei-
ther 0 or one 1. Each of them selects one of the seven
intervals of the scale for being part of the chord. Here is
a table of all these inputs and the notes theywould select
in a C major or C minor scale:

Input interval step Cmaj Cmin

select1 root I C C

select3 3rd III E E
select5 5th V G G

select7 7th VII B B
select9 9th = 2nd II D D

select11 11th = 4th IV F F

select13 13th = 6th VI A A
Let’s make a simple example: The arpeggio of a C major
triad over two octaves going up and down again:

[arpeggio]
clock = I1
select1 = 1
select3 = 1
select5 = 1
output = O1
pingpong = 1

And here is the result:

��� ��
��

�
� �86� �

�� �

One typical way to select these notes is with seven tog-
gle buttons. Much like the Sinfonion. Assign the output
of each of the seven buttons to one of these functions:

[p2b8]

[button]
button = B1.1
led = L1.1

[button]
button = B1.2

DROIDmanual for blue-1 59 Table of contents at page 2

led = L1.2

[button]
button = B1.3
led = L1.3

[button]
button = B1.4
led = L1.4

[button]
button = B1.5

led = L1.5

[button]
button = B1.6
led = L1.6

[button]
button = B1.7
led = L1.7

[arpeggio]
clock = I1

select1 = L1.1
select3 = L1.2
select5 = L1.3
select7 = L1.4
select9 = L1.5
select11 = L1.6
select13 = L1.7
output = O1

Now you can switch on and off scale notes for being part
of the patterns. Have fun!

Input Type Default Description

root 1 2 3 0 Set the root note here. 0means C, 1meansC, 2meansD and so on. If youmultiply the value of an input like I1with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

degree 1 2 3 0 Set the musical scale. This is a number from 0 to 11. At 12 this repeats over again. Please refer to the introduction for
the list of scales. If you multiply an input like I1with 120, this will internally scale to one scale per semitone and you
are compatible with the DEGREE CV input of the Sinfonion.

select1 + Gate input for selecting the root note as being an allowed interval. When youwant to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. select1 ...
select13will be set to one.

select3 + Gate input for selecting the 3rd.

select5 + Gate input for selecting the 5th.

select7 + Gate input for selecting the 7th.

select9 + Gate input for selecting the 9th (which is the same as the 2nd).

select11 + Gate input for selecting the 11th (which is the same as the 4th).

select13 + Gate input for selecting the 13th (which is the same as the 6th).

selectfill1 off Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 off Selects the alternative 3rd (i.e. the 3rd that is not in the scale).

DROIDmanual for blue-1 60 Table of contents at page 2

Input Type Default Description

selectfill3 off Selects the alternative 4th or 5th. In most cases this is the diminished 5th.

selectfill4 off Selects the alternative 13th (i.e. the 1st3 that is not in the scale).

selectfill5 off Selects the alternative 7th (i.e. the 7th that is not in the scale).

tuningmode off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch
�
� 1V

Oct 0V This pitch CV will be output while the tuning mode is active.

transpose
�
� 1V

Oct 0V This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

pitch
�
� 1V

Oct 0V Sets the base pitch of the arpeggio. The first note of the patternwill be the nearest selected note just above that pitch.

range
�
� 1V

Oct 2V Selects the range between the lowest and highest note of the arpeggio. A range of 0means that there is just one single
note possible and the arpeggio will stick to that note. A value of 1 V (or 0.1) means that the arpeggio will run over one
octave. The maximum allowed range is 0.8 (8 octaves). Higher values will be capped to that.

clock This input is vital: each trigger heremake the arpeggiomove forward by one step and adapt the pitch output. Without
a clock the arpeggio will do nothing but stick to the same note all the time.

reset Resets the arpeggio to the first step of the current pattern.

pattern 1 2 3 0 Selects one of a list of arpeggio pattern. The following patterns are available:

0 → step forward through the allowed notes

1 →→← two steps forward, one step backward

2 ⇒← double step forward, one step backward

3 ⇒⇐→ double step forward, double step backward, single step forward

4 ⇒→⇐→ double step forward, single step forward, double step backward, single step forward

5 ↔ random single step forward or backward

6 ⇕ random jump to any allowed (other) note

direction 0 Sets the general direction in which the pattern moves. 0means upwards and 1means downwards.

pingpong 0 If set to 1, the pattern will reverse its direction once it has reached the end of the range. Otherwise it restarts from the
beginning. So enabling pingpong is a bit like a triangle wave, whereas otherwise it’s more like a sawtooth.

butterfly 0 If set to 1, every second note in the range of selected notes will be mirrored. So for example you have selected the
notes 1 - 10, the new order will be 1, 10, 2, 9, 3, 8, 4, 7, 5, 6

DROIDmanual for blue-1 61 Table of contents at page 2

Input Type Default Description

drop 1 2 3 0 Selects a scheme of skipping some of the allowed scale notes. Four different values are allowed:

0 Do not skip any notes Ê Ë Ì Í Î Ï

1 Skip every second selected note Ê Á Ì Ã Î Å

2 Skip every third selected note Ê Ë Â Í Î Å

3 Skip the 2nd and 3rd note of each group of three Ê Á Â Í Ä Å

octaves 0 When this is set to 1 or 2, each notewill be followed by the samenote one octave up (for 1) or down (for 2) respectively.
These additional octave notes are in addition to the selected range.

startnote 1 2 3 0 When startnote is set to non-zero, it will force the pattern to begin with a certain scale note regardless of the current
note selection. 1 will select the first note of the scale (root), 2 the second and so on until 7, which selects the 7th as
start note.

Output Type Description

output
�
� 1V

Oct This is what it’s all about: here comes the pitch CV for the current arpeggio note.

One arpeggio circuit needs 504 bytes of RAM.

DROIDmanual for blue-1 62 Table of contents at page 2

9.4 bernoulli – Random gate distributor

This circuit implements a “bernoulli gate”. For each gate
or trigger received at input there is made a random de-
cision of whether to forward that gate to output1 or
output2. The probability for each of the outputs can be
shifted with the parameter distribution. It determines
the probability of a gate signal to go to output1.

Example:

[bernoulli]
input = G1
distribution = P1.1
output1 = G2
output2 = G4

Note: each time a positive trigger edge is seen at input
a new random decision is made for which output to use.
From now on that chosen output gets an exact copy of
the input signal – even if it is not a simple trigger signal
but somethingmore complex like an envelope. The other
output will send 0 V.

Input Type Default Description

input 0 Send gate or trigger signals here.

distribution 0.50 1 0.5 This controls the probability of a gate to be forwarded to output1. A value of 0.5means 50%.

Output Type Description

output1 Gates from input are forwarded here if the random decision was in favour of output 1.

output2 Gates from input are forwarded here if the random decision was in favour of output 2.

One bernoulli circuit needs 60 bytes of RAM.

DROIDmanual for blue-1 63 Table of contents at page 2

9.5 burst – Generate burst of pulses

This circuit produces – when triggered – a number of
pulses. It can be used for solving variousmusical or tech-
nical tasks. Look at this example:

[burst]
trigger = I1
hz = 10
count = 5
output = O1

When a trigger arrives at I1, the output O1 will send five
triggers in a row, with a distance of 0.1 seconds (thus
10 Hz). The gate length is fixed to half of the cycle (thus
here 0.05 seconds). This means that the pulse width is
50% – or in other words – the faster the burst the shorter
the outgoing triggers.

Note: When a new trigger arrives while the current burst
is still ongoing, it will not be finished but restarted from
the beginning immediately.

If you want the bursts to be synchronized to a musical
clock, you can use the taptempo input (here I2):

[burst]
taptempo = I2
count = 4
trigger = I1
output = O1

Similar to the circuitlfo (seepage109), there is a third in-
put for selecting the speed: rate. Thisworks on a1V/Oct
base, so here is an example for outputting the bursts at
half of the clock speed (-1 V pitches down one octave,
which is the same as half of the speed):

[burst]
taptempo = I2
rate = -1V
count = 4
trigger = I1
output = O1

burst can also be used for very fast switching through
things like presets in external gear. Here you might want
fast updates. Simply set a very high frequency. Burst
makes sure that the actual output rate is limited to the
maximum the DROID hardware can do, so not one single
burst can get lost. Also you might want to use the skip
input, which skips a certain number of ticks before start-
ing. This canbeused to sendout a reset signal to some in-
put and after that sending a couple of skip forward trig-
gers to some other input:

[burst]
hz = 5000
skip = 5
count = 3
trigger = I1
output = O1

Simple clocked trigger delay

Another application of burst is a clocked trigger delay.
Consider the following patch:

[burst]
taptempo = I1
trigger = I2
skip = 7
output = O1

A trigger at I2will be delayed by 7 clock cycles.

Note:: This simple trigger delay has no memory of more
than one trigger. Any ongoing trigger currently being de-
layed is overridden and forgotten as soon as the next trig-
ger arrives. If that is what youwant, fine. If you are look-
ing for a more complex trigger delay, you find one in the
circuit triggerdelay (see page 186) circuit.

DROIDmanual for blue-1 64 Table of contents at page 2

Input Type Default Description

rate 0.0 Frequency control: The default frequency of the burst rate is 1 Hz (one trigger per second or 60 BPM if you like). Each
volt doubles the frequency. So an input of 1 V (a number of 0.1) speeds up to two triggers per second (120 BPM), 2 V
(0.2) creates triggers at 4 Hz (240 BPM) and so on. On the other hand negative voltages reduce the speed, so -1 V
(-0.1) will give 0.5 Hz (30 BPM) and so on.

taptempo Feed a steady clock here and the burst will run at the speed of that clock – albeit optionally modified by rate. At least
two clock ticks are needed for synchronisation, but always the last three ticks are averaged.

hz 1.0 Set the frequency in Hz directly by setting a number here. This is exclusive to taptempo, but will work in combination
with rate.

trigger Send a trigger here in order to start the bursts

reset Send a trigger here to immediately stop any ongoing burst.

count 1 2 3 1 Number of triggers to send in one burst.

skip 1 2 3 0 Number of time slots to wait before starting with the burst.

Output Type Description

output The triggers are output here.

One burst circuit needs 160 bytes of RAM.

DROIDmanual for blue-1 65 Table of contents at page 2

9.6 button – Do all sorts of useful things with buttons

This is a utility circuit for efficientlyworkingwith the but-
tons of your controllers. It can implement toggle but-
tons (that do on/off) or even have three or four states. It
can detect long presses and double clicks and also helps
you to overload one buttonwith several switchable func-
tions. Note: If you just need a plain momentary button
without any of these or other nifty features, you can use
the register B1.1, B1.2, etc. directly and do not need this
circuit.

Note: don’t forget to declare your controllers at the top
of your patch with lines like [p2b8] or [b32]. In the be-
low examples I’ve omitted these declarations for sake of
simplicity.

Toggle buttons

Themost commonuseofbutton is to implement a toggle
button. That’s a button that changes from on to off and
back at each press of the button. The current state of the
buttonwill persist onyourSDcard soyoudon’t looseyour
state if you switch off your rack.

Typically youwill wire the button jack to one of your con-
troller’s buttons like B1.1 and led to the LED in that but-
ton (L1.1). LED will then always visualise the current
state of the button. As a side effect the LED register L1.1
will store the button state as a value 0 or 1 and hence can
be used by some other circuit as an input.

Here is a typical example. The button is being used for
enabling the loop in a CV looper:

[button]
button = B1.4
led = L1.4

[cvlooper]
loop = L1.4

If you do not want the state of the button to be persisted
on the SD card, use startvalue for setting a start value.
This make sense for the CV looper since the loop is ap-
parently empty anyway when your starts. By the
way: off is a synonym for 0.

[button]
button = B1.4
led = L1.4
startvalue = off

[cvlooper]
loop = L1.4

Usually the button switches between the two values 0
and 1. Sometimes, however, you need different values.
For this purpose there are the two inputs offvalue and
onvalue. They set twoalternativevalues for the ”off” and
”on” states. And the jack output outputs the selected
value (led still goes to 0 and 1). Here is an example for
a toggle button that switches a clock divider between 2
and 4:

[button]
button = B1.4
led = L1.4
offvalue = 2
onvalue = 4
output = _CLOCK_DIV

[clocktool]
input = G1 # external clock

output = G2
divide = _CLOCK_DIV

Of course offvalue and onvalue are CV controllable.
How can make this sense? Well – as they can take vari-
able inputs you canuse a button for directly switching be-
tween two different input CV signals. The following ex-
ample will use a button to switch between two different
wave forms of an LFO (see page 109). The button B3.1
switches between sawtooth and sine and sends the result
to O1.

[lfo]
hz = 2
sawtooth = _SAWTOOTH
sine = _SINE

[button]
button = B3.1
led = L3.1
offvalue = _SAWTOOTH
onvalue = _SINE
output = O1

Buttons with three or four states

Sometime you might want more than just two values.
button supports switching between up to four values.
Use the states input and set it to 3 or 4. In the following
examples outputwill go through the values 0, 1, 2 and 3:

[button]
button = B1.1
led = L1.1
states = 4
output = _SOMETHING

DROIDmanual for blue-1 66 Table of contents at page 2

If you don’t like the default values, use the jacks value1
through value4 for setting the four values. In fact
offvalue is the same as value1 and onvalue as value2.
If you specify value3 or value3, states is automatically
set accordingly and you can simply omit it .The following
example switches between four different wave forms of
an LFO:

[lfo]
hz = 2
sawtooth = _SAWTOOTH
sine = _SINE
square = _SQUARE
triangle = _TRIANGLE

[button]
button = B3.1
led = L3.1
value1 = _SAWTOOTH
value2 = _SINE
value3 = _SQUARE
value4 = _TRIANGLE
output = O1

If you have three or four states, the LEDwill use different
brightness levels for indicating the current state.

Momentary buttons

If you just need amomentary button (one that just lights
upwhile youhold it down), strictly spokenyoudon’t need
a button circuit. You can directly use the B register, like
in this example:

[algoquencer]
nextpattern = B1.1

Sometimes, however, youmaywant tomakeuseof some
of the features of the button circuit without creating a
toggle button. This is easily done by setting states = 1:

[button]
states = 1
button = B1.1
led = L1.1

[algoquencer]
nextpattern = L1.1

Now you are ready for adding some fun stuff like over-
laying one button with multiple functions (see below) or
using the longpress output.

Sharing buttons

You can never have too many buttons! It’s more likely
that you have too few. So you want to overlay one or
more buttons with multiple functions.

They key to this is the select input of the button circuit.
If you patch this, the circuit will only interact with the ac-
tual button and LED if select is active (e.g. set to 1).
Otherwise it will continue to output its current value to
output and leave the control of the button and the LED
to some other circuit.

The following example uses the button B1.1, (which is
not overloaded!) for switching between two ”layers” or
”banks” of buttons. And in each bank the button has a
differentmeaning. Note how I use the negated output of
the button. That is 0 if the normal output is 1 and vice
versa.

In order to keep things short, the bank just consists of the
single button B1.2. Of course in practice this wouldn’t

make sense since you wouldn’t actually save a button,
but you get the idea...

[button]
button = B1.1
led = L1.1
output = _BANK1
negated = _BANK2

[button]
select = _BANK1
button = B3.1
led = L3.1
output = _VIRTUAL_BUTTON_1

[button]
select = _BANK2
button = B3.1
led = L3.1
output = _VIRTUAL_BUTTON_2

Note: If you needmore than two banks, consider switch-
ing with a buttongroup (see page 70).

DROIDmanual for blue-1 67 Table of contents at page 2

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

button The actual push button. Usually you want to wire this to B1.1, B1.2 and so on: to one of the push buttons of your
controllers. Each time that input goes from low to high, the state of the push button will toggle.

reset A trigger here will reset the button to its start value (which is off, unless you have changed startvalue).

onvalue 1.0 Value sent to outputwhen the push button is on. You can also use a dynamic signal here. This is an alternative name
for the jack value1.

offvalue 0.0 Value sent to outputwhen the push button is off. This is an alternative name for the jack value2.

value1 ... value4 The up to four values to output at outputwhen the button is on the according state. value1 is the same as offvalue
and value2 is the same as onvalue. The default values of these four jacks are 0, 1, 2 and 3, so inmany cases you don’t
need to specify them.

doubleclickmode off This input can enable a double clickmodewhen set to 1. In thatmode the button only toggles it’s constant state if you
double press it in a short time. Otherwise it behaves like a momentary button, that inverts the persisted state (which
you toggle with the double click). Note: The double clock mode is only makes sense if the number of states is 2.

states 1 2 3 2 Number of states this button can have. The default value is 2, which creates a toggle button which changes between
on and off at each press. A value of 1 creates a momentary button. Note: If you just need a plain momentary button,
you can directly use B1.1, B1.2 and so on. You don’t need an extra circuit. But if youwant things like overloading (with
select) or the longpress output, this does make sense. Themaximum number of states is 4. When the button has 3
or 4 states, every press will switch to the next state and then back to the first state again.

startvalue + State of the push buttonwhen you switch on your system. Setting this to on or offwill force the button into that state
and ignore the setting that is saved on the SD card. If you have three states, the start value needs to be 0, 1 or 2. With
four states, it can also be 3. Using this jack disables the persistence of the state! In switchedmode this will be used for
the other button layers as well.

DROIDmanual for blue-1 68 Table of contents at page 2

Output Type Description

led When the button state is on, a value of 1.0 will be sent to that output – regardless of the values in onvalue and
offvalue. If the number of states is 3 or 4 the output get’s intermediate values so the attached LED will be dimmed
into different brightness levels. Usually you wire that output to a LED register, e.g. to L1.1, L1.2 and so on.

output This jack will output the current button states. This is usually 0 for off and 1 for on. If states is 3 or 4, the values 2 or 3
are output for the additional states. You canmodify all four valueswith the inputsoffvalue/value1, onvalue/value2,
value3andvalue4. Note: if youhaven’t changedanyof these inputs andstates is unchangedor 1or 2, theledoutput
will output the same values.

inverted The same as output, but sends onvaluewhen the button is off and offvaluewhen the button is on. If states is 3 or
4, the order of the four output values will be mirrored (probably a feature that is rarely of any use).

negated Similar to inverted, but always sends 1when the button is off and 0when the button is on – independent of the values
of onvalue and offvalue. When states is 3 or 4, this outputwill be 1 if the button is off and 0 in the other three states.

longpress Emits a trigger, when any button is pressed for at least 1.5 seconds. If this jack is used, the effect of a short button
press is delayed until the button is released. This will avoid double actions for long presses.

One button circuit needs 232 bytes of RAM.

DROIDmanual for blue-1 69 Table of contents at page 2

9.7 buttongroup – Connected buttons

This utility circuit combines a number of push buttons
intoagroup thatbehaveasaunit. Oneclassical operation
is to form a group of “radio buttons”. This means that at
any time just one of these buttons is on and all others are
off.

The following example uses four buttons for selecting
one of the voltages 0 V, 1V, 2V and -1V. This voltage is
then being sent to the output jack. This could be used
as an octave switch or the like. The four buttons B2.1
... B2.4 are grouped in a way that just one button is on
and the others are off. The four selectable voltages are
assigned to one button each. The value of the currently
active button is being sent to the output. The outputs
output1 ... output4 will be set to 1 if their correspond-
ing button is active and are used for controlling the LEDs
within the buttons.

[buttongroup]
button1 = B2.1
button2 = B2.2
button3 = B2.3
button4 = B2.4
led1 = L2.1 # LED in button 2.1
led2 = L2.2
led3 = L2.3
led4 = L2.4
value1 = 0V
value2 = 1V
value3 = 2V
value4 = -1V
output = O1

If you set maxactive to a number greater than one, more
than one button can be active at the same time. If this
is the case then the sum of the values of all active but-
tonswill be sent to theoutput. Here is an example,where

three buttons are being used for selecting a number be-
tween 0 and 7 by selecting any combination of the but-
tons “1”, “2”, and “4”.

[buttongroup]
button1 = B2.1
button2 = B2.2
button3 = B2.3
led1 = L2.1 # LED in button 2.1
led2 = L2.2
led3 = L2.3
value1 = 1
value2 = 2
value3 = 4
minactive = 0 # allow all buttons to be off
maxactive = 3 # allow all buttons to be on
output = O1

Overlaying buttons

When youmakemore complex patches, it’s likely
that youmight run out of buttons. In such a situation you
canoverlaybuttonswithmultiple functionsanduseother
buttons to switch between these layers.

Consider the following example: We have one P2B8 con-
troller. The buttons 1 and 2 should switch between the
layers root note and scale. We do this with a simple but-
ton group (you could also use a button circuit and save
one button, but for simplicity we allow us two here):

[p2b8]

[buttongroup]
button1 = B1.1

button2 = B1.2
led1 = L1.1
led2 = L1.2

The remaining six buttons select either oneof six possible
root notes or one of six possible scales (adhering to the
scheme of the minifonion circuit, see page 145). Please
note how we have added a select input at each of both
circuits to make sure that at any given time exactly one
of the two groups is selected:

[buttongroup]
select = L1.1 # be active only when L1.1 is active
button1 = B1.3
button2 = B1.4
button3 = B1.5
button4 = B1.6
button5 = B1.7
button6 = B1.8
led1 = L1.3
led2 = L1.4
led3 = L1.5
led4 = L1.6
led5 = L1.7
led6 = L1.8
value1 = 0 # C
value2 = 2 # D
value3 = 5 # F
value4 = 7 # G
value5 = 9 # A
value6 = 10 # Bb
output = _ROOT

[buttongroup]
select = L1.2 # be active only when L1.2 is active
button1 = B1.3
button2 = B1.4

DROIDmanual for blue-1 70 Table of contents at page 2

button3 = B1.5
button4 = B1.6
button5 = B1.7
button6 = B1.8
led1 = L1.3
led2 = L1.4
led3 = L1.5
led4 = L1.6
led5 = L1.7
led6 = L1.8
value1 = 1 # major
value2 = 6 # dorian minor
value3 = 7 # natural minor
value4 = 9 # phrygian minor
value5 = 10 # diminished scale
value6 = 2 # mixolydian
output = _DEGREE

Here you can patch _ROOT and _SCALE to some
minifonion, arpeggio or other circuit that works with
scales.

Now, with the top buttons you can switch between root
and scale selection andwith the remaining six buttons se-
lect either the root or the scale.

DROIDmanual for blue-1 71 Table of contents at page 2

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

minactive 1 2 3 1 Minimum number of active buttons. If you set this to 2, then it is guaranteed that always at least 2 buttons are active.
If you set this to 0, then it is possible to switch off all buttons. The outputwill be set to 0.0 in that case.

maxactive 1 2 3 1 Maximum number of active buttons. It is an error to set this to 0, since this would make this circuit useless.

button1 ... button16 1st ... 8th button of the group. Any positive trigger seen here will toggle this button. And another buttonmight go on
or off in order to make sure that the number of active buttons is withing the allowed range.

value1 ... value16 + Value that will be sent to the output if the 1st ... 16th button is active. These inputs default to 0 for value1, 1 for
value2 and so on and 15 for value16.

Output Type Description

led1 ... led16 This output will be on / 1.0, whenever the 1st ... 8th button is active and off / 0.0 otherwise. Wire this to the LED in
the button.

output The sum of the values of all active buttons will be sent here. if no button is active then 0.0 is being output.

buttonpress Emits a trigger if any button is being pressed

longpress Emits a trigger, when any button is pressed for at least 1.5 seconds. If this jack is used, buttonpresswill emit a signal if
the button in question is released before the 1.5 seconds, not immediately. Thatway you trigger either at buttonpress
or at longpress, not at both.

One buttongroup circuit needs 700 bytes of RAM.

DROIDmanual for blue-1 72 Table of contents at page 2

9.8 calibrator – VCO Calibrator

Introduction

This circuit allows you to precisely compensate for decal-
ibrated or otherwise imperfectly trackingVCOs –which is
probably a property of all existing analog VCOs to some
degree. It does this by applying one specific adaptation
value per individual octave. This way you can make even
those VCO track well over 10 octaves, that would nor-
mally only do 2 or 3.

The calibration of the error compensation is done man-
ually – by you. At first this may seem like a disadvan-
tage. In practice, however, this is much easier and more
accurate than the way some “autotune” modules do it.
Thosemodules have an additional input for “listening” to
a waveform output of the oscillator andmeasure and ad-
just the tracking at a button press.

The advantages of manual tuning are:

• You don’t need an extra waveform output of your
VCO.

• You can calibrate sound sources with complex
wave forms, whose pitch is are hard to grab by au-
totune devices.

• You can change the correction at any time during a
live performance without your audience noticing.

• It’s possible to make one VCO follow the (imper-
fect) tracking of a second one, in order to create
perfect FM sounds while just one VCO needs to be
adapted.

• It’s also possible to fix the tracking of unprecise
pitch CV generators, such as sequencers, quantiz-
ers or MIDI interfaces.

The calibrator circuit happily profits from the ’s
highly precise, linear and low-jitter ADCs and DACs. And

using eight such circuits one could fix the tuning
of up to eight VCOs.

How to use

Here is a typical patch for the use of the calibrator:

[calibrator]
input = I1
output = O1
nudgeup = B1.1
nudgedown = B1.3
ledup = L1.1
leddown = L1.3

The original pitch information from the sequencer, quan-
tizer, MIDI converter or whatever comes into I1. The
adapted pitch goes to O1 and from there to the V/Oct in-
put of your VCO. Of course the pitch information could
also come from some internal circuit like the minifonion
(page 145). In that case input is connected to an internal
patch cable coming from that circuit.

Now with the two buttons B1.1 and B1.3 you can adjust
the tuning up and down at any time while playing. Each
buttonpress just very slightly shifts the pitch upor down.
The adjustment is just done for the octave that’s cur-
rentlyplayed. calibrator savesonecalibrationvalue for
each octave from 0 to 8 and also one for the pitches be-
low 0 V and those about 8 V. Your tuning profile is saved
to the memory card automatically.

Pressingbothbuttons at the same time resets the calibra-
tion of the current octave.

For a good result I suggest either using a precise tuner or

playing the voice at the same time as a reference voice
and try to minimize the audible beatings.

As second way of using the VCO calibrator is specify-
ing a tuning adjustment for each octave by a fixed num-
ber (or a potentiometer if you can afford). This is done
with the inputs tune0 ... tune8 and tunelowtail and
tunehightail.A value of 1.0 means an upwards tuning
of one semitone (100 cents) per octave, and -1.0 likewise
downwards.

Persistence

As always, the internal state of the calibrator circuit
is saved to your SD card and automatically loaded when
your starts.

But what if you are using several calibrators, each for
a different (and differently tracking) VCO? How do you
know which of the saved calibration states is applied to
which VCO?

The answer to this is: all calibrators in your patch are
enumerated starting from 1. For each of them there is
one configuration saved to the SD card, based on that
number. So when you modify the calibration of the third
calibrator circuit in your patch, the modified configu-
ration will be saved as belonging to calibrator number 3.

So if you make sure that each VCO is always handled by
the same calibrator circuit youwill always get the right
configuration.

If you for example remove the first calibrator from your
patch, the second one will become the new first one and
load its calibration state when you load the new patch. If

DROIDmanual for blue-1 73 Table of contents at page 2

you don’t want that to happen, simply keep the calibra-
tor in the patch even if you don’t need it anymore. It is
sufficient to keep just the line [calibrator]without any
further jack specifications.

DROIDmanual for blue-1 74 Table of contents at page 2

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

input
�
� 1V

Oct 0V Patch your V/Oct pitch input here.

nudgeup A trigger here (most likely a button press) will modify the tuning of the currently played note (as read by input) up-
wards by one cent (or by nudgeamount if that is used.

nudgedown A trigger here will modify the tuning of the currently played note down.

nudgeamount 0.01 Changes the amount each button press detunes. A value of one would mean one semitone, so the default value of
0.01 corresponds to one cent (1

100) of a semitone.

reset Resets all tunings to 0 – or to the values of the according tune... inputs if they are used.

tune0 ... tune8 0.0 Explicit tuning of the octaves 0 through 8 – if you do not want to nudge manually. tune0 sets the tuning for the input
pitch of 0 V, tune1 for 1 V and so on. A value of 1 means a tune adjustment of one semitone – which is 100 cent. The
maximum detuning is± 1 Octave (at a value of±12).

tunelowtail 0.0 Tuning adaption for the negative voltage range. A value of 1 means an upwards tuning of one semitone per octave, -1
likewise downwards.

tunehightail 0.0 Tuning adaption for voltages > 8 V. A value of 1 means an upwards tuning of one semitone per octave, -1 likewise
downwards.

Output Type Description

output
�
� 1V

Oct The calibrated pitch goes out here.

ledup 0 1 When nudgeup is mapped to a button (which is most likely), map this output to the according LED and it will indicate
whenever it’s currently adjusting the output pitch upwards.

leddown 0 1 This is the LED for nudgedown, which indicates downwards adjustment.

DROIDmanual for blue-1 75 Table of contents at page 2

One calibrator circuit needs 364 bytes of RAM.

DROIDmanual for blue-1 76 Table of contents at page 2

9.9 chord – Chord generator

This circuit creates the pitch information for up to four
voices of a musical chord. This means that you can at-
tach theVolts per octave inputs of up to four synth voices
and they will play a nice musical chord. Hereby you have
the flexibility of building your chord out of any of the
seven notes of a selected scale. So you are not limited to
root, 3rd, 5th and 7th. The algorithm is similar to that in
the Sinfonion but has an adapted mode for three voiced
chords in addition.

Minimal example

Here is the most simple (and probably useless) example:
it will play a C major 7 chord, i.e. output the according
pitch CVs for the notes C, E, G and B at the outputs O1,
O2, O3 and O4:

[chord]
output1 = O1
output2 = O2
output3 = O3
output4 = O4

OutputO1will be at 0V, representing aC.Or course, if you
just have three voices, don’t use output4 and youwill get
a C major triad.

Selecting root and scale

You will probably not always want to play in C major (or
even never!), so you can select the root note and the scale
with the inputs root and degree. Setting root to 2 and
degree to 7, for example, will select D natural minor:

[chord]
output1 = O1
output2 = O2
output3 = O3
output4 = O4
root = 2
degree = 7

Both root and degree range from 0 to 11. Please refer to
the description of minifonion (see page 145) for a com-
plete list of all available scales. It has the same logic for
root and degree and is thus compatible with chord.

But why the heck is that input named degree?? Well, it’s
a jargon from the Sinfonion and doesmake sense there in
some contexts. Please have a look into themanual of the
Sinfonion if you are interested!

Selecting the pitch of the notes

Per default all outputs are in the first octave, i.e. in the
range 0 V ... 1 V. Per convention this is very low and prob-
ably sounds ugly. With the pitch input you can set the
minimum pitch of the lowest output chord note. In the
next example this is read from I1. So you could for ex-
ample patch a sequencer here andhave the chordoutputs
play a kind of four voiced melody:

[chord]
pitch = I1
output1 = O1
output2 = O2
output3 = O3
output4 = O4
root = 2
degree = 7

The spread parameter controls the maximum pitch of the
highest output chord note. It is always relative to the
pitch of the lowest note plus one octave. So if spread is
1.5 V (or 0.15), for example, the maximum allowed dis-
tance between the lowest and the highest chord note is
2.5 octaves. As lowest note the chord generator places
the chord note that is nearest above the pitch input. As
highest note it places the one nearest to upper bound
of the allowed range and the remaining notes are dis-
tributed in between with the most equal spacing possi-
ble.

Selecting the chord notes

Whatmakes the Sinfonion and also the harmonic circuits
in the stand apart from other modules is the flex-
ibility of note selection. So e.g. in C major, you are
not limited to playing the chord C/E/G/B. In fact you can
choose any subset from the currently selected scale.

For this there are seven inputs select1, select3, ...
select13 that select the notes of the current scale and
another five inputs selectfill1 ... selectfill5 that
select the notes not in the current scale. These 12 inputs
are binary inputs that expect either 0 or one 1. Each of
them selects one of the seven intervals of the scale for
being part of the chord. Here is a table of all these inputs
and the notes they would select in a C major or C minor
scale:

DROIDmanual for blue-1 77 Table of contents at page 2

Input interval step Cmaj Cmin

select1 root I C C

select3 3rd III E E
select5 5th V G G

select7 7th VII B B
select9 9th = 2nd II D D

select11 11th = 4th IV F F

select13 13th = 6th VI A A
One typical way to select these notes is with seven tog-
gle buttons, which is then much like the Sinfonion does
it. Assign the output of each of the seven buttons to one
of these functions:

[p2b8]

[button]
button = B1.1
led = L1.1

[button]
button = B1.2
led = L1.2

[button]
button = B1.3
led = L1.3

[button]
button = B1.4
led = L1.4

[button]
button = B1.5
led = L1.5

[button]
button = B1.6
led = L1.6

[button]
button = B1.7
led = L1.7

[chord]
select1 = L1.1
select3 = L1.2
select5 = L1.3
select7 = L1.4
select9 = L1.5
select11 = L1.6
select13 = L1.7
output1 = O1
output2 = O2
output3 = O3
output4 = O4

Now you can use the buttons to change the chord notes
on thefly. Of course, however, you also can use other sig-
nals for the selection. Maybe random gates, slowly run-
ning LFOs, a sequencer, whatever you like!

But what happens, if you do not select exactly four
notes?

• If you don’t select any note (or do not patch the
select-inputs at all), all scale notes are selected.

• If you select just one note, all four outputs will play
that same note.

• If you select two notes, output1 and output3 will
play the first note and output2 and output4 the
second one.

• If you select three notes, output4 will play the
same as output1.

• If you select five, six or seven notes, just the first
four notes will be used.

If some of the notes are doubled and you use a large
enough spread, they will be placed at different octaves.

By the way: It’s of course no problem to just use three or

even just two of the outputs, if you don’t need or have a
total of four voices.

Chord inversion

The chord generator lets you nail down the chord struc-
ture to a certain inversion. If you set inversion to 1, the
root note (or, to be more precise, the first selected note)
will be placed as the lowest note. Similarly the inversions
2, 3 and 4 will make the respective other selected notes
the lowest note.

Setting inversion to 0 (which is the default) will allow
any note to be the lowest. This allows the chord to be
closest to the pitch input.

Triggeredmode

The trigger input is essentially a sample & hold for the
outputs. So as soon as you patch that input, all outputs
are frozen until the next trigger.

Chords with three voices

The chord generation circuit can also create chords
with just three output voices. Simply omit the output
output4. When it is not connected, the “three voice
mode” is activated:

[chord]
output1 = O1
output2 = O2
output3 = O3
root = 2
degree = 7

DROIDmanual for blue-1 78 Table of contents at page 2

All parameters work as expected but there are some im-
portant adaptions. This is not the same as using the four
voiced mode and just look at the first three outputs. For
example:

• The spreading uses a simplified algorithmwith just

a bottom, middle and top note.
• If just three intervals are selected, you don’t get
a duplication of the first note on output2, as you
would otherwise.

Chords with two voices

Even if just twooutputs are connected, you can stillmake
use of this circuit. Now just the first two select... in-
puts are taken into account. But things like inversion and
spreading works nevertheless.

Input Type Default Description

root 1 2 3 0 Set the root note here. 0means C, 1meansC, 2meansD and so on. If youmultiply the value of an input like I1with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

degree 1 2 3 0 Set the musical scale. This is a number from 0 to 11. At 12 this repeats over again. Please refer to the introduction for
the list of scales. If you multiply an input like I1with 120, this will internally scale to one scale per semitone and you
are compatible with the DEGREE CV input of the Sinfonion.

select1 + Gate input for selecting the root note as being an allowed interval. When youwant to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. select1 ...
select13will be set to one.

select3 + Gate input for selecting the 3rd.

select5 + Gate input for selecting the 5th.

select7 + Gate input for selecting the 7th.

select9 + Gate input for selecting the 9th (which is the same as the 2nd).

select11 + Gate input for selecting the 11th (which is the same as the 4th).

select13 + Gate input for selecting the 13th (which is the same as the 6th).

selectfill1 off Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 off Selects the alternative 3rd (i.e. the 3rd that is not in the scale).

selectfill3 off Selects the alternative 4th or 5th. In most cases this is the diminished 5th.

selectfill4 off Selects the alternative 13th (i.e. the 1st3 that is not in the scale).

selectfill5 off Selects the alternative 7th (i.e. the 7th that is not in the scale).

DROIDmanual for blue-1 79 Table of contents at page 2

Input Type Default Description

tuningmode off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch
�
� 1V

Oct 0V This pitch CV will be output while the tuning mode is active.

transpose
�
� 1V

Oct 0V This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

pitch
�
� 1V

Oct 0V This sets the minimum pitch of the lowest note of the chord.

spread
�
� 1V

Oct 0V Selects the range between the lowest and highest note of the chord. A spread of 0 means that all chord notes are
within one octave. Positive values will be added to that, e.g. a spread value of 1 V (or 0.1) means that the chord will
be spread out up to two octaves.

inversion 1 2 3 0 Selects the inversion of the chord. 1 means that the root note should be the lowest note, 2 will make the second
selected note the lowest note, 3 the 3rd and 4 the 4th. The default, however, is 0 and doesn’t fix the inversion. Rather
that inversion is chosen that creates the chord closest to the input pitch.

trigger This jack is optional. If you patch it, the Chord generator just reads a new input pitch when it receives a trigger.

Output Type Description

output1 ... output4
�
� 1V

Oct 1st ... 4th pitch output

One chord circuit needs 412 bytes of RAM.

DROIDmanual for blue-1 80 Table of contents at page 2

9.10 clocktool – Clock divider / multiplier / shifter

This circuit implements various clockmodifications, such
as a clock divider, a clock multiplier, a tool for changing
the length of an incoming gate signal and a clock time
shift. Here is an example of a simple clock divider that di-
vides the incoming clock by 7 (i.e. for 7 incoming clocks
one outgoing clock is being produced).

[clocktool]
clock = I1 # patch a clock here
output = O1
divide = 7

This example doubles the speed of the clock by inserting
one additional clock tick right in themiddle between two
incoming ones: right in the middle between

[clocktool]
clock = I1 # patch a clock here
output = O1
multiply = 2

By usingmultiplication and division at the same time you
can create rhythms like “two over three”:

[clocktool]
clock = I1 # patch a clock here
output = O1
divide = 3
multiply = 2

Per default the outgoing clock as a duty cycle of 5050You
can change this with the dutycycle input, e.g. to 20

[clocktool]
clock = I1 # patch a clock here
output = O1
dutycycle = 20% # same as 0.2

The CV delay can be used to delay the clock signal – as-
sumed that the input clock is steady. A value of 1.0 is
equivalent of delaying each clock by exactly one cycle –
which is pretty useless, since it results in the same out-
put clock. But for example a value of 0.1 will delay the
clock by 10%. Here is an example:

[clocktool]
clock = I1 # patch a clock here
output = O1
delay = 0.1 # same as 10%

Pleasenote that this isnot a trigger delay, since it requires
a steady input clock. Otherwise funny and strange things
can happen. But: in exchange for that limitation it can
also shift a clock ahead. Using a small negative number
will result in a clock that is always slightly before the orig-
inal clock:

[clocktool]
clock = I1 # patch a clock here
output = O1
delay = -0.1

Feeding a trigger sequencer (like the algoquencer, see
page 46) with a shifted clock allows you fine tuning the
exact timing of that voice. You can easily map the shift
amount to a pot for tuning that live by ear:

[clocktool]
clock = I1 # patch a clock here
output = _SHIFTED_CLOCK
delay = P1.1 * 0.2 - 0.1 # limit to +/- 10%

[algoquencer]
clock = _SHIFTED_CLOCK
...

Gate length

Per default the length of the output gate is 10 ms – inde-
pendently of the length of the input gate. You can change
thegate length eitherwith the jackgatelengthand spec-
ify a fixed number of seconds, or by using dutycycle,
which is a percentage of the output clock rate. Please
note: if your gate length exceeds the time until the next
output gate, both will be ”joined” and thus no new gate
will be emitted.

Please note if you use dutycycle: right at the start of
the clock signal or after a greater speed change of the
clock, clocktool needs a short time to learn the new
clock speed and correctly adapt the newgate length. This
might lead to two merging gates, which in turn causes a
missing gate output.

DROIDmanual for blue-1 81 Table of contents at page 2

Input Type Default Description

clock Patch a steady clock here for this circuit to be of any use

reset A trigger here resets the internal counters. This is useful if you use the clock divider and want to restart the internal
counting from 0, in order to align the clock divider with some external sequencers or the like

divide 1 Number to divide the clock through. This will be rounded to the nearest integer number. Note: if you want to use an
external CV then you need to multiply that with some useful number, since otherwise you will get a number between
0 and 1which is not useful at all. Remember: 10 V translates to a number of 1.

multiply 1 Number to multiply the clock with. Same considerations hold as for divide.

dutycycle 0.50 1 + Output duty cycle of the clock – which is essentially a square wave – in a range from 0.0 to 1.0 or 0% to 100%. If you
don’t patch anything here, the length of the trigger output pulses will be 10 ms (’s standard trigger duration).

gatelength + This jack is alternative to dutycycle and will override it if it is used. It sets the length of each output pulse to a fixed
value that is independent of the incoming clock. A value of 0.5 (a CV of 5 volts) translates into a gate length of 0.5
seconds.

delay 0.0 This CV allows you to shift the input clock beat around in time. A value of 0.1 will delay each beat by 10% of a clock
cycle. A value of -0.1 is also allowed and shifts the beat 10% ahead. But this is exactly the same as 0.9.

Output Type Description

output Here comes the modified clock

inputpitch Experimental output that outputs a representation of the input clock’s pitch on a 1V/octave base, based on the refer-
ence of 60 BPM (1 Hz). This means that an input clock of 120 BPMwill output 1V (a value of 0.1), since 120 BPM it is
one octave higher than 60 BPM. If you feed that value to the rate input of an LFO you get that running at exactly the
same speed (not in the same phase, however).

outputpitch Same for the modified output clock

One clocktool circuit needs 216 bytes of RAM.

DROIDmanual for blue-1 82 Table of contents at page 2

9.11 compare – Compare two values

This simple utility circuit allows you to make a decision
by comparing an input value (at input) against a refer-
ence value (at compare) and output one of three values
depending onwhether the input is less than, greater than
or equal to the reference.

The following simple example checks if the pot P1.1 is
left of the center (a value less than 0.5). If that is so, it
outputs 1, otherwise 0.

[compare]
input = P1.1
compare = 0.5
ifless = 1
output = O1

You can change the default output value of 0with the in-
put else. That specifies what happens if the condition
is notmet. The following example outputs -1, if P1.1 is
greater or equal to 0.5.

[compare]
input = P1.1
compare = 0.5
ifless = 1
else = -1
output = O1

9.11.1 Equality, analog unprecision

You can also check if two values are equal. This is done
with ifequal. Check this out:

[compare]
input = B1.1
compare = 1
ifequal = 4
else = 8
output = O1

Now while you hold the button B1.1 this circuit will out-
put the value 4 and otherwise 8.

Note: equality can be trickywhen it comes to values from
analog things like inputs or potentiometers. They always
undergo tiny random fluctiations. So the following ex-
ample, that should compare the current voltages of two
inputs, will never really work:

[compare]
input = I1
compare = I2
ifequal = 1 # will never happen!
output = O1 # This won't work!

If you try this out, you will probably never get both in-
puts equal. Even a single electron too much could the-
oretically make the difference. So in order to make such
comparisons possible, there is a way to allow for a slight
unprecision when doing the comparison. This is set with
the precision parameter:

[compare]
input = I1
compare = I2
precision = 0.1
ifequal = 1
output = O1

Now the inputs I1 and I2 are being treated as equal as
long as their difference is 0.1 (1 V) at most.

Makeing a three-way switch

It is possible to check all three relations at once. Make
sure that you apply a precision if you deal with analog
values:

[compare]
input = I1
compare = I2
precision = 0.1
ifless = 0
ifequal = 1
ifgreater = 2
output = O1

Now you get 0, 1 or 2, depending on wether I1 is less,
equal or greater than I2.

Note: Better do not use just ifless and ifgreaterwith-
out using ifequal or else. This lets the equality unde-
fined and will output 0 if for any chance the two input
values are equal. Better use ifless / ifgreater in com-
bination with else if you are not interested in the exact
equality.

Omitted inputs

It is allowed to omit any of the inputs ifless, ifequal,
ifgreater or else. Any of these is treated as 0with one
exception: If you omit all four, ifequal defaults to 1.
This make a super basic compare circuit just check if two
values are equal:

DROIDmanual for blue-1 83 Table of contents at page 2

input = B1.1
compare = 0
output = O1

This will output 1 if button B1.1 as the value 0 (is not
pressed).

Dynamic output values

As often, instead of using fixed values for ifless,
ifequal, ifgreater and else you can use dynamic val-
ues from somewhere else, of course. The following ex-
ample will output a sine wave at O1 if the pot is left of the
center or else a square wave:

[lfo]
hz = 2

sine = _SINE
square = _SQUARE

[compare]
input = P1.1
compare = 0.5
ifless = _SINE
else = _SQUARE
output = O1

Input Type Default Description

input 0.0 A value to compare.

compare 0.0 A reference value to compare the input with.

ifgreater + Value to be output if input is greater than compare. If you patch nothing here, the value of the input elsewill be used.

ifless + Value to be output if input is less than compare. If you patch nothing here, the value of the input elsewill be used.

ifequal + Value to be output if input is equal to comparewithin the precision defined by precision. If you patch nothing here,
the value of the input elsewill be used.

else 0.0 Specifies the output value in case non of the stated conditions are met.

precision 0.0 An optional precision to be used by ifequal

Output Type Description

output Here one of ifgreater, ifless or ifequal is output.

One compare circuit needs 132 bytes of RAM.

DROIDmanual for blue-1 84 Table of contents at page 2

9.12 contour – Contour generator

This circuit implements an enhanced version of the clas-
sic ADSR-envelope generator. It has six phases: prede-
lay, attack, hold, decay, sustain and release. For trigger-
ing there are two alternative inputs: gate and trigger.
Use trigger if you are not interested in the length of the
gate signal. There will be no decay / sustain phase in that
case.

The minimal patch just connects gate or trigger and
the output. It creates an envelopewith standard timings,
triggered at I1 and output to O1:

[contour]
gate = I1
output = O1

Assigning pots to the classic four inputs lets you use the
just as a normal ADSR envelope:

[p2b8]
[p2b8]

[contour]
gate = I1
attack = P1.1
decay = P1.2
sustain = P2.1
release = P2.2
output = O1

When you try this out, youwill notice that the time range
of the attack parameter is much shorter than that of
decay and release. If fact it is just 1

20 of these. This
has been chosen in this way because I believe that this
makes sense from a musical point of view. Very long at-
tack times are quite unusual and I wanted to be able to

directly map the four values to pots. But if you don’t like
that you can – of course – make all three timing parame-
ters have the same range simply bymultiplying attack by
20:

[p2b8]
[p2b8]

[contour]
gate = I1
attack = P1.1 * 20
decay = P1.2
sustain = P2.1
release = P2.2
output = O1

If you do not change the shape parameter, the duration
of the attack phase is 0.1 sec at a value of 1. The phases
decay and release have a duration of 2.0 sec at a value of
1.

The Phases

In addition to the traditional ADSRphases this circuit also
hasaanoptional predelay (P) phase –whichacts like ade-
lay before the envelope starts – and an optional hold (H)
phase which keeps the envelope at maximum level for a
short time right after attack and before decay.

The following diagram shows an example envelope with
all six phases. The gate starts at 0ms and ends at 200ms.

0 50 100 150 200 250 300

0

5

10

time(ms)

V
ol
ts

P
A
H
D
S
R

Attack, Decay and Release

The phases attack, decay, release are phases where the
level of the envelope starts at one level and then ap-
proaches another level within a certain time. In the up-
per example all these phases had a linear characteristic.
That means that the output voltage changes by a con-
stant amount per time.

’s contour allows you to control the shape of
these phases in order to get them bent in either direc-
tion. For that purpose there are the inputs attackshape,
decayshape and releaseshape.

Let’s take decay as an example. During the decay phase
the envelopes voltage falls from the maximum level of
10 V (you can change this with the input level) to the
sustain level defined by the input sustain. For simplic-
ity let’s assume that you have not used these inputs, so
the maximum level is 10 V (1.0) and the sustain level is
5 V (0.5). Also we assume attack, predelay and hold to
be 0.0.

When decayshape is not patched or otherwise set to its

DROIDmanual for blue-1 85 Table of contents at page 2

default of 0.5 then the shape of the decay curve is linear.
This means that it goes down by the same voltage each
second until it reaches 0.5.

0 50 100 150 200 250 300

0

5

10

time(ms)

V
ol
ts

D
S
R

Now, if you set decayshape to 0.0 then curve is com-
pletely exponential:

0 50 100 150 200 250 300

0

5

10

time(ms)

V
ol
ts

D
S
R

Such an envelope sounds completely different – of course
also depending on whether you feed this into a linear
VCA, exponential VCA or a VCF. For fine control you can
use any number between 0.0 and 0.5 of course. In that
case you will get a curve that is bent to a certain degree.
Assigning decayshape to a pot helps you listening to the
different sounds:

[contour]
gate = I1
decayshape = P1.1
output = O1

If the shape gets a value greater than 0.5 then the curve
is bent into the opposite direction (some call this loga-
rithmic but mathematically this is not true). Here is an
example where decayshape is set to 1.0:

0 50 100 150 200 250 300

0

5

10

time(ms)

V
ol
ts

D
S
R

Input Type Default Description

gate + Patch a gate signal here that triggers the envelope. Gatemeans that the length of the signal is relevant. While the gate
is high the sustain phase holds on. As soon as gate is going low the release phase is being entered.

trigger This is an alternativemethod of starting the envelope. If you use trigger instead of gate then there are the following
differences:

• The duration of the trigger signal is being ignored.
• There is no decay / sustain phase. Attack and hold are immediately followed by release. The inputs sustain and
decay have no impact anymore.

• The predelay and attack phases are continued until their end even when the trigger signal ends (When using
gate and the gate signal ends during predelay, the envelope does not start. When it ends during attack, decay /
sustain are being skipped and release starts at the current level of the envelope. That way short gates can result
in “quieter‘’ envelopes).

DROIDmanual for blue-1 86 Table of contents at page 2

Input Type Default Description

retrigger 1 If you patch 0 or off here, a gate or trigger impulse will not immediately restart the envelope unless it already has
reached its release phase. The default on, which means that a trigger will immediately restart the envelope in any
case.

startfromzero 0 If you set this to 1 or on, a trigger or gate will reset the envelope’s current level immediately to zero. This is sometimes
called “digital mode”. In the normal analog mode the envelope resumes from where it is. This means that when a
trigger occurs right in the release phase where the level is still high, will start it’s attack not from zero but from this
hight value.

abortattack 0 This is an on / off setting that decides what happens if the input gate goes off while the predelay or attack phase is
still not finished. Per default that phase will be finalized regardless of the gate state. If abortattack is on then the
end of the gate will immediately stop the attack phase and move on to hold. Note: The value of the envelope will not
reach the maximum level in that case. If the gate ends during the predelay phase, no envelope will be started at all.

Note: This setting is only functional when the gate input is being used for triggering the envelope. If you use trigger,
then the attack phase is always completely executed and this setting has no influence.

loop 0 This is an on / off input that switches loop on or off. When loop is on, the envelope will immediately start again once
it has finished. It also starts without triggering. This converts contour into a kind of fancy LFO.

gate / trigger and loop can be combined. Any gate or trigger will restart the envelope just as usual – even in loop
mode.

predelay 0.0 Thepredelayphase inserts adelaybetween the incominggate and thebeginof theenvelope. The lengthof thepredelay
is 0.1 seconds per volt, so a value of 1.0means 1 second

attack 0.0 Length of the attack phase, i.e. the time from the beginning of the gate until the maximum level is reached. See the
general description for information about the scaling of this input.

hold 0.0 If this is none-zero then the envelopes lingers a certain amount of time at itsmaximum level after the attack andbefore
the decay phase. A value of 0.5 (this is 5 V) will create a hold time of 5 seconds.

decay 0.2 Time of the decay phase

sustain 0 1 0.5 Sustain level

swell 0 1 0.0 If this jack is set to a value greater than 0.0, then the level of the envelope will go up or down again during the sustain
phase until it reaches swelllevel.

swelltime 5.0 Time of the swell phase

swelllevel 1.0 Level the swell phase is approaching. Setting this to the same as sustain effectively disables swell.

DROIDmanual for blue-1 87 Table of contents at page 2

Input Type Default Description

release 0.2 Timing of the release phase

level 1.0 Maximum level and scaling of the envelope. It is basically an output attenuator of the envelope. Sudden changes in
the level will immediately have an (audible) impact on the envelope.

velocity 1.0 energy of the attack: The velocity is similar to the level, but is effective just during the attack phase. During that
phase that maximum voltage that is read from the velocity jack and will be used as the velocity of the envelope. Fur-
ther changes during the other phases will be ignored. This makes it ideal of using with a sequencer. For example you
can patch an accent output here and add some offset. Sudden changes in this input will not affect the shape of the
envelope.

pitch
�
� 1V

Oct 0V This is aonevolt per octave input affecting all timings of the envelope. When you set this to 0 (the default), it is neutral.
A value of 0.1 (1 Volt) will exactly double the speed of all phases - just as one octave up doubles the frequency of an
oscillator. This jack can be used to easily implement envelopes where the length very naturally follows this pitch - just
like on a piano, glockenspiel or marimba lower notes last longer than higher ones.

taptempo Tap tempo is an alternative method of specifying a pitch information. When you patch a clock to tap tempo, all time
parameters in the envelope are relative to that clock. If the clock speeds up, the envelope gets faster and vice versa.
The reference speed is 120 BPM. This means that if you patch a 120 BPM clock here then nothing changes. Clocks
faster than 120 BPMwill speed up the envelope. Clocks slower than 120 BPMwill slow it down.

shape 0.50 1 0.5 If you use this jack then it sets the shape for all of the relevant phases, which are attack, decay, swell and release. Note:
this input is only effective for those phases where the dedicated input (like attackshape, etc.) is not being used.

attackshape + Shape of the attack curve. If nothing is patched here, the value of shape will be used. See the general description for
how curve shapes work.

decayshape 0.50 1 + Shape of the curve in the decay phase. If nothing is patched here, the value of shapewill be used.

swellshape 0.50 1 + Shape of curve during the swell phase. If nothing is patched here, the value of shapewill be used.

releaseshape 0.50 1 + Shape of the curing in the release phase. If nothing is patched here, the value of shapewill be used.

zerocrossing + This is an experimental feature: If you patch the output of an oscillator here, an incoming gate or trigger signal will be
delayed until the next zero crossing of that signal. That allows you to start the envelope exactly when the audio signal
is at 0 and avoid nasty klicks, even if the attack is set to 0. It comes at a price, however. The delay between the trigger
and the first zero crossing might vary a lot from note to note and that could make your rhythm untight, especially if
the frequency of the oscillator is low.

DROIDmanual for blue-1 88 Table of contents at page 2

Output Type Description

output Main output of the envelope. Patch this to your filter, VCA or wherever you like.

negated The negated output is the same as the output but in negative voltage.

inverted The inverted output always outputs positive voltages but is inverted relative to the level of the envelope. When the
normal output outputs 0 V, then the inverted output outputs level and vice versa

endofpredelay This output will emit a trigger with a length of 10 ms when the predelay phase has ended.

endofattack This output will emit a trigger with a length of 10 ms when the attack phase has ended.

endofhold This output will emit a trigger with a length of 10 ms when the hold phase has ended.

endofdecay This output will emit a trigger with a length of 10 ms when the decay phase has ended.

endofrelease This output will emit a trigger with a length of 10 ms when the release phase has ended.

One contour circuit needs 512 bytes of RAM.

DROIDmanual for blue-1 89 Table of contents at page 2

9.13 copy – Copy a signal

This circuit is a simple utility that copies a signal from an
input to an output. Since every input generally can be at-
tenuated and offset this can be used for scaling and off-
setting a signal on its path.

The following example outputs the sinewaveof the same

LFO to O1 and O2, where O2 is being inverted. This is also
an example of using an output as an input.

[lfo]
hz = 0.5 * P1.1

sine = O1

[copy]
input = O1
inverted = O2

Input Type Default Description

input 0.0 Connect the signal you want to copy here.

minimum + This sets a lower limit to the input signal. If it falls below it will be set to this value.

maximum + This sets a upper limit to the input signal. If it is above it will be set to this value.

Output Type Description

output The resulting signal will be sent here.

inverted An inverted version of the signal will be sent here (after min and max has been applied). Inverted means, that it is
mirroredwithin the range of 0 ... 1. For example the inversion of 0.2 is 0.8, the inversion of 0.5 is 0.5 and the inversion
of 0.0 is 1.0. If you need a negated version, simply multiply the input by -1.0.

If the signal is negative, the inverted signal will also be negative and is now mirrored within the range -1 ... 0. So the
inversion of -0.8 is -0.2 and so on.

One copy circuit needs 72 bytes of RAM.

DROIDmanual for blue-1 90 Table of contents at page 2

9.14 crossfader – Morph between 8 inputs

This utility circuit creates CV controlledmix of two out of
up to eight inputs. With two inputs this acts like a classi-
cal cross fader. The following example lets you fade be-
tween the signals at I1 and I2 by turning the pot P1.1:

[crossfader]
input1 = I1
input2 = I2
fade = P1.1
output = O1

At fully CCW (0.0) only the signal of the first input is be-
ing output, at fully CW (1.0) only that of the second one.
In the center position (0.5) you get the average of both
inputs, namely 0.5×I1 + 0.5×I2.

Using more than two inputs is possible. The fade input
thenmaps the range 0.0 ... 1.0 to a journey from the first
to the last input. Let’s see the following example:

[lfo]
hz = 0.1
sawtooth = _FADE

[crossfader]
input1 = I1
input2 = I2
input3 = I3
input4 = I4
fade = _FADE
output = O1

Now during one LFO cycle of 10 seconds the output O1
begins with the signal at I1 and then morphs to that of
I2. It reaches 100% of I2 at a fade value of 1

3 . Then it
continues toI3,which it reachesat 2

3 andfinally – after 10
seconds – it ends at I4. After that it immediately jumps
back to I1, in order to begin the next cycle.

Values beyond 1.0 for fade are allowed and allow you to
morph from the last input to the first one. In the upper
example that would be the range from 1.0 to 1.3333. So
if you scale up the sawtooth to a total range of 0.0 ...
1.3333 you will get a smooth cyclic morph between all
four inputs:

[lfo]
hz = 0.1
sawtooth = _FADE

[crossfader]
input1 = I1
input2 = I2
input3 = I3
input4 = I4
fade = _FADE * 1.3333
output = O1

Input Type Default Description

input1 ... input8 0.0 The input signals that you want to crossfade between. At least input1 and input2 need to be patched. Otherwise
they are treated like 0 V signals.

fade 0 1 0.5 This value decides which of the two inputs should be mixed and to which degree each one should go into the mix. At
0.0 the mix consists of 100% of the first inputs, at 1.0 of 100% of the last patched input.

Output Type Description

output Output of the mix

One crossfader circuit needs 168 bytes of RAM.

DROIDmanual for blue-1 91 Table of contents at page 2

9.15 cvlooper – Clocked CV looper

This circuit is a very easy to use CV looper. It records an
incoming CV (and optionally a gate as well) on a virtual
tape loop with a resolution of one sample per ms. The
length of this tape is eight seconds. If you need a longer
loop time, you can reduce the tape speed. At a speed of
0.5 you have a maximum loop time of 16 seconds and a
resolution of one sample per 2ms (which is still pretty de-
cent for most applications).

This looper is meant to be playable in a live situation as
easily as possible. For that purpose it does not imple-
ment the typical loop start→ loop stop scheme – which
requires the musician to know beforehand that she will
start a loop. Instead the looper is always recording. The
loop length is specified in clock ticks. And as soon as the
looping is activated, the previous x clock ticks of CV in-
formation will be repeated over and over.

Here is an example for a simple looper for oneCVwithout
a gate:

[button]
button = B1.1
led = L1.1

[cvlooper]
cvin = I1
clock = I8 # steady clock
cvout = O1
length = 16 # 16 clock ticks
loopswitch = L1.1

ThebuttonB1.1 is converted intoa togglebutton for acti-
vating the looping. The CV is read from I1 and comes out
at O1. As long as the loop switch is off the looper is in by-
pass mode and simply copies I1 to O1. At the sime time
it is always recording to its internal endless tape. When

the loop switch is switched on, the last 16 clock ticks of
CV information is looped to O1 and I1 is ignored.

Please note: for your convenience the exact time when
the loop switch is switched on is quantized to the nearest
clock tick – may it be in the future or past. This makes
playing exactly in time much easier.

The second example adds a gate signal – such as out-
put by a ribbon controller. The gate is running through
I2→O2.

[button]
button = B1.1
led = L1.1

[cvlooper]
cvin = I1
gatein = I2
clock = I8 # steady clock
cvout = O1
gateout = O2
length = 16 # 16 clock ticks
loopswitch = L1.1

Using a gate changes the behaviour of the CV looper. The
state of gatein (not the exact voltage) is being looped as
well. The CV is recorded to the tape only while the gate is
high.

Using a gate makes two additional features possible:

1. When overlay is on and the input gate is active,
the input CV will override that on the tape and in-
stead the source signal from cvin is bypassed to
the output. The tape’s content stays untouched.
This allows you to overlay the loop CV with your
own from time to time.

2. On the other hand, when overdub is on and the in-
putgate is active, the inputCVwill bewritten to the
tape and replaces the recorded CV at those places.
And it also will be routed to the output at the same
time.

Toggle buttons would fit nicely for these two functions.

Please note: you always need a clock! The CV looper is
useless without one. If you do not want to use an exter-
nal clock, you canmake use of the LFO circuit for creating
an internal clock.

What if you want to loop more than one CV? Just create
more cvlooper circuits – one for each CV. And control
them from the same set of buttons.

Changing the tape or clock speed

It is possible to change the tape speed on the fly in order
to slow down or speed up the recorded loop’s content. It
is important – however – to always change the tape speed
and clock speed at the same timeand in the samemanner.
Otherwise you will get stuttering effects. So if you dou-
ble the tapespeed you also need to double the frequency
of the clock.

Changing the length

Changing length parameter on the fly is supported and
just works. Remember: it does not set the length of the
tape loop but just the length of that part that is played
back. The recording is always done with the maximum
length. So if you increase the length while playing back
you will get access to the older parts of the CV history

DROIDmanual for blue-1 92 Table of contents at page 2

that way. Just don’t make the length longer than the ac-
tual tape (see below).

Limitations

Memory (RAM) is a valuable resource. The CV looper
limits itself to 8000 samples in order not to waste too
much memory and leave space for other circuits as well
(the Droid master has about 100.000 bytes of memory
and 8000 samples need 16.000 bytes). But if you want
to make longer loops, you can reduce the tape speed and
thus use less samples per second.

A second limitation is that the total loop length can be
128 clock ticks at most. If you need more ticks, you can
divide the input clock down, using clocktool:

[clocktool]
clock = G1
divide = 2
output = _LOOP_CLOCK

[cvlooper]
clock = _LOOP_CLOCK
cvin = I5
tapespeed = 0.2 # max loop five x longer
cvout = O5
length = 128 # = 256 original ticks
loopswitch = _SOME_BUTTON

DROIDmanual for blue-1 93 Table of contents at page 2

Input Type Default Description

cvin 0.0 Input CV that should be looped.

gatein 1 Optional input gate. If you do not patch something here, the gate is assumed to be always high.

clock Input clock. The clock is mandatory and is the base for the definition of the loop length. Also the loop switch is quan-
tized in time to the nearest clock.

reset A trigger here resets the playback head immediately to the start of the loop, if you are in playback mode.

length 1 2 3 16 Length of the loop in clock ticks. Example: You get a length of 16 ticks by patching the number 16 to length. If you
want to set the length bymeans of an external CV that would require 160 Volts. So you need tomultiply your input by
some useful number in that case.

tapespeed 1.0 Relative tape speed, where 1.0 is the normal speed. So a value of 0.5 slows down the speed thus increasing the effec-
tive tape length from 8 to 16 seconds while reducing the sampling rate from 1 ms to 2 ms per sample. Changing the
tape speed on the fly probably leads to interesting results.

loopswitch + Mandatory parameter: While the loop switch is off theCV looper simply sends all input CVand gate to their respective
outputs. At the same time CV and gate are also recorded to the tape. When the loop switch is on, the CV and gate are
being read from the tape, instead. The input CV and gate are now ignored.

pause off This is a binary input. If you send a high signal here, the looper pauses. This is only works in playback mode. The
current CV value is hold the entire time. This is not the same as bypass, since in bypass mode the original CV will
routed through.

overlay off Overlaying changes the behaviour while looping is active. If overlay is set to on, while the input gate is active the gate
and CV will be sent directly from the inputs rather than read from the tape.

overdub off Overdubbing also changes the behaviour during the looping: If it is active then while the input gate is high the input
gate and CV will be written to the tape – thus changing the loop on the fly.

bypass off Setting bypass to on copies the input CV and gate from their inputs to their outputs while keeping the loop’s content
untouched. This disabled the looping for the while, but you can get back to it later. Note: this is different from turning
off the loop switch, because then your tape’s content would be overwritten.

Output Type Description

cvout Output of the bypassed or looped CV

gateout Output of the bypassed or looped gate

DROIDmanual for blue-1 94 Table of contents at page 2

One cvlooper circuit needs 17508 bytes of RAM.

DROIDmanual for blue-1 95 Table of contents at page 2

9.16 dac – DA Converter with 12 bits

This circuit converts a binary representation of up to 12
bits into an output value in a given range. Consider the
following example:

[dac]
bit1 = I1
bit2 = I2
bit3 = I3
output = O1

In this example three bits are being used. Three bits can
represent a number from0 to 7. These aremapped to the
input range from 0 to 1 (or 0 V to 10 V) in the following
way:

bit1 bit2 bit3 bit value output

0 0 0 0 0.000

0 0 1 1 0.143

0 1 0 2 0.286

0 1 1 3 0.429

1 0 0 4 0.571

1 0 1 5 0.714

1 1 0 6 0.857

1 1 1 7 1.000

In other words: this circuit will convert three different
gate inputs into one analog output value. bit1 has the
most influence, but3 the least.

The normal output range is 0 to 1 (i.e. 10 V) per default,
but you can change that with the parameters minimum
and maximum. For example you could have the three bits
mapped to just the range of 0.1 to 0.5:

[dac]
bit1 = I1
bit2 = I2
bit3 = I3
minimum = 0.1 # 1V
maximum = 0.5 # 4V
output = O1

Now the table looks like this:

bit1 bit2 bit3 bit value output

0 0 0 0 0.100

0 0 1 1 0.157

0 1 0 2 0.214

0 1 1 3 0.271

1 0 0 4 0.329

1 0 1 5 0.386

1 1 0 6 0.443

1 1 1 7 0.500

If you use more of the bit-outputs you get more resolu-
tion. For example if you use bit1 ... bit8, the total range
will be divided into 256 possible output values. Themax-
imum is 12 bits. Since bit 1 is the most significant bit,
adding more and more bits will not change the influence
of the already used bits.

Please also have a look at the circuit adc (see page 44,
which does the exact opposite!

DROIDmanual for blue-1 96 Table of contents at page 2

Input Type Default Description

bit1 ... bit12 + The 12 bit input bits. bit1 is theMSB – themost significant bit. The LSB (least significant bit) is the highest input that
you actually patch.

minimum 0.0 This sets the lower bound of the output range, i.e. the value that the bit sequence 000000000000will produce.

maximum 1.0 This sets the upper bound of the output value, i.e. the value that the bit sequence 111111111111will produce.

Output Type Description

output Output signal.

One dac circuit needs 248 bytes of RAM.

DROIDmanual for blue-1 97 Table of contents at page 2

9.17 droid – General DROID controls

This circuit gives access to some general config- uration settings. It does not make sense to create more than one instance of this.

Input Type Default Description

ledbrightness 1.0 Let’s you dim all of the 24 LEDs of the master and the G8. This is mainly for those who think they are too bright. But
since this parameter can be CV-controlled, you could of course also do funny things with it. Beware: if you set this to
zero, the LEDs will be completely dark. This also includes possible error messages.

maxslope1 ... maxslope8 0.25 Sets a threshold for a voltage change between two samples until the internal logic of the outputs assumes that
this step is intentional and should not be smoothed out. A typical case where you do not want smoothing is the pitch
output of a sequencer.

Thedefault value is0.25. Avalueof0.0 turnsoff smoothingaltogether since the slightest voltage change is considered
an intentional jump.

lpfilter1 ... lpfilter8 0 1 0.25 Configures a digital low pass filter on the output in order to smooth out digital noise resulting from the ’s main
loop. This loop is running somewhere between 3 and 6 kHz – depending on the number of circuits you use.

Per default this filter is set to 0.25 – which means a mild filtering – thus still allowing fast and snappy envelopes and
other rapidly changing signals while filtering away most of the digital artefacts.

If you use an output for a slow envelope that is combined with an audio path in a way that you hear digital artifacts
then increase that value. This is e.g. the case if you modulate a VCA that in turn modulates a very low pitched audio
wave with very few harmonics (such as a sine or triangle wave).

Themaximum value of 1.0 leads to a very strong filtering – i.e. removing all fast transients. Snappy envelopes will be
smoothed out heavily. Square wave LFOs will be converted into lower level almost sine waves.

One droid circuit needs 288 bytes of RAM.

DROIDmanual for blue-1 98 Table of contents at page 2

9.18 euklid – Euclidean rhythm generator

This circuit creates trigger patterns according to thewell-
known Euclidean rhythms. The pattern is described by
three numbers:

• The number of steps in the pattern
• The number of beats in the pattern
• An offset for shifting the beats forward

The number of beats are distributed as evenly as possible
in the pattern – but of course are all placed precisely on
clock beats. Here are a few examples of various patterns:

length: 16, beats: 4, offset: 0
�
�

�
�

�
�

�
�

length: 16, beats: 5, offset: 0
�
�

�
�

�
�

�
�

�
�

length: 16, beats: 5, offset: 1
�
�

�
�

�
�

�
�

�
�

length: 16, beats: 11, offset: 0
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

length: 13, beats: 5, offset: 0
�
�

�
�

�
�

�
�

�
�

length: 13, beats: 5, offset: 1
�
�

�
�

�
�

�
�

�
�

length: 4, beats: 2, offset: 1
�
�

�
�

Here is an example without CV control:

[euklid]
clock = G1
reset = G2
length = 16
beats = 5
offset = 0
output = G3

Now let’s change that in order tomake the beats control-
lable by the pot P1.1. Please note how the pot range is
being changed from the default 0 … 1 to the necessary
1 … 16 by using a factor of 15 and an offset of 1:

[euklid]
clock = G1
reset = G2
length = 16
beats = P1.1 * 15 + 1
offset = 0
output = G3

By the way: Since the default for length is 16 and for
offset 0 you can drop those two lines if you like:

[euklid]
clock = G1
reset = G2
beats = P1.1 * 15 + 1
output = G3

Offbeats

The output offbeats does the exact opposite of
outputs: it triggers at those clock beats where output
does not. So at any given clock tick exactly either output
or offbeats triggers.

Gate length

The lengthof theoutput gate is the sameas that of the in-
put gate. Also the exact voltage from the input is copied
to the output while the current step is active.

DROIDmanual for blue-1 99 Table of contents at page 2

Input Type Default Description

clock + Patch a clock signal here. It does not need to be steady – even if this is the most usual application. Note: this input
is classified as a gate input, since the length of the gate is being preserved when forwarded to output and
offbeats.

reset A trigger here resets the pattern to the start

outputsignal + Usually on active steps euklid just lets the original input clock get through to the output. If this parameter is used, it
will be sent to the output on active steps instead. The easiest application is just setting it to 1. The output will then
become 1 the whole time while the current step is active. This is useful if you want to use euklid as modulation CV
rather than as trigger.

length 1 2 3 16 The length of a pattern. This is interpreted as an integer number, which must be greater than 0. If it is not then 1 is
assumed. If you CV control the length, use multiplication. The maximum accepted length is 64.

beats 1 2 3 5 Thenumberof activebeats that shouldbedistributedamongst thelength steps. If thatnumber is greater thanlength,
it is capped to that number.

offset 1 2 3 0 rotates or shifts the pattern by that number of steps. This number can be positive or negative.

Output Type Description

output Output of the beatss in the current pattner. The gate length is directly taken from the input clock – just as the voltage.

offbeats Here those impulses will be output where there is no beat in the pattern.

One euklid circuit needs 132 bytes of RAM.

DROIDmanual for blue-1 100 Table of contents at page 2

9.19 explin – Exponential to linear converter

This circuit converts an exponential input curve into a lin-
ear output curve. Image you have an analog envelope
outputting an exponential curve like the following one:

0 100 200 300 400 500
0

0.5

2

4

6

8

time(ms)

V
ol
ts

The curve starts at 8 V and reaches 0.5 V at about 500ms
later.

The following droid patch will convert this into a linear
curve:

[explin]
input = I1
output = O2
startvalue = 8V
endvalue = 0.5V

0 100 200 300 400 500
0

0.5

2

4

6

8

time(ms)

V
ol
ts

Input
Output

With the values startvalue and endvalue you config-
ure how this translation is scaled. The startvalue se-
lects the voltage where the exponential input curve and
the linear output curve should be the same. If the input is

an envelope voltage then startvaluewould be the start
or maximum voltage of that envelope.

A falling exponential curve will never reach 0 in theory.
So with endvalue you set a value (or voltage) in that you
consider the curve to be low enough to be inaudible. At
that voltage the linear output will exactly be zero. This
voltage can be used to control the slope of the linear out-
put curve. The following example shows how different
values of endvalue affect the output:

0 100 200 300 400 500

0.5
1
2

4

6

8

time(ms)

V
ol
ts

0.5V
1V
2V

Input Type Default Description

input 0.0 Patch an exponential envelope output or a similar signal here. This valuemust be positive or otherwise it will be set to
0.0.

startvalue 1.0 The assumedmaximum value of the input signal (the start voltage fromwhere it decays in an exponential way.

endvalue 0.01 The value at which it is assumed to be zero (at which the linear output will be set to zero. This value must be positive.
It is forced to be>= 0.001.

mix 0 1 1.0 Sets the mix between the “dry” and “wet” signal: At 0.0 the output is the same as the input. At 1.0 the output is the
linear curve. At a value in between it is some average. You are even allowed to used values> 1.0. A value of 2.0will
overcompensate and bend the curve beyond linearity into a curve somemodularists would call logarithmic.

DROIDmanual for blue-1 101 Table of contents at page 2

Output Type Description

output Here comes the resulting linear output

One explin circuit needs 84 bytes of RAM.

DROIDmanual for blue-1 102 Table of contents at page 2

9.20 firefacecontrol – Control a RME Fireface interface (experimental)

This experimental circuit allows you to control the most
import volumes and mixes of an RME Fireface audio in-
terface. It’s also a perfect match for the M4 motor fader
units.

Das Format für die Control-Change-Befehle ist: Bx yy zz
x =MIDI channel yy = control number zz = value Die erste
Reihe inTotalMixwird adressiert überMIDIKanäle 1bis 4,
Reihe 2 über Kanäle 5 bis 8 und Reihe 3 über Kanäle 9 bis
12. Benutzt werden 16 Controller-Nummern, und zwar
die Nummern 102 bis 117 (= hex 66 bis 75). Mit diesen
16 Controllern (= Fadern) und jeweils 4MIDI-Kanälen pro
Reihe lassen sich bis zu 64 Fader pro Reihe adressieren
(wie es bei der HDSPeMADI erforderlich ist)

Mapping der Outputs Beim Fireface UFX + (genauer
gesagt TotalMix)

Die Levels der Outputs (dritte Reihe im Totalmix) werden

angesprochen über die Channel 9, 10, 11 und 12 jeweils
über die CCs 102 bis 117. Das gibt dann 4mal 16 Kanäle,
also 64 Fader.

Hierbei gibt es eine interne festgelegte physikalische
Reihenfolge, welche *nicht* derjenigen in TotalMix
entspricht. Dort sind nämlich die Main- und Phoneout-
puts ausgeklinkt und erscheinen rechts. Die Stellen, an
denen sie sich eigentlich einreihen, sind imTotalmix nicht
ersichtlich.

Dann muss man wissen, dass bei der Zuordnung der CCs
zu den Fadern noch berücksichtigt wird, welche Fader
man im Totalmix ausgeblendet hat. Diese werden näm-
lich übersprungen!

Bei Stereogruppierungen ist dann jeweils ein CC zwar
belegt, aber sinnlos. Denn hier ist dann CC und CC+1
jeweils gleichberechtigt undmacht das gleiche. Also darf

man nur den ersten der beiden verwenden.

Wenn man also im Circuit 16 Outputs steuern kann, sind
das nicht unbedingt 16 Fader sondern genau gesagt 16
Monospuren, deren Fader man bewegen kann. Wenn
alle Stereo sind, wären das also letzlich nur 8 Fader. Wir
könnten vielleicht einen Sondermodus machen, wo
man das deklarieren kann oder so.

Beispiel:

Channel 9 102: AN1 103: AN2 104: AN3 105: AN4 106:
AN 5 107: AN 6 108: AN 7 109: AN 8 110: Phone 1 111:
(auch Phone 1, sinnlos) 112: Phone 2 113: (auch Phone 2,
sinnlos) 114: AES Left 115: AES Right 116: ADAT 1 117:
ADAT 2

Die Outputs Main und Phone spielen eine Sonderrolle.
Denn Main wird für Pre/Post-Fader gebraucht. Und
Phone, weil hier Pre/Post und auchMute nicht wirkt.

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

outputlevel1 ...
outputlevel16

0 1

mainoutput 1 2 3 1

DROIDmanual for blue-1 103 Table of contents at page 2

Input Type Default Description

phonesoutput1,
phonesoutput2

1 2 3

outputmix1in1 ...
outputmix1in16

0 1

outputmix2in1 ...
outputmix2in16

0 1

outputmix3in1 ...
outputmix3in16

0 1

outputmix4in1 ...
outputmix4in16

0 1

outputmix5in1 ...
outputmix5in16

0 1

outputmixjin1 ...
outputmixjin16

0 1

outputmix7in1 ...
outputmix7in16

0 1

outputmix8in1 ...
outputmix8in16

0 1

outputmix9in1 ...
outputmix9in16

0 1

outputmix10in1 ...
outputmix10in16

0 1

outputmix11in1 ...
outputmix11in16

0 1

outputmix12in1 ...
outputmix12in16

0 1

outputmix13in1 ...
outputmix13in16

0 1

outputmix14in1 ...
outputmix14in16

0 1

DROIDmanual for blue-1 104 Table of contents at page 2

Input Type Default Description

outputmix15in1 ...
outputmix15in16

0 1

outputmix16in1 ...
outputmix16in16

0 1

postfader1 ...
postfader16

pan1 ... pan16 0 1

unmute1 ... unmute16 0 1

update

One firefacecontrol circuit needs 5640 bytes of RAM.

DROIDmanual for blue-1 105 Table of contents at page 2

9.21 fold – CV folder – keep (pitch) CVwithin certain bounds

This circuit can keep an incoming CV within defined
bounds, but not by limiting to these bounds, but by fold-
ing it in case it exceeds these bounds.

Themain application is keeping thepitchof a voicewithin
a certain range by octaving it up and down when neces-
sary. Octaving keeps the actual note value. Here is an
example for that application:

[fold]
input = I1
output = O1
foldby = 1V # one octave
minimum = 1.2V
maximum = 2.5V

If the input value at I1 is going below 1.2 V, 1 V will be
added over and over until the output voltage is at least
1.2 V. So the upper example will convert as follows:

• 0.7 V→ 1.7 V
• 2.0 V→ 2.0 V
• -4.3 V→ 1.7 V
• 4.4 V→ 2.4 V

If you apply that to a bass voice, you make sure that it
never goes to lowor toohigh,which is helpful if that voice
is the result of a combinationof sequences, randomnum-
bers, transpositions and other funny generative ideas.

Note: If you do not specify minimum or maximum, no fold-
ingwill take place at that boundary. If you specify neither
of them, this circuit is completely useless.

Anomalies

Two anomalies can happen if the parameters are a bit
“crazy”. This first one happens, when the space between
minimum and maximum is less than one foldby. Consider
the following example:

[fold]
input = I1
output = O1
foldby = 1V
minimum = 1.1V
maximum = 1.3V

Now if the input voltage is e.g. 1.0 V, it will be folded up
to 2.0 V, which is then above the maximum range. But
it will stay there, since there is no way to fold it into the
range anyway.

The second anomaly is if minimum is greater than
maximum. Look:

[fold]
input = I1
output = O1
foldby = 1V
minimum = 2.5V
maximum = 1.5V

Here any voltage below 2.5 V will be folded up until it is
above that value. so 2.4 V will be folded to 3.4 V. Well,
you could also argue that because 2.4 V is also above the
maximumvalue it should get folded down instead. While
that is true, fold behaves asymmetrical here and gives
folding up the precedence.

But why would you set such strange parameters? Well,

because they can be CVs of course. Try the following
patch and send the output O1 to the pitch input of a voice:

[p2b8]
[p2b8]

[lfo]
hz = 2 * P1.1
triangle = _CV

[lfo]
hz = 2 * P1.2
triangle = _MIN

[lfo]
hz = 2 * P2.1
triangle = _MAX

[lfo]
hz = 2 * P2.2
triangle = _FOLDBY
level = 2V

[fold]
input = _CV
minimum = _MIN
maximum = _MAX
foldby = _FOLDBY
output = O1

[lfo]
rate = O1 * 0.2
hz = 110
output = O2

Here all four inputs are from slowly running LFOs and
funny things happen. Playwith the four pots and youwill
get all sorts of very interesting random patterns.

DROIDmanual for blue-1 106 Table of contents at page 2

Input Type Default Description

input 0.0 Input CV to be folded.

foldby 0.1 Amount to be added or substracted from the input CV if it is not within the allowed range. This CV must be positive.
If it is negative or zero, no folding will be done.

minimum + Lower bound of the allowed range. If unpatched, no lower bound will be applied.

maximum + Upper bound of the allowed range. If unpatched, no upper bound will be applied.

Output Type Description

output Folded output voltage

One fold circuit needs 84 bytes of RAM.

DROIDmanual for blue-1 107 Table of contents at page 2

9.22 fourstatebutton – Button switching through 4 states (OBSOLETE)

This circuit has been superseded by the new cir-
cuit button (see page 66). button can do all
fourstatebutton can do and much more. So
fourstatebuttonwill be removed soon.

This circuit converts one of the push buttons of your con-
trollers into abutton that switches throughup to four dif-
ferent states. This is very similar to togglebutton but
that supports just two states.

The LED will be off in state 1, 100% bright in state 4 and
somewhere in between in the other two states.

The use case is to have away tomanually switch through
three or four options. The following example implements
anoctave switch for aVCO.Thebutton stepsyou through
the sequence0→1→2→3→0octaves. Thepitch is be-

ing read from I1 and output again at O1 – possibly shifted
by up to 3 octaves (3 V).

[fourstatebutton]
button = B1.1
led = L1.1
value1 = I1 + 0V
value2 = I1 + 1V
value3 = I1 + 2V
value4 = I1 + 3V
output = O1

Of course the values need not be fixed values. The next
examples shows you a patch where the button is
used to cycle through four differentwave formsof anLFO
and send that to output O1:

[lfo]
hz = 2
square = _W1
triangle = _W2
sawtooth = _W3
sine = _W4

[fourstatebutton]
button = B1.1
led = L1.1
value1 = _W1
value2 = _W2
value3 = _W3
value4 = _W4
output = O1

Input Type Default Description

button The button.

reset A positive trigger here will reset the button to the first state.

value1 ... value4 The values that output should get when the four various states are active.

startvalue 1 2 3 By setting this to 0, 1, 2 or 3 you set the initial state of the button when the is powered up to state 1, 2, 3 or 4.
It also disabled the automatic saving of the button’s state in the ’s internal flash memory.

Output Type Description

output Depending on the current state of the button here the value of input1, input2, input3 or input4will be copied.

led 0 1 The LED in the button

One fourstatebutton circuit needs 140 bytes of RAM.

DROIDmanual for blue-1 108 Table of contents at page 2

9.23 lfo – Low frequency oscillator (LFO)

This circuit implements a very flexible low frequency os-
cillator (LFO) with seven different waveforms, each of
which is available at its own output as well as on a com-
mon output with waveform selection. It offers phase
modulation, a flexible sync mechanism, randomization
and other interesting features.

Please note also that this LFO is not intended to be used
at audio rate. It can probably operate until roughly 1000-
1500 Hz, but will sound ugly, distorted and with many
digital artefacts – especially the waveforms with steep
edges like square, ramp and sawtooth. If that’s exactly
what you intend, then maybe you will have fun anyway.

Waveforms

Here is the simplest possible patch. In this example the
frequency is specified in Hertz (cycles per seconds) and
the triangle output is routed directly to O1:

[lfo]
hz = 4
triangle = O1

The resulting output looks like this:

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

This is how the sawtooth output looks like:

[lfo]
hz = 4
sawtooth = O1

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

The ramp is similar but falling instead of rising:

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

The waveforms sine and cosine are similar but are one
quarter cycle (90°) apart:

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

paraboloid is very similar to sine, but is constructed
based on quadratic equations (which is faster):

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

Maybe the simplest waveform is square:

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

Bipolar output, Level and Offset

Please note that the LFO outputs just positive voltage
ranges until you set bipolar = on. That extends the
waveform to negative voltages (while doubling the peak-
to-peak voltage):

[lfo]
hz = 4
bipolar = on
triangle = O1

DROIDmanual for blue-1 109 Table of contents at page 2

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

time(sec)

V
ol
ts

The inputs level and offset can be used to control the
voltage range of the outputs – which is here for your con-
venience and avoids the need for additional circuits for
doing this. The following example outputs a sine wave at
5Hz toO4 that is gently oscillatingbetween2Vand3.5V:

[lfo]
hz = 5
level = 1.5V
offset = 2V
sine = O4

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

time(sec)

V
ol
ts

Frequency control

The frequency of the LFO can be controlled in various
ways. In the upper examples we used the input hz. Here
you specify the frequency of the LFO directly in Hz. This
is ideal when you want to set a fixed frequency with a
discrete number, rather than a control voltage. Here is a
rectangle LFO running at 1.5 cycles per second (90 BPM):

[lfo]
hz = 1.5
rectangle = O3

A more eurorack-like way is using the rate input, which
worksona1V / octave scheme. One “octave” heremeans
that the frequency doubles. Here is an example for creat-
ing a triangle LFO running at 4 Hz, since 2 V doubles the
base frequency of 1Hz two times (insteadof 2V you could
also write 0.2):

[lfo]
rate = 2V
bipolar = on
triangle = O1

The third way is to use tap tempo by sending a steady
clock into taptempo. The LFO than mimics the speed of
that input clock. This can even be combined with rate:
If you use both, then first taptempo is being used to set
the speed and then rate is used for altering that speed.
So sending -1 V into rate will create an LFO running at
half clock speed (since -1 V pitches down the LFO by one
octave).

[lfo]
taptempo = G1 # steady clock here
rate = -1V # run at half clock speed
sawtooth = O2

Randomization

Randomization is an experimental new feature that com-
bines random voltages with an LFO. If you turn this pa-
rameter up, then for each “hill” of the output waveform
has a different height. The parameter randomize con-
trols how strong that effect is. With 0.0 randomization
is turned off. At 1.0 it is at its strongest and the random
level of each hill is in the range 0.0 … 1.0.

Here is an example of a randomized sine wave:

[lfo]
hz = 0.5
randomize = 0.8
sine = O1

Theoriginalwave if printed lightand theand the random-
ized wave at output O1 ismagenta:

0 1 2 3 4 5 6
0

5

10

time(sec)

V
ol
ts

Pleasenote: If you turnbipolaron, thena “hill” is consid-
ered to be something above or below the zero line. That
means that now the sinewavehas twice asmuchhills and
the randomization works different. Here is an example
patch:

[lfo]
hz = 0.5
randomize = 0.8
sine = O1
bipolar = 1

DROIDmanual for blue-1 110 Table of contents at page 2

And this is how the output looks like:

0 1 2 3 4 5 6
−10

−5

0

5

10

time(sec)

V
ol
ts

Note: Since not all waveform have there “hills” at the
same place and the start and end of a hill might even
be affected by skew or pulsewidth, each waveform out-
put has its own independent randomization. Therefore
cosine is not the phase shifted output of sine anymore,
if you use randomization.

Wave form selection andmorphing

As an alternative to the seven indiviual waveform out-
puts there is a common output simply called output. The
waveform can be selected with the input waveform and
defaults to 0, which means square wave. So for a simple
clock you can write:

[lfo]
hz = 2
output = G1

A triangle wave is selected with the code 2:

[lfo]
hz = 2

output = G1
waveform = 2

Here is the complete list of available waveforms:

0 square

1 sawtooth

2 triangle

3 ramp

4 paraboloid

5 sine

6 cosine

It is allowed to use non-integer values, like 0.5. This
will create a mixture between two adjacent waveforms
– while respecting the ratio. For example 2.1 will select
90% triangle and 10% ramp. That way you can smoothly
morph through the available waveforms. Here is an ex-
ample. Let’s start with waveform = 0.0, which gives a
plain square wave:

[lfo]
hz = 4
output = O1
waveform = 0.0

And this is what it looks like:

0 1 2 3 4
0

5

10

time(sec)

V
ol
ts

At 1.0we get a saw tooth:

[lfo]
hz = 4
output = O1
waveform = 1.0

0 1 2 3 4
0

5

10

time(sec)

V
ol
ts

And in between – at 0.5 – we get somemixture:

[lfo]
hz = 4
output = O1
waveform = 0.5

0 1 2 3 4
0

5

10

time(sec)

V
ol
ts

DROIDmanual for blue-1 111 Table of contents at page 2

Input Type Default Description

rate 0.0 Frequency control: The default frequency of the LFO is 1 Hz (one cycle per second or 60 BPM if you like). Each volt
doubles the frequency. So an input of 1 V (a number of 0.1) speeds up the LFO to 2Hz (120 BPM), 2 V (0.2) create 4Hz
(240 BPM) and so on. On the other hand negative voltages reduce the speed, so -1 V (-0.1) will give 0.5 Hz (30 BPM)
and so on.

taptempo Feed a steady clock here and the LFO will run at the speed of that clock – albeit optionally modified by rate.

hz 1.0 Set the frequency in Hz directly by setting a number here. Note: you cannot use hz at that same time as taptempo.
But both can be combined with rate.

level 1.0 The maximum positive output level of the LFO. The default of 1.0means a swing between 0 V and 10 V – unless you
enable bipolar, in which case it moves from -10 V to 10 V.

randomize 0 1 0.0 Randomization is an experimental new feature that combines randomvoltageswith an LFO. If you turn this parameter
up, then for each hill of the LFO’s waveform output a new random attenuation is being chosen andmultiplied with the
current level. The result is an output, where each cycle of the waveform has a different level.

offset 0.0 The output of the LFO is shifted by that voltage right before the output. This is the same as adding or mixing a fixed
voltage to the output. Not very fancy, but practical if you want to output amodulation voltage within a certain range.

bipolar 0 If this switch is set to on, then the LFO will output a full swing from -level to +level. When set to off it will swing
between 0V and +level.

phase 0 1 0.0 Shift the LFOs phase by this value. A value of 0.0 leaves the LFO run in its normal phase. 0.5will shift bei 180◦. And
1.0will shift by a complete phase of 360◦, which is the same as 0.0.

pulsewidth 0.50 1 0.5 This sets the pulse width of the square LFO and only affects the output square. It ranges from 0.0 to 1.0. Please note
that als pulse width of exactly 0.0 or 1.0 will make the output stick to the lower or upper level.

skew 0.50 1 0.5 Modifies the symmetry of the triangle output by shifting the “peak” of the triangle left and right. The default of 0.5
creates a symmetric waveform. Smaller values speed up the rising part of the triangle and create more and more a
ramp likewaveformuntil a skew of 0.0 creates an exact ramp – just the same as the ramp output. A skewof 1.0 create
a sawtooth waveform.

sync A positive trigger edge at this input will reset the LFO. It will force to restart the waveform at its “beginning”. By using
the input syncphase you can change that behaviour.

syncphase 0 1 0.0 This input changes the behaviour of the sync input. I changes the phase the waveform restarts at when it receives a
sync trigger. E.g. by setting this to 0.5 a sync triggerwill restart thewaveform right at itsmiddle. This is an interesting
feature that cannot be found in analog LFOs since it would be very hard to build in actual circuits.

DROIDmanual for blue-1 112 Table of contents at page 2

Input Type Default Description

waveform 0.0 If youuseoutput – rather than the individualwaveformoutputs likesquare, sawand soon– this input selects theWave
form. An integer number from 0 to 6 selects one of the seven available waveforms. Any number in between selects a
mixture of the two neighboring waveforms. That way you can smoothly morph through all the available waveforms.
The codes for the waveforms are:

0 square 1 sawtooth 2 triangle 3 ramp 4 paraboloid 5 sine 6 cosine

Output Type Description

output Main output of the LFO.

square A square waveform –modified by pulsewidth.

sawtooth Outputs a sawtooth waveform – i.e. a rising ramp

triangle Outputs a triangle waveform –modified by skew.

ramp Outputs a falling ramp – like a sawtooth that is mirrored. Note: if the LFO is set to bipolar then this is the negation of
sawtooth. If it is set to unipolar then this is not the case. The waveform will be positive then!

paraboloid Anexperimentalwaveform that looks very similar to a sinewavebut is derived froma triangle by computing the square
of each waypoint’s distance to level.

sine A sine waveform.

cosine A sine waveform shifted by 90◦. This output is for your convenience and avoids needing two LFO circuits in cases
where you want to make quadrature applications. Please note that 180◦ and 270◦ can easily be achieved by negating
the outputs sine and cosine at a later stage.

One lfo circuit needs 428 bytes of RAM.

DROIDmanual for blue-1 113 Table of contents at page 2

9.24 logic – Logic operations utility

Utility circuit for logic operations on gate signals. It can
do operations like AND, OR, NAND, NOR, etc.

Basic operation

In this example we do an and operation. O1will output 1
(on) if all of I1, I2 and I3 see on (voltage above 1 V):

[logic]
input1 = I1
input2 = I2
input3 = I3
and = O1

Here is how to do a logic negate of a signal:

[logic]
input = I1
negated = O1

If you do not like the 1 V threshold, you can change it:

[logic]
input = I1
negated = O1
threshold = 5V

Doing logic without this circuit

Please note, that many times when you think you need
the logic circuit you can do the same much simpler. Here
is an example, where you use a toggle button to switch

on a clock send output O1. The idea is to make an AND
combination of the clock signal and the button state:

[button]
button = B1.1
led = L1.1

[lfo]
hz = 2
square = _LFO

[logic]
input1 = L1.1
input2 = _LFO
and = O1

While thisworksprettywell, here is a solution thatmakes
use of the fact, that themultiplication of two gate signals
is in fact a kind of AND combination, sinceA × B is just
1, ifA andB are 1 and 0 otherwise:

[button]
button = B1.1
led = L1.1

[lfo]
hz = 2
square = _LFO

[copy]
input = _LFO * L1.1
output = O1

You even can avoid the Copy-circuit if you make use of
the level input of the LFO, since setting the level to 0
disables it:

[button]
button = B1.1
led = L1.1

[lfo]
hz = 2
square = _LFO
level = L1.1

DROIDmanual for blue-1 114 Table of contents at page 2

Another nice solution is to make use of offvalue and
onvalue of the button circuit. offvalue is 0 per default,
so we just need to define onvalue:

[lfo]
hz = 2
square = _LFO

[button]
button = B1.1
led = L1.1
onvalue = _LFO

If youneed to combine twogates in order to create a com-
mon gate pattern, you can use addition – which is very
similar to a logic OR combination. The following exam-
ple creates two overlayed euclidean rhythms:

[euklid]
length = 16
beats = 3
output = _E1

[euklid]
length = 13
beats = 2
output = _E2

[copy]
input = _E1 + _E2
output = O1

Note: When both _E1 and _E2 are 1 at the same time, the
sum is 2, of course. This does not matter, since the out-
put voltage is capped at 10 V (1.0) anyway.

DROIDmanual for blue-1 115 Table of contents at page 2

Input Type Default Description

input1 ... input8 + 1st ... 8th input. Note: this input is declared as a gate input, but in fact you can use it as a CV input in combi-
nation with various or random values set for the threshold.

threshold 0.1 Input values at, or above this threshold value, are considered high or on. The default is 0.1 which corresponds to an
input voltage of 1 V. You can get interesting results when both the inputs are variable CVs (like from LFOs) and this
threshold is being modulated as well.

lowvalue 0.0 Output value that is output for logic low, false or off.

highvalue 1.0 Output value that is output for a logic high, true or on.

countvalue 0.1 Value added to the count output for each input with a high level

Output Type Description

and A logic AND operation on all patched inputs: This output is set to highvalue if all inputs are high (i.e. at least
threshold), else lowvalue

or A logic OR operation on all patched inputs: This output is set to highvalue if at least one of the inputs is high

xor Exclusive OR: This is high, if the number of high inputs is odd! Thismeans that any change in one of the inputs will also
change the output.

nand Like AND but the outcome is negated.

nor Like OR but the outcome is negated.

negated Logical negate of input1 (which can abbreviated as input). Note: The inputs input2 ... input7 are ignored here.
Another note: If you use input1 anyway, negated always outputs exactly the same as nand and nor. It’s just more
convenient to write and easier to understand. Hence a dedicated output for a logic negate.

count 1 2 3 Adds countvalue to this output for each input that is high.

countlow Adds countvalue to this output for each input that is low.

One logic circuit needs 240 bytes of RAM.

DROIDmanual for blue-1 116 Table of contents at page 2

9.25 math – Math utility circuit

This circuit provides mathematic operations. Some of
these use input1 and input2 – such as sum or product.
Other ones just use input1 (which can be abbreviated as
input) – such as negation or reciprocal.

Example for computing the quotient I1I2 :

[math]

input1 = I1
input2 = I2
quotient = O1

Example for computing the square root of I1:

[math]
input = I1

root = O1

Note: As long as you do not send a value directly to an
output like O1, the range of the value is not limited by this
circuit. You can generate almost arbitrary small or large
positive and negative numbers. When you send a value
to an output, it will be truncated into the range -1 ... +1
(which corresonds to -10 V ... +10 V).

Input Type Default Description

input1, input2 The two inputs

Output Type Description

sum input1+ input2

difference input1− input2

product input1× input2

quotient input1 / input2. If input2 is zero, a very large number will be returned, while the correct sign is being kept. This is
mathematically not correct but more useful than any other possible result.

modulo input1modulo input2. This needs some explanation: With this operation you can “fold” the value from input1 into
the range 0 ... input2. For example if input2 is 1 V, the output will convert 1.234 V to 0.234 V, -2.1 V to 0.9 V and
0.5 V to 0.5 V. If input2 is zero or negative, the output will be zero.

power input1 to the power of input2. Please note that the power has several cases where it is not defined when either the
base or the exponent is zero or less than zero. In order to be as useful for yourmusicmaking as possible the math circuit
behaves in the following way:

• If input1 < 0, input2 is rounded to the nearest integer.
• If input1 = 0 and input2 < 0, a very large number is output.

average The average of input1 and input2

DROIDmanual for blue-1 117 Table of contents at page 2

Output Type Description

maximum The maximum of input1 and input2

minimum The minimum of input1 and input2

negation −input1

reciprocal 1 / input1. If input1 is zero, a very large number is being output, while the sign is being kept.

amount The absolute value of input1 (i.e. −input1 if input1 < 0, else input1)

sine The sine of input1 in away, the input range of 0.0 … 1.0 goes exactly through onewave cycle. Ormoremathematically
expressed: sin(2π × input1).

cosine The cosine of input1 in a way, the input range of 0.0 … 1.0 goes exactly through one wave cycle. Or more mathemat-
ically expressed: cos(2π × input1).

square input12

root
√
input1. Please note that you cannot compute the square root of a negative number. In order to output something

useful anyway, the result will be−
√
−input1, if input1 < 0.

logarithm Thenatural logarithmofinput1: lninput1. The logarithm isonlydefined forpositivenumbers. mathcircuitbehaves
like this:

• If input1 = 0, a negative very large number is output.
• If input2 < 0,−ln −input1 is output.

round The integer number nearest to input1

floor The largest integer number that is not greater than input1

ceil The smallest integer number that is not less than input1

One math circuit needs 128 bytes of RAM.

DROIDmanual for blue-1 118 Table of contents at page 2

9.26 matrixmixer – Matrixmixer for CVs

This circuit is a 4×4 matrix mixer with four inputs and
four outputs that is operated by push buttons. Each of
the 16matrix nodes has a toggle button for adding or re-
moving one specific input to or from one specific output.
The mixing is always done with unity gain. This means
that each output is the sum of all inputs that are enabled
on its path.

The following picture shows amatrixwith the four inputs
I1 … I4 and the four outputs O1 … O4. As you can see the
button 23 mixes input 2 to output 3.

If youhavenotpushedanybuttonsyet, themixer enables
four buttons in a diagonal so that inputs I1 is connected
to output O1 and so on:

I1 11 12 13 14

I2 21 22 23 24

I3 31 32 33 34

I4 41 42 43 44

O1 O2 O3 O4

As an alternative operation, instead of summing the en-

abled signals you can compute themaximum signal. This
is usefulwhencombiningenvelope signals – e.g. fromdif-
ferent rhythmic patterns. Adding envelope signalswould
either make them “too loud” or even distort them.

The current state of the sixteen buttons is saved in the
’s internal flash memory.

Of course it is possible to use a less part of the matrix,
e.g. just 3×2, simply by not patching the according in-
puts, outputs and buttons. Here is an example of a 3×2
mixer:

[matrixmixer]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
button11 = B1.1
button12 = B1.2
button21 = B2.1
button22 = B1.3
button31 = B1.4
button32 = B2.3
led11 = L1.1
led12 = L1.2
led21 = L2.1
led22 = L1.3
led31 = L1.4
led32 = L2.3

This matrix looks like this:

I1 11 12

I2 21 22

I3 31 32

O1 O2

DROIDmanual for blue-1 119 Table of contents at page 2

Mixers withmore inputs / outputs

The four auxiliary inputs auxin1… auxin4 can be used to
creatematrixmixerswithmore than four inputs. You can

create amixer with 8 inputs and 4 outputs by sending the
four outputs of one matrix mixer into the four auxiliary
inputs of a second one.

If you want to create a mixer with more than 4 outputs
then simply use several mixers and feed the same inputs
to all of them.

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

input1 ... input4 0.0 The up to four CV inputs that you want to mix

auxin1 ... auxin4 Theseauxiliary inputswill bemixeddirectly into the fouroutputsoutput1…output4andareused for cascading several
matrix mixers into one with more than four inputs.

mixmax 0 1 0.0 If this is 0.0, normalmixing is done (the enabled inputs CVswill be added). At a value of 1.0 instead each outputs is the
maximum of the enabled inputs. Any number in between will create a weighted average between these two values.

button11 ... button14 These four buttons decide, to which of the four outputs input1 is being mixed.

button21 ... button24 These four buttons decide, to which of the four outputs input2 is being mixed.

button31 ... button34 These four buttons decide, to which of the four outputs input3 is being mixed.

button41 ... button44 These four buttons decide, to which of the four outputs input4 is being mixed.

Output Type Description

output1 ... output4 The four outputs

led11 ... led14 0 1 The LEDs in the buttons button11 …button14

led21 ... led24 0 1 The LEDs in the buttons button21 …button24

led31 ... led34 0 1 The LEDs in the buttons button31 …button34

DROIDmanual for blue-1 120 Table of contents at page 2

Output Type Description

led41 ... led44 0 1 The LEDs in the buttons button41 …button44

One matrixmixer circuit needs 544 bytes of RAM.

DROIDmanual for blue-1 121 Table of contents at page 2

9.27 midifileplayer – MIDI file player

Introduction

This circuit can read MIDI files from your Micro SD card
and “play” themby creating accordingCVs for gate, pitch,
velocity, pitch bend and other outputs, which you can
then route to synth voices in your modular – or do other
crazy stuff with that information.

MIDI files are organized in tracks. Each circuit of this type
can play just one track at a time. If youwant to playmore
tracks, use more midifileplayer circuits in parallel.

Just asMIDI streams,MIDI files contain channel informa-
tion for each note and each controller event. These chan-
nels are currently completely ignored. If you think you
can convinceme that this is bad and that you have a use-
ful interpretation of the channels within the scope of the
MIDI file player, please let me know.

Some limitations of the current implementation are:

• Just one track can be played at a time.
• The maximum length of a track is 6000 bytes.
Longer tracks cannot be loaded. Sorry. But this
is quite long and is enough for approximately 1500
note events. Note: The size of the total file can be
as large as you like.

• The channel information is ignored.
• Some meta events such as program change, all
notes off, etc. are not yet recognized. Many of
them just make sense in MIDI streams, not in files,
anyway.

Features of the current implementation:

• Up to eight voices in parallel with flexible voice al-
location algorithms

• Support for velocity, pitch bend, mod wheel, and
global volume

• You canoutput theoriginalMIDI clock fromthefile.
• You can adjust the tempo continuously.
• You can use external clocking (ignoring the tempo
of the file).

Getting started

Here is the simplest possible example: Copy your MIDI
file to the SD card and name it midi1.mid. And here is
the patch that plays the first track with a single voice:

[midifileplayer]
pitch = O1
gate = O2

Now patch O1 to the 1V/Oct of a synth voice and O2 to its
gate. This voice should then play the notes from the first
track of the file.

The playback starts immediately when the DROID starts.
Per default the track is looped. You can restart the play-
back with the reset input. And the other way round:
you get a trigger at endoftrackwhen the playback of the
track has finished.

Selecting file and track

You can have more than one MIDI file on your SD card.
The MIDI files on the card must be named midi1.mid,
midi2.mid, and so on. Gaps are allowed. You can have
up to 9999 MIDI files that way. The last one would have

the name midi9999.mid. Don’t use leading zeroes! The
file midi0001.mid cannot be played!

You can then select one of these files with the file pa-
rameter, so e.g. file = 17 would play midi17.mid. If
you omit that, midi1.midwill be played. If no such file is
present on the card, nothing will be played.

A MIDI file can contain several tracks. The track pa-
rameter specifies the number of the track in the file you
want to play. Hereby only the non-empty tracks will be
counted. This is important since many MIDI files have
tracks that just contain meta information and no note
events.

If you omit the track number, the first non-empty track
will be played. If your track number is out of range, the
last track in the file will be selected.

The parameters file and track are – of course – CV con-
trollable. So you can switch between files and tracks by
means of buttons, switches, external CV, you name it.
Whenever the file or track changes, loads the se-
lected track from the SD card into its memory. This is
also the casewhen the starts. Also a track change
restarts playback.

Note: loading a track from the SD card might take a cou-
ple of milliseconds. During that time won’t run
as usual. All inputs will be ignored and all outputs freeze.
So switching at a high rate might lead to unexpected re-
sults. If you need to have a playback started in perfect
timing, use the reset input as an exact trigger. If you do
not want to use a trigger but rather a play/stop gate, you
can use the speed input for that. Setting the speed to 0
stops playback and 1 starts it immediately.

DROIDmanual for blue-1 122 Table of contents at page 2

Polyphonic tracks

MIDI streams and files consist of note on and note off
events. So there is no length parameter in a note. It just
contains the note number (in semitones) and a velocity.
If the track contains situations where a new note starts
while another one is still on, the track is polyphonic, as
you need more than one synth voice to play correctly.

TheMIDIfileplayer allowsyou todefineup to eightvoices
for playing notes. Each voice consists of a pitchX and
a gateX output (and an optional velocityX output).
By patching these outputs the player knows how many
voices are available.

If the number of simultaneous notes exceeds the number
of attached voices, some notes have to be cut off or com-
pletely omitted. You can flexibly change the behaviour
in such a situation. See the description of the parameter
dropnotes For details.

Here is an example for playing with up to three voices:

[midifileplayer]
file = 2
track = 1
pitch1 = O1
pitch2 = O2
pitch3 = O3
gate1 = G1
gate2 = G2
gate3 = G3

Speed and Clocking

AMIDI file contains absolute timing information of when
to exactly play which note. For that purpose every note
event in the file has a relative time stamp, measured in

ticks. The player honors this information and plays the
tracks exactly in their original speed... unless... you
change it of course.

To do so you have two options. The first one is the speed
parameter. At 1.0 you get the original playing speed. 0.5
will play at half the speed and 2.0 at the double speed.
This can be mapped to a pot, of course (here I chose a
range from 0 to 2):

[midifileplayer]
pitch = O1
gate = O2
speed = P1.1 * 2

Turning the pot totally CCW will completely freeze the
playback.

If youneed the internal clockof theMIDI player inorder to
synchronize with the rest of your patch, you can get two
clocks running at different resolutions at the two outputs
clockout and midiclock. See their descriptions below
for details.

The second option is clocking the player externally. In
that case the tempo information from the MIDI file is ig-
nored. External clocking allows you to synchronize the
MIDI playback with the rest of your patch, which may
contain additional sequencers and stuff. Patch your ex-
ternal clock into theclock input. Eachclockwill thenplay
a 16th note’s time equivalent of content:

[midifileplayer]
pitch = O1
gate = O2
clock = G1

Note: this does notmean that the notes are quantized to
16th notes. You still have the complete resolution.

Other controls and parameters

MIDI files may contain information about pitch bend, a
global volume (CC 7), the mod wheel (CC 1) and velocity
(per note). These are all available as CV outputs. See the
table of outputs for details. Most other CCs are currently
not available since they are very rarely used in MIDI files.
Future versions of the MIDI file player might give access
to these.

Error handling

Whenworkingwithfiles, errors can happen. TheMIDI file
might be missing, corrupted, whatever. In order to make
life easier for you, the MIDI file player can show you an
error status at the output error. Write the error to an R
register that is free, that will make one of the LEDs lit up
and show an error color.

The following patch shows the errors at the LED of input
1:

[midifileplayer]
pitch = O1
gate = O2
error = R1

Please see the table of outputs below for the various er-
rors and their color codes.

DROIDmanual for blue-1 123 Table of contents at page 2

Input Type Default Description

channel 1 2 3 + Only execute / play commands from a certain MIDI channel. There are 16MIDI channels. It ranges from 1 to 16.

tuningmode off If set to 1, all pitch outputs will go to the CV selected for tuningpitch (which defaults to 2 V), and all gate outputs will
play gates at 120 BPM. This helps getting all attached voices tuned when working with many voices.

tuningpitch
�
� 1V

Oct 2V This pitch CV will be output while the tuning mode is active.

transpose
�
� 1V

Oct 0V Transposes all output pitches by this value by adding the value. So in order to transpose one octave down, set this
input to -1V or -0.1. Changes in the transposition are immediately reflected, even for currently already active notes.

holdvelocity 0 If this is set to 1, the velocity output for a voicewill not be affected by note off events. It’s just altered at the beginning
of new notes. The velocity is kept after the note ends. This way during the release phase of an envelope triggered by
the gate, the original velocity still lasts on. Inmost cases the note off velocity is set to 0, whichwould immediately cut
off the release phase when the velocity is patched into a VCA.

pitchbendrange
�
� 1V

Oct
1
6V Sets the value to the desired maximum that pitchbend should output, and likewise it’s negative counterpart at its

minimum value. At the middle position it always outputs 0. This defaults to 2
12 V, which corresponds to one whole

tone. Note: setting this to a negative value is allowed and will invert pitch bend.

bendpitch 1 When set to 1 (which is the default), the pitch bend will directly be applied to all output pitches. Alternatively you can
set it to 0 and use the output pitchbend, for using it elsewhere.

roundrobin 0 Normallywhen looking for a free output for playing the next note, this circuitwill start from output1 in its search. This
way, if there are not more notes than outputs at any time, the notes played first will always be played at the lowest
numbered outputs. This leads to a deterministic behaviour when it comes to playing things like chords. The same
voice will always be used for the first note in the stream of MIDI events.

When you switch roundrobin to 1, this changes. Now the outputs are scanned in a round-robin fashion, like in a
rotating switch. That way every output has the same chance to get a new note. Here it can evenmake sense to define
multiple voices even if the track ismonophone. When you use envelopes with longer release times, you can transform
such a melody into chords with simultaneous notes.

Note: When all outputs are currently used by a note, roundrobin has no influence. Here voiceallocation selects
which of the notes will be dropped.

DROIDmanual for blue-1 124 Table of contents at page 2

Input Type Default Description

voiceallocation 1 2 3 0 When the MIDI stream, at any given time, needs to play more notes than you have voices assigned, normally the
“oldest” notes would be cancelled. This behaviour can be configured here by setting voiceallocation to one of the
following values:

0 The oldest note will be cancelled (default)

1 The new note will not be played and simply be omitted

2 The lowest note will be cancelled

3 The highest note will be cancelled

notegap 0.0 When your MIDI devices plays a note so “long” that it lasts exactly until the next note begins – or if due to a lack of
used pitch outputs one currently played note has to be replaced with a new one, the gate output will have no time to
go low for a sufficient time between the two notes. In effect it won’t trigger any envelope for the new note but will do
a “legato”.

If you don’t like this, you can use notegap. This input specifies a number ofmilliseconds that the gate will be forced
down before the new note begins. This has the drawback of introducing some latency, of course! So I suggest that you
start with notegap = 1 and then check out if your envelope is fast enough to trigger. If not, increase the value.

If you are using ’s own contour circuit or trigger something else internally in your patch, you can use notegap
= 0.1. That is sufficient and introduces barely any latency. Just a value of 0.0 keeps the default of the legato mode.

Note: the notegap parameter does not affect the trigger outputs.

ccnumber1 ... ccnumber4 1 2 3 0 You can listen to up to four CCs (control changes). For example if you are interested in the current value of CC#17, set
ccnumber1 = 17 and use the output cc1 for getting the value of CC 17.

lowestnote 1 2 3 0 With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.

highestnote 1 2 3 127 Sets an upper limit to the note being played, similar to lowestnote. The “Notegates” are not being affected by this
bound.

note1 ... note16 1 2 3 + Selects up to 16 individual notes for which you can get a dedicated gate signal. Per default these values are set to
0 for note1 (meaning C-2), 1 for note2 (meaning C-2) and so on. For each of these notes you get a corresponding
gate output (see notegate1, notegate2, etc.). These gates are high as long as the selected notes are being hold.
One application is to use just one midifileplayer or midiin circuit for sequencing up to 16 drum voices. Another
application is to use a MIDI keyboard or controller as a button expander – just like a P2B8 or B32.

DROIDmanual for blue-1 125 Table of contents at page 2

Input Type Default Description

file 1 2 3 1 Number of the MIDI file to play. 7will select midi7.mid.

track 1 2 3 1 Number of the track in the file to play, starting at 1. Empty tracks do not count. Any number smaller than 1 will be
interpreted as one. If the number is too big, the last track in the file is played.

clock Patch an external clock here and the MIDI file will be played according to that clock. In order to be modular-friendly,
this is not a MIDI clock but one counting the sixteenth, which is typically the step resolution of analog sequencers.
This clock is then internallymultiplied in order to create the necessary resolution. Note: The input speed has no effect
when using an external clock.

reset A trigger here sets the play back position to the start.

loop 1 When loopmode is active (set to 1), the track will start over again immediately when it has reached its end. This is the
default. Otherwise playback stops at the end of the track.

end 1 2 3 + If you set this value, it defines the playing end of the track. This is set in quarters as counted from the start. Setting
the end beyond the end of the track will insert some pause.

speed 1.0 Change the relative speed of the playback with this setting. At 1 the speed is unchanged. 1.5makes the speed 50%
faster, 0.5 plays at half speed. At 0 the playing is completely frozen. Note: speed is being ignored when using the
input clock.

Output Type Description

pitch1 ... pitch8
�
� 1V

Oct Pitch outputs. Since MIDI tracks can be polyphonic – i.e. play several notes at the same time – you can assign up to
eight outputs here. The notes will be distributed to the defined outputs according to the settings roundrobin and
voiceallocation.

velocity1 ... velocity8 0 1 For each voice there is an optional velocity output, which translates the MIDI velocity into values from 0 to 1.

pressure1 ... pressure8 0 1 MIDI provides two different messages for sending ”after-touch” information, i.e. information about how strong a
key is pressed down after the initial hit. Some keyboards just have one pressure sensor in total and send the current
maximum pressure information of all keys in one message (“channel pressure”). Others have one pressure sensor per
key and send “polyphonic key pressure” messages. This circuit maps both to a pressure output per note that is being
played. So if your keyboard (or sequencer or DAW or whatever) sends polyphonic key pressure events and you use
multiple pitchX outputs, wire the individual pressureX outputs to wherever you like. Otherwise you can simply use
pressure1 for all notes (which can be abbreviated with pressure), since it is the same for all note outputs anyway.
pressure outputs a value from 0 to 1.

gate1 ... gate8 Gate outputs for the up to eight simultaneous note outputs.

DROIDmanual for blue-1 126 Table of contents at page 2

Output Type Description

trigger1 ... trigger8 Trigger outputs for the up to eight simultaneous note outputs. The difference to the gate outputs is, that these just
send a short trigger of 5ms at the start of the note. This can be interesting in situations where the notes have no gaps
in between so that gate will never go low.

cc1 ... cc4 0 1 Outputs the current value of the four CC number that are defined with the inputs ccnumber1 ... ccnumber4. CCs have
a range from 0 to 127, but this is converted in the range 0.0 .. 1.0 here, in order to make it easier to use that as a CV.
If you need the raw number, multiply the output with 127. Note: as long as no CCmessage with the selected number
happened, this output will be set to 0.

notegate1 ... notegate16 Outputs a high gate whenever the corresponding note (which is selected by note1 through note16) is currently being
played.

pitchbend Outputs the current pitch bend value as a bipolar voltage. The range can be set with pitchbendrange.

programchange Sends a trigger whenever aMIDI program changemessage arrives. Just before sending the trigger sets program to the
new program number (something from 0 to 127). Note: This trigger is also being output when the program change
messages sends the same program number as previously, i.e. if there is no actual change.

program 1 2 3 The number of the last program change. This starts at 0.

bank 1 2 3 Outputs the number of the currently selected bank – from0 to 16384. MIDI defines theMSB of the bank to be changed
with CC#0 and the LSB with CC#32. That means if you just use CC#0, you will only be able to select the banks 0, 128,
256, and so on. As long as no bank select CC has been received, bankwill output 0.

modwheel 0 1 Output the current state of themodwheel level – within the range from 0.0 to 1.0. Themodwheel is changed byMIDI
control change 1.

volume 0 1 Outputs the current global volume as set by MIDI control change 7.

portamento This output gives you access to the current state of the “portamento pedal” (MIDI CC 65). You can use it to enable an
external slew limiter for creating portamento effects (see page 170).

soft This output gives you access to the current state of the “soft pedal” (MIDI CC 67). It is 1while the pedal is hold and 0
otherwise.

clockout Outputs a steady clock of 1 tick per 16th note.

midiclock Outputs a steady MIDI clock, i.e. 24 ticks per quarter note of the tune. This is 6 times faster than clock.

endoftrack Outputs a trigger when the end of the track is reached.

DROIDmanual for blue-1 127 Table of contents at page 2

Output Type Description

error This output will be set to a value other than zero in case of an error while loading and parsing the MIDI file. This is
intended for wiring it to one of the R registers. Here different errors will be displayed as different colors. Here is the
list of all possible values of error:

value color what happened?

0 black Everything is fine.

-1 white The SD card or MIDI file is missing.

1 magenta The file is corrupted, garbled or noMIDI file.

0.75 orange The file does not contain any non-empty track.

0.25 cyan the track is too long (max 6000 bytes are allowed).

One midifileplayer circuit needs 7132 bytes of RAM.

DROIDmanual for blue-1 128 Table of contents at page 2

9.28 midiin – MIDI to CV converter

This circuit converts incoming MIDI data into CV, gate
and trigger signals. It needs the X7 expander in order to
work (see page 26 for general information about the X7).

There are various useful applications of this circuit, some
of which are:

• Attaching an external keyboard to your modular.
• Using an external hardware sequencer for playing
melodies and beats in your modular.

• Use an external MIDI controller to influence your
patch.

• Use your phone or tablet as a MIDI controller to in-
fluence your patch (via USB).

• Connect two DROIDs (both with X7) and exchange
real time data.

The X7 MIDI implementation is very comprehensive and
gives you convenient access tomost of theMIDI features.
Please refer to the table of inputs and outputs for details.
Here are just some very basic examples:

Basic operation

The basic operation is quite simple. Per default midiin
listens on the 3.5 mm TRS jack of the X7. The follow-
ing example controls one synth voice by converting MIDI
note on / note off messages into CV / gate signals:

[midiin]
pitch = O1
gate = O2

It’s really as simple as that! Connect your MIDI key-
board or sequencer with the X7MIDI input, wire O1 to the

1V/Oct input of a synth voice and O2 to its gate input and
enjoy your music!

When you add usb = 1 you can get aMIDI stream via the
USB-C port on the X7 instead of the TRS jack.

Polyphonic patches

Do you have more than one synth voice to control? Then
you can play several notes at the same time by using up
to eight pitch and gateoutputs. Here is an examplewith
three voices, which uses a G8 expander for the gates:

[midiin]
pitch1 = O1
pitch2 = O2
pitch3 = O3
gate1 = G1
gate2 = G2
gate3 = G3

Here the parameters roundrobin and voiceallocation
are interesting. roundrobin influences which of the
three outputs should be used for the next note, in situa-
tions where more than one is free. voiceallocation, in
contrast, controlswhat should happen if theMIDI stream
wants to play more simultaneous notes than you have
setup in midiin. The default is to cancel the oldest cur-
rently playing note, but you can change that behaviour in
various ways.

Sequencing drums and triggers

When you use aMIDI sequencer for triggering drums, of-
ten each drum voice (bass drum, snare drum, etc.) is
triggered by a certain note, for example C-2 for the bass
drum, C-2 for the snare drum and so on. In this case it
is more convenient to use the notegate outputs. Check
the following example:

[midiin]
note1 = 24
note2 = 25
notegate1 = O1
notegate2 = O2

Now whenever note 24 is played by the sequencer,
notegate1 will trigger. The note numbers range from 0
to 127, with 0 being the lowest note and 127 the high-
est. TheMIDI standard specifies that note 0 is usually C-2
(twooctaves belowC0). So note 24would beC0 andnote
25 C0.
Another application of note gates is to use keys on aMIDI
keyboard or touch pads of aMIDI controller as buttons in
your patch! In fact the button circuit can bewired
to such note gates. It’s just that you don’t have a corre-
spondingLED.But you canuse the ’s ownLEDs for
that.

The following example uses the note 24 in order to toggle
a (virtual) button and use the first input LED of the mas-
ter as LED for the button:

[midiin]
note1 = 24
notegate1 = _NOTE24

DROIDmanual for blue-1 129 Table of contents at page 2

[button]
button = _NOTE24
led = R1
output = _SOMETHING # ...

Please note: midiout has similar note1 ... note8 inputs.
But there thepitches are specified in1V/Oct. Sodon’tmix
them up!

Start, Stop and Clock

MIDI sequencers usually send a steady MIDI clock at 24
PPQ, which means 24 pulses per quarter note, which in
turn means 6 pulses per 16th note, which is the typical
clock speed for modular systems. But also 48 PPQ and
96 PPQ are possible.

You get easy access to the clock by various clock outputs
running at different speeds. The jack labelled just clock
outputs the 16th note clock. The following example just
sends that clock to the O1 output:

[midiin]
clock = O1

Hereby it is assumed that the MIDI clock is running at
24 PPQ. If its running faster, simply use one of the other
clock outputs, which divides down the clock. Or use
clocktool (see page 81) for dividing yourself.

Also the START and STOP messages of MIDI sequencers
are accessible, either as two separate triggers, or as a run-
ning state. For example you can use the start output as
a reset signal for some circuit:

[midiin]
clock = _CLOCK
start = _RESET

[sequencer]
clock = _CLOCK
reset = _RESET
...

Getting CCs

MIDI does not only transport note events but also con-
trollers. Most of these are continuous values, much like
CVs. midiin gives you access to the current value of a
couple of standard controllers like volume and modwheel
with dedicated outputs. And in addition up to four cus-
tomCCs canbeoutput. All such controllers are converted
into values from 0 to 1 (or 0 V to 10 V if you output them
directly):

[midiin]
volume = O1
modwheel = O2
ccnumber1 = 10 # get update from CC#10
cc1 = O3 # send current CC value to O3

Usingmultiplemidiins

Youare not restricted toonemidiin circuit but canuseup
to 32 of these in your patch. There are different reasons
whymultiple ones can be useful, e.g.:

• You want to control different voices from different
MIDI channels

• You want to fetch more than four CCs.

Allmidiin circuitswill get their owncopyof theMIDIdata
stream and can do their own things with it. You might
want to use channel = ... in order to just get only the
events of a specific MIDI channel.

Pedals

The MIDI standard defines five different types of food
pedals. The state of these – up or down – is transmitted
bymeans of five different control changes (CCs). midiin
automatically interpretes themcorresponding to their in-
tended meaning as follows:

• Damper pedal (CC 64): While down, notes still
linger on, even if they end. Internally, the “note
off” eventof all noteswill bedelayeduntil thepedal
is up. This pedal is sometimes also called “sustain
pedal”, since it makes notes sustain.

• Portamento pedal (CC 65): Sets the portamento
output to 1 while down. You can use that output
for enabling a slew limiterwith the circuit slew (see
page 170).

• Sostenuto pedal (CC 66): Sostenuto is the smarter
version of sustain. Such a pedal is found as the
middle of three pedals on grand pianos. When it
goes down, all notes that are currently played are
sustained as long as the pedal is held. But new
notes, that start during that period, at not sus-
tained. That’s the difference. The midiin circuit
automatically makes CC 66 behave in exactly that
way. That, of course, just makes sense in a poly-
phonic patch, where you have enough voice that
can play the sustained notes.

• Soft pedal (CC 67): Sets the soft output to 1while
held.

• Legato pedal (CC 68): While down, ties conse-
qutive notes together by keeping gate at 1 be-
tween notes.

DROIDmanual for blue-1 130 Table of contents at page 2

Input Type Default Description

channel 1 2 3 + Only execute / play commands from a certain MIDI channel. There are 16MIDI channels. It ranges from 1 to 16.

tuningmode off If set to 1, all pitch outputs will go to the CV selected for tuningpitch (which defaults to 2 V), and all gate outputs will
play gates at 120 BPM. This helps getting all attached voices tuned when working with many voices.

tuningpitch
�
� 1V

Oct 2V This pitch CV will be output while the tuning mode is active.

transpose
�
� 1V

Oct 0V Transposes all output pitches by this value by adding the value. So in order to transpose one octave down, set this
input to -1V or -0.1. Changes in the transposition are immediately reflected, even for currently already active notes.

holdvelocity 0 If this is set to 1, the velocity output for a voicewill not be affected by note off events. It’s just altered at the beginning
of new notes. The velocity is kept after the note ends. This way during the release phase of an envelope triggered by
the gate, the original velocity still lasts on. Inmost cases the note off velocity is set to 0, whichwould immediately cut
off the release phase when the velocity is patched into a VCA.

pitchbendrange
�
� 1V

Oct
1
6V Sets the value to the desired maximum that pitchbend should output, and likewise it’s negative counterpart at its

minimum value. At the middle position it always outputs 0. This defaults to 2
12 V, which corresponds to one whole

tone. Note: setting this to a negative value is allowed and will invert pitch bend.

bendpitch 1 When set to 1 (which is the default), the pitch bend will directly be applied to all output pitches. Alternatively you can
set it to 0 and use the output pitchbend, for using it elsewhere.

roundrobin 0 Normallywhen looking for a free output for playing the next note, this circuitwill start from output1 in its search. This
way, if there are not more notes than outputs at any time, the notes played first will always be played at the lowest
numbered outputs. This leads to a deterministic behaviour when it comes to playing things like chords. The same
voice will always be used for the first note in the stream of MIDI events.

When you switch roundrobin to 1, this changes. Now the outputs are scanned in a round-robin fashion, like in a
rotating switch. That way every output has the same chance to get a new note. Here it can evenmake sense to define
multiple voices even if the track ismonophone. When you use envelopes with longer release times, you can transform
such a melody into chords with simultaneous notes.

Note: When all outputs are currently used by a note, roundrobin has no influence. Here voiceallocation selects
which of the notes will be dropped.

DROIDmanual for blue-1 131 Table of contents at page 2

Input Type Default Description

voiceallocation 1 2 3 0 When the MIDI stream, at any given time, needs to play more notes than you have voices assigned, normally the
“oldest” notes would be cancelled. This behaviour can be configured here by setting voiceallocation to one of the
following values:

0 The oldest note will be cancelled (default)

1 The new note will not be played and simply be omitted

2 The lowest note will be cancelled

3 The highest note will be cancelled

notegap 0.0 When your MIDI devices plays a note so “long” that it lasts exactly until the next note begins – or if due to a lack of
used pitch outputs one currently played note has to be replaced with a new one, the gate output will have no time to
go low for a sufficient time between the two notes. In effect it won’t trigger any envelope for the new note but will do
a “legato”.

If you don’t like this, you can use notegap. This input specifies a number ofmilliseconds that the gate will be forced
down before the new note begins. This has the drawback of introducing some latency, of course! So I suggest that you
start with notegap = 1 and then check out if your envelope is fast enough to trigger. If not, increase the value.

If you are using ’s own contour circuit or trigger something else internally in your patch, you can use notegap
= 0.1. That is sufficient and introduces barely any latency. Just a value of 0.0 keeps the default of the legato mode.

Note: the notegap parameter does not affect the trigger outputs.

ccnumber1 ... ccnumber4 1 2 3 0 You can listen to up to four CCs (control changes). For example if you are interested in the current value of CC#17, set
ccnumber1 = 17 and use the output cc1 for getting the value of CC 17.

lowestnote 1 2 3 0 With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.

highestnote 1 2 3 127 Sets an upper limit to the note being played, similar to lowestnote. The “Notegates” are not being affected by this
bound.

note1 ... note16 1 2 3 + Selects up to 16 individual notes for which you can get a dedicated gate signal. Per default these values are set to
0 for note1 (meaning C-2), 1 for note2 (meaning C-2) and so on. For each of these notes you get a corresponding
gate output (see notegate1, notegate2, etc.). These gates are high as long as the selected notes are being hold.
One application is to use just one midifileplayer or midiin circuit for sequencing up to 16 drum voices. Another
application is to use a MIDI keyboard or controller as a button expander – just like a P2B8 or B32.

DROIDmanual for blue-1 132 Table of contents at page 2

Input Type Default Description

usb 0 Selects the physical port to receive MIDI data. The default is usb = 0, which selects the TRS (3.5mm stereo jack) port
of the X7. Set usb = 1 for receiving data from the USB-C port.

channel 1 2 3 + Select the MIDI channel to listen on. Default is to listen on all channels – and basically ignore the channel number.
There are 16 channels, numbered from 1 to 16.

systemreset A trigger here resets thewholeMIDI state of this circuit. It does the same as aMIDI RESETmessage: It stops all playing
note, resets the controllers, the states of the pedals and so on.

Output Type Description

pitch1 ... pitch8
�
� 1V

Oct Pitch outputs. Since MIDI tracks can be polyphonic – i.e. play several notes at the same time – you can assign up to
eight outputs here. The notes will be distributed to the defined outputs according to the settings roundrobin and
voiceallocation.

velocity1 ... velocity8 0 1 For each voice there is an optional velocity output, which translates the MIDI velocity into values from 0 to 1.

pressure1 ... pressure8 0 1 MIDI provides two different messages for sending ”after-touch” information, i.e. information about how strong a
key is pressed down after the initial hit. Some keyboards just have one pressure sensor in total and send the current
maximum pressure information of all keys in one message (“channel pressure”). Others have one pressure sensor per
key and send “polyphonic key pressure” messages. This circuit maps both to a pressure output per note that is being
played. So if your keyboard (or sequencer or DAW or whatever) sends polyphonic key pressure events and you use
multiple pitchX outputs, wire the individual pressureX outputs to wherever you like. Otherwise you can simply use
pressure1 for all notes (which can be abbreviated with pressure), since it is the same for all note outputs anyway.
pressure outputs a value from 0 to 1.

gate1 ... gate8 Gate outputs for the up to eight simultaneous note outputs.

trigger1 ... trigger8 Trigger outputs for the up to eight simultaneous note outputs. The difference to the gate outputs is, that these just
send a short trigger of 5ms at the start of the note. This can be interesting in situations where the notes have no gaps
in between so that gate will never go low.

cc1 ... cc4 0 1 Outputs the current value of the four CC number that are defined with the inputs ccnumber1 ... ccnumber4. CCs have
a range from 0 to 127, but this is converted in the range 0.0 .. 1.0 here, in order to make it easier to use that as a CV.
If you need the raw number, multiply the output with 127. Note: as long as no CCmessage with the selected number
happened, this output will be set to 0.

notegate1 ... notegate16 Outputs a high gate whenever the corresponding note (which is selected by note1 through note16) is currently being
played.

pitchbend Outputs the current pitch bend value as a bipolar voltage. The range can be set with pitchbendrange.

DROIDmanual for blue-1 133 Table of contents at page 2

Output Type Description

programchange Sends a trigger whenever aMIDI program changemessage arrives. Just before sending the trigger sets program to the
new program number (something from 0 to 127). Note: This trigger is also being output when the program change
messages sends the same program number as previously, i.e. if there is no actual change.

program 1 2 3 The number of the last program change. This starts at 0.

bank 1 2 3 Outputs the number of the currently selected bank – from0 to 16384. MIDI defines theMSB of the bank to be changed
with CC#0 and the LSB with CC#32. That means if you just use CC#0, you will only be able to select the banks 0, 128,
256, and so on. As long as no bank select CC has been received, bankwill output 0.

modwheel 0 1 Output the current state of themodwheel level – within the range from 0.0 to 1.0. Themodwheel is changed byMIDI
control change 1.

volume 0 1 Outputs the current global volume as set by MIDI control change 7.

portamento This output gives you access to the current state of the “portamento pedal” (MIDI CC 65). You can use it to enable an
external slew limiter for creating portamento effects (see page 170).

soft This output gives you access to the current state of the “soft pedal” (MIDI CC 67). It is 1while the pedal is hold and 0
otherwise.

clock If the MIDI sender sends aMIDI clock, you get a 16th note clock output here. This is the same as the clock16 jack and
just a convenient abbreviation.

clock8 Gets an 8th clock here (like clock divided by 2)

clock8t Gets a 8th triplets clock here. This is faster than clock8 but slower than clock.

clock16 The same as clock: a clock running at 16th notes.

clock4 A clock at the speed of quarter notes.

midiclock Here you get the originalMIDI clock. This is 6 times faster than clock and 24 times faster than clock4. This is because
the MIDI clock is specified to run at 24 PPQ, i.e. 24 pulses per quarter note.

start This jack sends a trigger when aMIDI STARTmessage arrives.

continue This jack sends a trigger when aMIDI CONTINUEmessage arrives.

stop This jack sends a trigger when aMIDI STOPmessage arrives.

running This jack remembers the current running state according to previous START and STOPmessages.

active If the sending device supports active sensing, this output is high as long as a device is connected. Otherwise its high
if at least one MIDI message has been received.

DROIDmanual for blue-1 134 Table of contents at page 2

One midiin circuit needs 1240 bytes of RAM.

DROIDmanual for blue-1 135 Table of contents at page 2

9.29 midiout – CV toMIDI converter

This circuit allows you to “play” notes via MIDI on an ex-
ternal hardware or software synth. You also can send all
sorts of otherMIDI events. You need the X7 expander for
that to work (see page 26).

TheMIDI implementation of midiout is very comprehen-
sive. Please look at the table of input jacks for all fea-
tures. Here I just want to show some basic examples to
get you quickly started. Fun fact: This is the only cir-
cuit that does not have any outputs, because all output
is done via MIDI!

Basic operation

Easy things should be easy and complex things should be
possible. Sowe startwith the easy things. Here is a patch
that converts a CV / gate input from I1 / I2 into a stream
ofMIDI notes and sends themout via the3.5mmTRS jack
onMIDI channel 1:

[midiout]
pitch = I1
gate = I2

Every time the gate input at I2 goes from off to on, the
current pitch (1V/Oct) is read from I1. Then one MIDI
“note on” event is being created. The “velocity” of that
note is set to the default value of 1.0, which is the max-
imum (every MIDI note event has a velocity, which is
meant to reflect the speed at which the key of the key-
board has been pressed).

You can specify any velocity you like with the jack
velocity. Let’s randomize that. Since the velocity jack
is just read just at the note starts, we don’t need a sample
and hold here:

[random]
minimum = 0.5 # minimum allowed velocity
maximum = 1.0 # maximum allowed velocity
output = _VELOCITY

[midiout]
pitch = I1
gate = I2
velocity = _VELOCITY

Note: the range of the velocity goes from 0.0 to 1.0 – just
as all other parameters in midiout do. Internally MIDI
uses the integer numbers 0 to 127.

Polyphonic patches

One great motivation for doing CV to MIDI at all is
playing polyphonic music on hardware synths, because
polyphony in Eurorack is quite costly and very time and
space consuming. One midiout circuit can play up to
eight notes at the same timeand if that’s not enough, add
a second midiout circuit. For each simultaneous note
add one pair of pitch and gate jacks:

[midiout]
pitch1 = I1
pitch2 = I2
pitch3 = I3
gate1 = I5
gate2 = I6
gate3 = I7

If you work with velocity, each voice has its own velocity
input:

[midiout]
pitch1 = I1
pitch2 = I2
pitch3 = I3
gate1 = I5
gate2 = I6
gate3 = I7
velocity1 = 0.6
velocity2 = 0.8
velocity3 = 1.0

CC and other controllers

There are several continuous values that you can change
over time. The following example lets you control the
MIDI CC number 17 via input I3 (at a range from 0 V to
10 V) and the volume and modulation wheel with two
pots:

[midiout]
pitch = I1
gate = I2
ccnumber1 = 17
cc1 = I3
volume = P1.1
modwheel = P1.2

Note gates

Note gates are a convenient way to directly trigger cer-
tain notes. Here you select up to eight notes and get one
dedicated trigger for each. You select the note number
with note1, note2, etc. These are MIDI note numbers

DROIDmanual for blue-1 136 Table of contents at page 2

from 0 to 127, where 0 is usually a C-2 (and 24 a C0).
Whenyousenda trigger into the correspondingnotegate
input, that note will be played.

[midiout]
note1 = 24
note2 = 25
notegate1 = I1
notegate2 = I2

This is sometimes convenient when triggering drum
voices.

Creating aMIDI clock

If you want your to simulate a MIDI sequencer, you need
to provide a MIDI clock. This can be injected into the
output either by sending a modular clock that is run-
ning on 16th notes into clock, or a raw MIDI clock into
midiclock.

Example: You want your clock to run at 120 BPM. BPM
means beats perminute. And a beat isment to be a quar-
ter note. 120 quarter notes a minute means two quarter
notes a secondand thatmeanseight16th notes a second,
hence our clock needs to run at 8 Hz.

[lfo]
hz = 8 # 120 BPM
square = _CLOCK

[midiout]
clock = _CLOCK

Note: The input jack clock receives 16th clocks. The ac-
tualMIDI clock is derived from that bymultiplying it by 6.

Thismeans that the circuit interpolates the clock bymea-
suring its speed and introducing five artifical clocks ticks
inbetween the original ticks. While thisworks reasonably
well for a steady clock, changes in clocks speed cannot be
picked up very fast.

So if you work with a clock that can change the speed,
better use the jack midiclock instead and directly supply
the MIDI clock (at a six times higher speed). Here is the
same example but nowwe directly create theMIDI clock:

[lfo]
hz = 48 # 120 BPM MIDI clock
square = _MIDICLOCK

[midiout]
midiclock = _MIDICLOCK

Start, Stop, Reset

MIDI sequencersalsooutput “start” and “stop”messages.
You can send themeither via triggers into start and stop
or use the input running for both. When running goes
high, a “start” message is sent, when it goes low a “stop”
message.

Pitch tracking

Pitch tracking is an advanced feature thatworks inmono-
phonic setups. Here midiout watches the input pitch
all the time and adapts the pitch of the currently played
note viaMIDpitchbendevents in order to reflect thepitch
changes. See the documentation of the pitchtracking
jack for details.

Pitch stabilization

MIDI output appears simple to implement, but isn’t when
you look at the details. One tricky problem is that many
modules that output pitch information are not very pre-
cise in timing. Sequencers oftenneeda coupleofmillisec-
onds for the pitch CV to reach its final value and stabilize
there after the gate is being output.

The following diagram shows a gate signal going high
(blue) and a pitch signal with a small ramp reaching its
final destination shortly afterwards (red):

0 10 20 30 40 50 60

0

5

10

time(ms)

V
ol
ts

Pitch
Gate

I’ve seen a very similar situation indeed when I attached
an oscilloscope to the output of a very famous Eurorack
sequencer.

Now when you would issue “note on” right at the begin-
ning of the gate, you would obviously output the wrong
pitch. What you need to do is to firstwait for some time.
You need to delay the note event until the pitch is stable.
Of course this introduces some undesirable latency, so it
is crucial to keep that as short as possible.

The midiout circuit has two methods for doing
this. The first one is enabled per default and called
pitchstabilization. Here, as soon as the gate goes
high, it watches how pitch evolves over time. And it

DROIDmanual for blue-1 137 Table of contents at page 2

delays the “note on” as long as the pitch is still mov-
ing. When it has stabilized – i.e. on the same level for
at least some very short time – the note event is issued
immediately. This keeps the latency at a minimum.

If that does not work out well for you, you can deactivate
this algorithm. One reason could be that your pitch never
stabilizes, since it is some ever evolving random data:

[midiout]
pitch = I1
gate = I2
pitchstabilization = 0

The second method is introducing a fixed delay of the
gate signal with the input triggerdelay. Using that pa-
rameter automatically disables pitch stabilization:

[midiout]
pitch = I1
gate = I2
triggerdelay = 3.5 # delay gate by 3.5 ms

Now the gate is delayed exactly 3.5 ms every time. You
need to try out various useful values yourself. The best
value depends on your sequencer (or whatever other
source you are using).

You can also activate both methods at once. This makes
sense in situations, where the pitch is stable for a very
short time after the gate but afterwards begins to move,
like in the following diagram:

0 10 20 30 40 50 60

0

5

10

time(ms)

V
ol
ts

Pitch
Gate

As you can see, now after the gate comes high the
pitch lingers on for 2 ms at its old value until the ramp
starts. Here set the triggerdelay to 2 and explicitly set
pitchstabilization = 1:

[midiout]
pitch = I1
gate = I2
triggerdelay = 2
pitchstabilization = 1

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

channel 1 2 3 1 Selects theMIDI channel to send the events on. Default is to send on channel 1. There are 16 channels. Make sure that
the receiving device listens to this (or to all) channels.

usb 0 If usb = 0, selects the TRS (3.5mm stereo jack) port of the X7 to send on. This is the default. Set usb = 1 for sending
the MIDI data via the USB-C port.

DROIDmanual for blue-1 138 Table of contents at page 2

Input Type Default Description

pitch1 ... pitch8
�
� 1V

Oct 0V Pitch of the notes to be played in modular style (1 V/octave). The range is from -2 V (MIDI note 0, usually C-2) to
8.583 V (MIDI note 127, usually G9). You can use up to eight pitch inputs for playing up to eight notes in parallel.
pitch1 can be abbreviated with just pitch.

gate1 ... gate8 A positive edge into the gate jacks trigger note on messages (starts the note at the pitch set by the corresponding
pitch input). A negative edge ends the currently played note.

velocity1 ... velocity8 0 1 1.0 The velocities for the up to eight notes. The velocity value is just picked up at the start of the note (at the positive edge
of the corresponding gate inputs. It ranges from 0.0 to 1.0. A value of 0.0 is practically the same as “note off”. The
default velocity is 1.0.

noteoffvelocity1 ...
noteoffvelocity8

0 1 + MIDI also sends a velocity at the end of a note. The idea is to model the speed with which a key is being released. This
is rarely used. If you don’t use these jacks, the velocity for “note off” events is the same as that for “note on” events.

pressure1 ... pressure8 0 1 + Sends key pressure events for individually played notes via theMIDI event “polyphonic key pressure” (this is not aCC!).
These values are not processed at the time of note on/off events but all the time and can also change while a note is
already being played. This corresponds to “aftertouch” key pressure on keyboards that have a pressure sensor per key.

If nothing is patched here, no pressure events are sent.

channelpressure 0 1 + Whenever this CV changes, sends a MIDI channel pressure event, also known as “aftertouch”. This corresponds to
keyboards that just have one global pressure sensor and not one per key.

If nothing is patched here, no channel pressure events are sent.

pitchstabilization 1 Enables or disables pitch stabilization. It is on per default and can be disabled by setting this jack to 0. Pitch stabiliza-
tion fixes timing issues where the input pitch needs some time for reaching the target pitch after a gate.

triggerdelay 0.0 Introduces a delay between in the incoming gate signal (just the positive edge) and the “note on” event. This can tackle
the problemwhen your pitch input (sequencer etc.) needs some time after the gate in order to reach and stabilize the
target pitch. The delay is specified inmilliseconds, so a typical useful value would be 5 (5ms). This is an alternative to
the automatic pitchstabilization. Note: triggerdelay disables pitchstabilization, as long as that is not set
to 1 explicitly. If both are used at the same time, the triggerdelay happens before the pitch stabilization. So it is a
minimum delay.

lowestnote 1 2 3 0 With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.

highestnote 1 2 3 127 Sets an upper limit to the note being played, similar to lowestnote. Note gates are not being affected by this bound.

DROIDmanual for blue-1 139 Table of contents at page 2

Input Type Default Description

notegate1 ... notegate16 You can define up to 16 notes that can be directly controlledwith a dedicated gate. This is convenient for playing drum
sounds directly from triggers and also for using DROID controllers as MIDI controllers. A trigger or gate to notegate1
will directly play the note whose pitch is set by note1.

note1 ... note16 1 2 3 + MIDI notes to played via notegate. The range is from 0 to 127. Per default the notes are set to the MIDI notes 0, 1, 2
... 15.

notegatevelocity1 ...
notegatevelocity16

0 1 1.0 Here you can set the velocities use by the notegates. In order to keep simple, this velocity is used for note on and note
off events (nobody cares about the note off velocity anyway). If you do not use these jacks, the note gates will always
use the maximum velocity.

modwheel 0 1 0.0 Sets the current value of the modulation wheel. Any change here sends a midi CC#1 with a new value for the modu-
lation wheel. The input range is 0.0 ... 1.0 and will be converted into the MIDI range of 0 ... 127. Note: in future we
might support CC#33, which is the LSB value of CC#1 and increases the resolution from128 to 16384 different values,
at the cost – however – of two additional bytes being sent.

volume 0 1 1.0 Sets the volumeof the target device. This is doneby sending theMIDICC#7 (VOLUMEMSB) andMIDICC#39 (VOLUME
LSB). Using these two CCs enables a 14 bit high resolution 16384 levels (not just 127). Some devices to not react to
CC#39 and simply ignore the LSB (least significant byte). The volume CV ranges from 0.0 (silent) to 1.0 (the default).

pitchbend 0.0 Bends the pitches of all currently played notes up and down by a range that is configured or elsewise defined by the
device that plays our stuff. The range of this CV is -1.0 ... 1.0 for covering themaximum pitch bend range. Most times
that range is two semitones up and down. This CV does not behave in a 1V/oct way!

pitchtracking 1 2 3 0 Pitch tracking is an advanced feature that allows you to track continuous changes in the incoming pitch CV while the
note is already playing. It does this by listening to the input CV and converting any change into a MIDI “pitch bend”
change.

This feature has two limitations:
1. There is just one global pitch bend value per channel, not one per note. So this feature only works in a mono-

phonic situation. Only the value of pitch1 is being tracked. When you play more than one note per channel,
funny things might probably happen.

2. Themaximumrange is limitedby thepitchbend rangeof your target device. That is usually preset to2 semitones
up and down. If you can make this larger, please also adapt pitchbandrange so this circuit knows about it.

Pitch tracking has two levels: pitchbandrange = 1will alter the pitch of the current note within themaximum range
of pitch bend andwill clip any further changes. pitchbendrange = 2, in contrast, plays a newnote if the current range
is exceeded. Depending on your sound settings this “dent” might be audible or not.

Note: When you use pitch tracking at the same time as pitchbend, both pitch alterations will add up.

DROIDmanual for blue-1 140 Table of contents at page 2

Input Type Default Description

pitchbendrange
�
� 1V

Oct
1
6V Defines the range of the effect of pitch bend at the target device on a 1V/oct base. Note: You cannot change that actual

range here. You just can make sure that this circuit has the correct assumption of that range.

If your target device has a configuration for extending the range, and you have set that for example to 1 octave, set
pitchbendrange to 1 V. This allows pitchtracking to correctly adapt in-note pitch changes. Note: This has no effect
on the pitchbend CV.

ccnumber1 ... ccnumber8 1 2 3 0 Specifies up to eight different CC numbers that can be continuously updated via the corresponding cc1 through cc4
inputs. The value needs to be an integer number from 0 to 127.

cc1 ... cc8 0 1 + The current value of the CCs that are specified with ccnumber1 through ccnumber8. The range is always from 0.0 to
1.0 (which is mapped to the number 0 to 127 on the MIDI wire).

If you don’t patch anything here, no CC events will be sent, of course.

cctrigger1 ... cctrigger8 Usually midioutwill send out a new CC event every time the input value of a CC has changed (with some rate limit in
order to to flood the MIDI stream).

When you use these inputs, an alternative method is enabled. Now CC events are created whenever a trigger arrives
here. Nomore updates will be sent automatically.

This is useful for target devices that use CCs just asmessages, i.e. as one time events and not for updating a continous
value.

bank 1 2 3 + Selects the current “bank”. SomeMIDI devices havemore than 128 programs (i.e., patches, instruments, preset, etc).
A MIDI Program Change message supports switching between only 128 programs. So, “Bank Select” (sometimes also
called bank switch) is sometimes used to allow switching between groups of 128 programs. Bank select uses theMIDI
CCs #0 (MSB) and #32 (LSB) together to form a number of 16384 different banks. The input value thus ranges from
1 to 16384. Most devices, however, restrict themselves to just 128 banks and just use the MSB (CC#0). If that is the
case, you need to set bank to 128 for bank 2, 256 for bank 3 and so on. This can be done by simply multiplying the
actual bank number with 128.

program 1 2 3 + Select the current “program”. This is a number from 1 to 128.

programchange A trigger here will send out a “program change” MIDI message even if the value of bank or program has not changed.

start If you send a trigger here, the MIDI message START will be emitted. Don’t use this jack if you also use running. Note:
START/STOPmessages are not bound to a specific channel.

stop If you send a trigger here, the MIDI message STOP will be emitted. Don’t use this jack if you also use running. Note:
START/STOPmessages are not bound to a specific channel.

DROIDmanual for blue-1 141 Table of contents at page 2

Input Type Default Description

running This is an alternative to the jacks start and stop. It combines both into one “running” state. When this gate input
goes high, a STARTmessage is sent, when it goes low a STOPmessage. So you can work with a state rather than with
state changes. Note: START/STOPmessages are not bound to a specific channel.

systemreset A trigger herewill send theMIDI real-timemessage “RESET”, that is supposed to bring the device into some start state.

allnotesoff A trigger herewill send theMIDI CC#123 “ALLNOTESOFF”,which is essentially the same as releasing all currently held
keys.

allsoundoff A trigger here will send the MIDI CC#120 “ALL SOUND OFF”, which is supposed to make the device silent as soon as
possible.

damper 0 This gate input simulates a hold or damper pedal. This is done via the CC#64. If the gate goes to high, a value of 127 is
being sent, when it goes back to low, a value of 0. When the damper pedal is pressed, the device is supposed to hold all
currently played notes and not react to any subsequent “NOTE OFF” of those notes as long as the pedal is held. When
the pedal is released, all notes that had been held be the pedal should be released.

portamento 0 Controls the portamento pedal. The receiver is meant to activate some kind of glide effect as long as this gate is high.

sostenuto 0 This enables the sustain pedal. This is similar to but not exactly the same as the damper pedal as it just holds notes
that are pressed while the pedal goes down.

soft 0 Controls the soft pedal. The receiving synth voice is meant to play notes softer while this pedal is hold down.

legato 0 Controls the legato pedal, which ties subsequent notes together.

clock If you feed a steady clock here, aMIDI clock signal will be derived from this and sent through the outputwire. TheMIDI
beat clock or simplyMIDI clock is defined to send pulses at 24 PPQN: 24 pulses per quarter note. One quarter note has
four 16ths, so the MIDI clock is running at 6 pulses per 16th note, and in the modular environment it is very common
to work with 16th pulses as a master clock. So this clock jack is meant to retrieve a modular master clock, multiplies
this by 6 and creates a MIDI clock from it.

midiclock This is an alternative to clock: don’t use both at the same time. Here you can directly send theMIDI clock in 24 PPQN.

activesensing 1 This is a switch that disables or enabled active sensing. This is a MIDI feature where a MIDI sender emits one mes-
sage of the type “active sensing” every 300 ms. The receiver can use this in order to detect if we are still connected
and active and also immediately reset (und turn all sound off) if these messages stop. Active sensing is enabled per
default. You can disable it here by setting activesensing = 0.

DROIDmanual for blue-1 142 Table of contents at page 2

Input Type Default Description

updaterate 50.0 Specifies the maximum rate at which continuous controllers like the CCs, volume, pitchbend and channelpressure
are updated. This limitation is necessary in order not to flood the MIDI interface with too many updates because of
just minimal changes. This rate is specified in update per second and the default is 50. A zero or negative value will
completely stop all updates.

Note: depending on how many events are happening on your channel, fewer updates might be possible. MIDI over a
classical cable is limited to 3125 bytes per second. Events typically need 1, 2 or 3 bytes each.

One midiout circuit needs 2680 bytes of RAM.

DROIDmanual for blue-1 143 Table of contents at page 2

9.30 midithrough – MIDI routing through X7

Use this circuit for forwardingMIDI data from an input to
an output. Here is an example:

[midithrough]
fromusb = 1 # TRUE, hence USB port for input
tousb = 0 # FALSE, hence TRS jack for output

This will forward MIDI events from the USB port to
the TRS output. Note: All midiin (see page 129) and
midiout (see page 136) circuits still work, so the out-
put stream on the TRS jack will both contain the origi-
nal events fromMIDI-USB and the events you createwith
your midiout circuits.

Notes:

• As of now, Sysex messages are not forwarded.
Sorry for that. If that’s becoming important we
might add this feature.

• If you forward fromUSB to TRSmake sure that you
do not sendmore than 3125 bytes per second. TRS
cannot output faster. It’s limited by the MIDI stan-
dard. If you sendMIDI data faster, some eventswill
get lost.

Input Type Default Description

fromusb 0 Set this to 0 if you want to receive data from the TRS/DIN jack and 1 if you want to receive via USB.

tousb 0 Set this to 0 if you want to send data to the TRS/DIN jack and 1 if you want to send via USB.

One midithrough circuit needs 232 bytes of RAM.

DROIDmanual for blue-1 144 Table of contents at page 2

9.31 minifonion – Musical quantizer

This circuit is a very musical quantizer that gently moves
any inputCV (pitch informationona1V/oct base) into se-
lected notes of a musical scale. Typically the input CV is
coming from a random source, LFO,melody generator or
sequencer.

In fact the Minifonion is very similar to each of the the
three quantizer channels in theAudiophile Circuit League
Sinfonion – justwithout theuser interface andmoreflexi-
ble. It has Sinfonion compatible CVs for the root note and
the scale selection so it can easily be combined with it as
long as you control the Sinfonion via CV and stick to the
first mode. But of course you do not need a Sinfonion in
order to use this circuit!

If you want to mimick a Sinfonion with the you
might also be interested in the circuits arpeggio (see
page 57) and chords (see page ??).

Here is the simplest possible application – a quantization
of some (random) input pitch at I1 to the seven notes of
a C lydian major scale.

[minifonion]
input = I1
output = O2

Now let’s change the root note to D (2 semitones above
C) and the scale to natural minor, so that we now quan-
tize to a Dminor scale:

[minifonion]
input = I1
output = O2
root = 2
degree = 7

And here is the table of all 12 scales of the Minifonion.
These are exactly the same scales as those in the first
mode (called Chords) of the Sinfonion:

degree Abbr. Scale

0 lyd Lydian major scale (it has a 4)
1 maj Normal major scale (ionian)

2 X7 Mixolydian (dominant seven chords)

3 sus mixolydian with 3rd/4th swapped

4 alt Altered scale

5 hm5 Harmonic minor scale from the 5th

6 dor Dorian minor (minor with 13)
7 min Natural minor (aeolian)

8 hm Harmonic minor (6 but 7)
9 phr Phrygian minor scale (with 9)

10 dim Diminished scale (whole/half tone)

11 aug Augmented scale (just whole tones)

If you are a Sinfonion user, please note that the inputs
rootanddegreeof theMinifonionarenotbasedonsemi-
tones like the Sinfonion, but simply expect whole num-
bers like 0, 1, 2 and so on (which corresponds to the CVs
0V, 10V, 20V, etc.). So if you want those CV inputs to be
compatible, you have tomultiply the values with the fac-
tor of 120 before sending them to the Minifonion:

[minifonion]
input = I1
output = O2

root = I2 * 120 # base on semitones
degree = I3 * 120 # base on semitones

DROIDmanual for blue-1 145 Table of contents at page 2

Input Type Default Description

root 1 2 3 0 Set the root note here. 0means C, 1meansC, 2meansD and so on. If youmultiply the value of an input like I1with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

degree 1 2 3 0 Set the musical scale. This is a number from 0 to 11. At 12 this repeats over again. Please refer to the introduction for
the list of scales. If you multiply an input like I1with 120, this will internally scale to one scale per semitone and you
are compatible with the DEGREE CV input of the Sinfonion.

select1 + Gate input for selecting the root note as being an allowed interval. When youwant to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. select1 ...
select13will be set to one.

select3 + Gate input for selecting the 3rd.

select5 + Gate input for selecting the 5th.

select7 + Gate input for selecting the 7th.

select9 + Gate input for selecting the 9th (which is the same as the 2nd).

select11 + Gate input for selecting the 11th (which is the same as the 4th).

select13 + Gate input for selecting the 13th (which is the same as the 6th).

selectfill1 off Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 off Selects the alternative 3rd (i.e. the 3rd that is not in the scale).

selectfill3 off Selects the alternative 4th or 5th. In most cases this is the diminished 5th.

selectfill4 off Selects the alternative 13th (i.e. the 1st3 that is not in the scale).

selectfill5 off Selects the alternative 7th (i.e. the 7th that is not in the scale).

tuningmode off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch
�
� 1V

Oct 0V This pitch CV will be output while the tuning mode is active.

transpose
�
� 1V

Oct 0V This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

input
�
� 1V

Oct 0V Patch the unquantized input voltage here

DROIDmanual for blue-1 146 Table of contents at page 2

Input Type Default Description

trigger This jack is optional. If you patch it, theMinifonionwill work in triggeredmode. Here the output pitch is always frozen
until the next trigger happens.

bypass off If you set this gate input to 1 then quantization is bypassed and the input voltage is directly copied to the output.

noteshift 1 2 3 0 Shifts the output note after the quantization by this number of scalenotes upor down (if negative). So the output note
still is part of the scale but may be a note that is none of the selected ones. noteshift is applied when quantization
takes places, so it also is sensible to the trigger input.

selectnoteshift 1 2 3 0 Shifts the output note after the quantization by this number of selected scale notes up or down (if negative). If you use
noteshift at the same time, first selectnoteshift is applied, then noteshift. selectnoteshift is applied when
quantization takes places, so it also is sensible to the trigger input.

Output Type Description

output
�
� 1V

Oct Here comes your quantized output voltage

notechange Whenever the quantization changes to a newnote a triggerwith the duration 10ms is output here. No trigger is output
in bypass mode.

One minifonion circuit needs 400 bytes of RAM.

DROIDmanual for blue-1 147 Table of contents at page 2

9.32 mixer – CVmixer

The main task of this circuit is simply adding up to eight
inputs. Furthermore it can do simple operations likemin-
imum,maximum and average. Please note that since ev-
ery input always can be offset and attenuated, it’s like a
mixer with a CV controlled level and CV controlled offset
per input channel.

Minimal example, mixing together two inputs:

[mixer]

input1 = I1
input2 = I2
output = O1

Since every input can add an offset, mixing four inputs
can be done with two lines if you like:

[mixer]
input1 = I1 + I2
input2 = I3 + I4

output = O1

Please note that an unpatched input is (sometimes) not
the same as an input where 0.0 is being sent. The dif-
ference arises if you use minimum, maximum and average,
since these just consider the patched inputs.

If eight inputs are not enough then you can simply create
ameshbymixing together theoutputs of several submix-
ers.

Input Type Default Description

input1 ... input8 0.0 1st ... 8th mixing input

Output Type Description

output Sum of all patched inputs

maximum Maximum of all patched inputs of this circuit. This can e.g. be used for mixing together the envelopes from several
sequencer trackswithoutmaking them “louder” or distorting themwhen two sequencers play a note at the same time.

minimum Minimum of all patched inputs of this circuit.

average Average of all patched inputs of this circuit.

One mixer circuit needs 160 bytes of RAM.

DROIDmanual for blue-1 148 Table of contents at page 2

9.33 motorfader – Create virtual fader inM4 controller

Input Type Default Description

preset 1 2 3 0 This is the preset number to save or to load. This circuit has 8 presets, so this number ranges from 1 to 8.

loadpreset A trigger here loads a preset.

savepreset A trigger here saves a preset.

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

fader 1 2 3 1

block 1 2 3 1

startvalue

notches 1 2 3 0

brightness

color

sharewithnext 0

Output Type Description

output

One motorfader circuit needs 264 bytes of RAM.

DROIDmanual for blue-1 149 Table of contents at page 2

9.34 notchedpot – Helper circuit for pots (OBSOLETE)

This circuit has been superseded by the new circuit pot
(see page 157). pot can do all notchedpot can do and
muchmore. So notchedpotwill be removed soon.

This little circuit simulates a potentiometer with a notch
at the center. It helps you exactly selecting the center po-
sition by defining a range that is considered to be the cen-
ter. This range is called “notch” anddefaults to 10%of the
available range. You can set the size of the notch via the
notch input. Here is an example:

[notchedpot]
pot = P1.1
notch = 15%
output = _ACTIVITY

[algoquencer]
activity = _ACTIVITY
...

For a second use case there is the output bipolar. That

converts a normal pot into one with range from -1.0 to
1.0. This example also shows how to disable the notch, if
you do not need it here:

[notchedpot]
pot = P1.1
notch = 0
bipolar = O1 # Send -10V ... +10V to O1

Input Type Default Description

pot 0 1 Wire your pot here, e.g. P1.1

notch 0.1 Optionally set the notch size, if you do not like the default of 0.1. The maximum allowed value is 0.5. Greater values
will be reduced to that.

Output Type Description

output 0 1 Your pot output comes here. It still goes from 0.0 to 1.0.

bipolar Optional output with a range from -1.0 to 1.0, where the center notch is at 0.0.

absbipolar A variation of bipolar that always outputs a positive value, i.e. the pot will go 1 ... 0.5 ... 0 ... 0.5 ... 1

lefthalf This output allows you to split the pot into two hemispheres. Here you get 1.0 ... 0.0 while the pot is in the left half.
In the middle and right of it you always get 0.

righthalf This is the same but for the right half. It outputs 0 while the pot is in the left half and 0.0 ... 1.0 from themiddle to the
fully right position.

lefthalfinv This outputs 1.0 - lefthalf, i.e. the value range 0.0 ... 1.0 ... 1.0 when the pot moves left→mid→ right.

righthalfinv This outputs 1.0 - righthalf, i.e. the value range 1.0 ... 1.0 ... 0.0 when the pot moves left→mid→ right.

One notchedpot circuit needs 76 bytes of RAM.

DROIDmanual for blue-1 150 Table of contents at page 2

9.35 notebuttons – Note Selection Buttons

This simple utility combines 12 buttons, just like radio
buttons, into a selector for a note such as C, C, D, D
and soon. It is similar to buttongroup, butmuch simpler.
And it allows 12 buttons. The output is either a number
from 0 to 11 – or alternatively on a 1

12 V per semitone
base. The later one is ideal for sending that to external se-
quencers or quantizers as they often adopt that scheme.

The following example uses all eight buttons of the first
controller plus the first column of the second controller
for selecting the twelve notes. It sends the currently se-
lected note to O7 in a 1 V per octave scheme:

[notebuttons]
button1 = B1.1
button2 = B1.2
button3 = B2.1
button4 = B1.3
button5 = B1.4
button6 = B2.3
button7 = B1.5
button8 = B1.6
button9 = B2.5
button10 = B1.7
button11 = B1.8
button12 = B2.7
led1 = L1.1
led2 = L1.2
led3 = L2.1
led4 = L1.3
led5 = L1.4
led6 = L2.3
led7 = L1.5
led8 = L1.6
led9 = L2.5
led10 = L1.7
led11 = L1.8
led12 = L2.7
semitone = O7

DROIDmanual for blue-1 151 Table of contents at page 2

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

button1 ... button12 Wire 12 buttons to these 12 inputs.

clock When you use this jack, all button presses are quantized in time to the next clock pulse arriving here. That makes it
easier to switch the note exactly in time.

Output Type Description

led1 ... led12 Wire the LEDs in the buttons to these 12 outputs.

output 1 2 3 Here you get a number from 0 to 11, according to the currently selected button.

semitone
�
� 1V

Oct Here you get the same as output, but divided by 120. When you patch this output to a CV output of the , like
O1, it will output the note as a semitone on a 1 V per octave scheme.

One notebuttons circuit needs 328 bytes of RAM.

DROIDmanual for blue-1 152 Table of contents at page 2

9.36 nudge – Modify – “nudge” – a value using two buttons

This small utility allows you to modify a value up and
down in fixed steps using two buttons. This value can be
persistent so it survives a power cycle.

Here is an example for a simple CV source that outputs a
value between -2 V and 2 V:

[nudge]
minimum = -2V
maximum = 2V
amount = 1V
buttonup = B1.1
buttondown = B1.3
ledup = L1.1
leddown = L1.3
output = O1

Note: If you press both buttons at the same time, the
value will be reset to its start value.

You can extend this into an octave switch by using the in-
put offset, which will be added to the output:

[nudge]
minimum = -2V
maximum = 2V
amount = 1V
buttonup = B1.1
buttondown = B1.3
ledup = L1.1
leddown = L1.3
output = O1
offset = I1

If you now feed someV/Oct source, such as the pitch out-
put of a sequencer, to I1, it will be shifted up and down
for up to two octaves.

Another application might be to fine tune an oscilla-
tor. Here you set the nudge steps (set by amount) a
lot smaller. Also it is allowed to leave out minimum and
maximum and thus make the possible range unrestricted.
Note: 1V / 1200 means essentially a step size of 1

1200
of an octave, which is 1

100 of a semitone, which is also
known as one cent:

[nudge]
amount = 1V / 1200
buttonup = B1.1
buttondown = B1.3
ledup = L1.1
leddown = L1.3
output = O1
offset = I1

A third application could be a button for selecting a cer-
tain input number for – let’s say – an euclidean rhythm
pattern:

[nudge]
amount = 1
buttonup = B1.1
ledup = L1.1
minimum = 3
maximum = 7
wrap = 1
output = _BEATS

[euklid]
clock = G1
length = 16
beats = _BEATS
output = G3

Note: Here just one button is wired. In addition wrap is
set to 1, which means that after reaching the maximum
value, the next value will be the minimum value. Here
each press of the button B1.1 forwards the number of
beats in the matter 3→ 4→ 5→ 6→ 7→ 3 and so on...

Understanding the LEDs

Bynudging thevaluebelowthe center value thebuttonup
LEDwill be off and the brightness of the buttondownLED
will gradually increase indicating how much the value is
set below this center value. It remains maximally bright
at the minimum.

Vice versa by nudging the value above the center value
the buttondown LED will be off and the brightness of
the buttonup LED will gradually increase indicating how
much the value is set above this center value. It remains
maximally bright at the maximum.

And if the value is exactly in themiddle between maximum
and minimum, both LEDs are maximally bright. Here
you have to have in mind that this must be exactly
in the middle. This only works if the distance between
maximum and minimum is an exact oddnumber of amounts,
of course.

DROIDmanual for blue-1 153 Table of contents at page 2

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

buttonup Button for nudging the value up by one step

buttondown Button for nudging the value down by one step

amount 0.1 Amount to modify the value by on each press. This must be a value> 0

startvalue 0.0 The value this circuit starts with or is being reset to if you use the reset input.

minimum + The minimum possible value. If you do not wire this, the value can go down infinitely.

maximum + the maximum possible value. If you do not wire this, the value can go up infinitely.

wrap 0 Set this to 1 in order to have the value wrap around if the minimum or the maximum has been exceeded. Note: wrap
does only work if you set minimum and maximum.

offset 0.0 This value is being added to the output.

reset A trigger here will reset the value to its start value

persist 1 Set this to 0 if you do not like the current value to be saved and reloaded from flash after a restart of your modular
system. The default is 1, which means that the current value will automatically saved.

Output Type Description

ledup Wire this to the LED in the button for nuding up. It will indicate the current value.

leddown Wire this to the LED in the button for nuding down. It will indicate the current value.

output The output of the current value plus value if offset.

One nudge circuit needs 228 bytes of RAM.

DROIDmanual for blue-1 154 Table of contents at page 2

9.37 octave – Multi-VCO octave animator

This circuit is used to control the pitches of three oscilla-
tors by octave or evenfifths. It also allows a linear detune
in order to make the common sound of the VCOs sound
fatter.

Here is an example for a setup where the octave spread-
ing and the detune is controlled with two pots:

[octave]
input = I1
output1 = O1
output2 = O2
output3 = O3
spread = P1.1
detune = P1.2

Patch the 1 V / octave inputs of three VCOs at O1, O2 and
O3. Tune all VCOs at exactly the same pitch. Patch the
pitch output from your sequencer, quantizer or whatever
to I1.

Nowwith the pot P1.1 turned fully left nothing changes.
All VCOs will get exactly the same pitch. As you turn up
thepot thepitchesof theVCOs2and3will start togetoc-
tavedupmore andmore until VCO2 is twooctaves above
VCO 1 and VCO 3 is four octaves above VCO 1.

If you add fifths = on then intermediate steps shift the
pitch by perfect fifths.

Note: Theoutputoutput1was implemented just for sake
of completeness. It passes through the input to output1,
since the pitch of VCO 1 is never detuned nor pitched up.
If you are running low in outputs then some use a passive
multiple or stacked cable and connect VCO 1 externally
the pitch and thus save one output.

Detune

In the example, if you turn P1.2, VCO 2 will be detuned
up and VCO 3 down. A very slight turn will get get you
the nice fat classical detune sound. The speciality here
is: the detune is linear. This means that the detune is al-
ways done by the same number of Hertz – regardless of
the current pitch. This is done by automatically adapting
the detune voltage to be less in higher pitches and greater
in lower pitches. The result is a beating independent of
pitch.

Animation

Since everything in is CV’able so is spread. A nice
application is to use a sequencer or clocked random gen-
erator for animating the octaving. Here is an example:

[random]
trigger = I1
output = _RANDOM

[octave]
input = I1
output1 = O1
output2 = O2
output3 = O3
spread = _RANDOM * P1.1

Now P1.1 controls the depth of random octave anima-
tion.

DROIDmanual for blue-1 155 Table of contents at page 2

Input Type Default Description

input
�
� 1V

Oct 0V The general pitch information on a 1 V / octave base to be used for the three VCOs.

spread 0 The amount of octave spread between output1 and output3. At a value of 1.0 the spread is four octaves.

detune 0 1 0.0 The amount of linear detuneofVCO2and3. This isnotona1V / octave base but corresponds to an absolute frequency
difference inHertz. The exact frequency difference cannot be set here, since that depends on howyouhave tuned your
VCOs. But the rule is the following: If input is a 0 V and detune is 1.0, the detune is by four semitones. And for an
input of 1 V (one octave higher) it is just two semitones, because that results in the same frequency difference. For
2 V (two octaves up) it ist just one semitone and for 3 V half a semitone (and so on). Best thing is to simply try out and
listen!

fifths off Set this to 1 or on if you want to include perfect fifths as intermediate steps.

Output Type Description

output1 ... output3
�
� 1V

Oct Outputs for the 1 V / octave of the three VCOs. output1 is an exact copy of input so you could omit that and rather
patch VCO 1 to the original pitch CV.

One octave circuit needs 92 bytes of RAM.

DROIDmanual for blue-1 156 Table of contents at page 2

9.38 pot – Helper circuit for pots

This circuit adds plenty of functionality to the controller
pots in one circuit. It helps with various tasks. It re-
places the former circuits notchedpot and switchedpot
and these are also the main applications of pot: the sim-
ulation a precise center dent (notch) and the sharing of
one pot for several different functions.

Convert a knob to bipolar output voltage

Let’s start with some simple features. There are a cou-
ple of useful outputs, all of which you could do externally
by use of some math. The following example converts a
pot (which is ranging from 0 to 1) to a bipolar pot rang-
ing from -1 to +1 (or -10 V to +10 V if you send it to an
output):

[pot]
pot = P1.1
bipolar = O1 # Send -10V ... +10V to O1

Have a look into the table of jacks below about further
useful things like splitting the pot’s way in two halfs.

Center notch

pot can simulate apotentiometerwith anotchat the cen-
ter. It helps to exactly select the center position by defin-
ing a ”range of tolerance” that is considered to be the cen-
ter. This range is called “notch” and is given in a per-
centage of the available range. I suggest using 10% so
you don’t loose to much pot resolution, but it’s still easy
enough to hit the center reliably. Here is an example:

[pot]
pot = P1.1
notch = 10%
output = _ACTIVITY

[algoquencer]
activity = _ACTIVITY
...

Slope

Sometimes you want a bit more resolution at the smaller
values of the pot range. Maybe the pot controls a time
from 0.0 to 1.0 seconds. And in the low range, say about
0.1 seconds, you need finer control.

You can change the slope of the pot in a way that either
small valuesor valuesnear1.0are “strechedout”. Thede-
fault is slope = 1.0. Look at the following diagram for
the impact of different slope values:

0 20 40 60 80 100
0

0.25

0.5

0.75

1

pot movement(%)

ou
tp
u
t
v
a
lu
e

0.5
1.0
2.0
3.0

As slope value of 0.0 does not make sense, because the
pot would stick to 0.0 all the time, a minimum value of
0.001 is enforced.

If you are curious about the algorithm: This operation is
just xslope. So it’s not “logarithmic” or “exponential” but
polynomial.

Sharing pots

Potentiometers are valuable ressources and sooner or
later youwill run into a situation where youwish you had
more pots. So you come up with the idea of using one
pot formore thanone function and switchbetween those
with a button.

Previously offered the circuit switchedpot for
that taskbut thathad certain limitations andalsowasnot
consistent with other circuits.

Let’smake an example: Our task is to share pot P1.1 so it
sets individual releasevalues for fourdifferent envelopes.
First we need something to switch between these four.
We do this with a buttongroup (see page 70):

[p2b8]

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

Now at any given time, exactly one of the four buttons
(i.e. their LEDs) is active. Now we add four pot circuits
using the samepot. The trick is the select input. Each of

DROIDmanual for blue-1 157 Table of contents at page 2

these four should be selected just if one specific button
is active. The output of each is being sent to one of the
envelopes:

[pot]
pot = P1.1
select = L1.1
output = _RELEASE1

[pot]
pot = P1.1
select = L1.2
output = _RELEASE2

[pot]
pot = P1.1
select = L1.3
output = _RELEASE3

[pot]
pot = P1.1
select = L1.4
output = _RELEASE4

Finally we can add the four envelopes:

[contour]
trigger = I1
release = _RELEASE1
output = O1

[contour]
trigger = I2
release = _RELEASE2
output = O2

[contour]
trigger = I3
release = _RELEASE3

output = O3

[contour]
trigger = I4
release = _RELEASE4
output = O4

Nowyou can switch between the four envelopeswith the
buttons and use the pot to adjust the release time of the
selected envelope.

Hints:

• Don’t mix up B1.1 and L1.1. If youwould use B1.1
for the switching, you would need to hold the but-
tondownwhile turning theknob. Inwhich caseyou
wouldn’t need the buttongroup circuit.

• It is supported (andmaybe useful) to select several
of the ”virtual” pots at the same time. In such a sit-
uation the turning of the real knob will adjust all of
the selected values at the same time.

• Pots are nomotorized faders. So they cannot show
the current value correctly after switching. See be-
low for details.

• In certain cases the selectat input might come
handy: if you do the switching with one number
that changes, not a bunch of gate signals. See the
jack table below for details.

Picking up the pots

Pots are no motorized faders and no encoders. So when
reusing a pot formore than one function at a time there is
always the problemwhen set to one pot function the pot
ist likely not set to the current value of the function. As
an example let’s assume that – using the upper example –
you first press B1.1 and set decay fully CW 1.0. Now you
select B1.2. Because 0.5 is the start position of every vir-

tual pot that is the current value of the second virtual pot.
But the physical pot is at 1.0.

We solve this in the following way:

• If you turn the physical pot right, the value of the
virtual pot is always increased until both reach 1.0
at the same time.

• If the physical pot is already at 1.0when you select
a virtual pot, it cannot be increased further. You
first have to turn the pot left a bit and then right
again.

• If you turn the physical pot left, then the value of
the virtual pot is always decreased until both reach
0.0 at the same time.

• If the physical pot is already at 0.0when you select
a virtual pot, it cannot be decreased further. You
first have to turn the pot right and then left again.

If you really want even more details – here we go: Let’s
assume that the virtual pot is at 0.4 when you select it.
And let’s further assume that the physical pot is at po-
sition 0.8. When you turn it left, the physical pot has a
way of 0.8 to go until 0.0 and the virtual just 0.4. So
the virtual pot is moving with half of the speed, for both
to reach 0.0 at the same time. When you turn the pot
right, the virtual pot has 0.6 to go until maximum, while
the physical pot has just 0.2 left until it reaches its max-
imum. So now the virtual pot moves three times faster
than the physical.

This algorithm is different than the common “picking up”
of pots that you see in Eurorack land quite a lot in such
situations. I preferred my solution because it seems to
be more convenient – especially if you want to change a
value a little bit. Also it allows to have multiple virtual
pots to be selected at the same timewithout having their
values immediately snap to the same value.

By the way: it is also possible to select none of the pots.

DROIDmanual for blue-1 158 Table of contents at page 2

Which is a convenient way to reset the physical pot to
the middle position so that you always have headroom
for movement left and right, before selecting one of the
virtual pots.

Splitting the pot into two hemisperes

The jacks lefthalf, righthalf, lefthalfinv and
righthalfinv allow you to split the pot in the middle

into two ranges and use them for something completely
different. Let’s make an example:

[pot]
pot = P1.1
lefthalf = O1
righthalf = O2

Now let’s start with the pot in the center position. Both
outputs will be at 0.0. If you now turn the pot to the left,

just lefthalf (at O1) is going to rise until it reaches 1.0
at the left end of the pot range. righthalf is staying at 0
all the time.

At the right half of the pot range, likewiselefthalf stays
zero and righthalfwill raise from 0 to 1.

The jacks lefthalfinv and righthalfinv are similar,
but are 1.0 in the neutral position in the center and fall
to 0.0 at the edges.

Input Type Default Description

select + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

pot 0 1 0.0 Wire your pot here, e.g. P1.1

outputscale 1.0 The final output is multiplied with this value. It’s a convenient method for scaling up and down the pot range.

notch 0.0 By setting this parameter to a positive number you create an artificial “notch” of that size. We suggest using 0.1 (or
10%. The maximum allowed value is 0.5. Greater values will be reduced to that. Note: Using this in combination with
outputscale also moves the notching point. E.g. with outputscale = 2 the notch will be at 1.0.

slope 1.0 Changes the resolution of the pot in lower or higher ranges. Set slope to 2 or more, if you want small values near 0.0
to be “zoomed in”. Set slope to 0.5 or 0.3 if you want to zoom in value nears 1.0.

DROIDmanual for blue-1 159 Table of contents at page 2

Input Type Default Description

ledgauge + The “LED gauge” uses the 16 LEDs of the master in order to indicate the current value of the pot. This is
especially useful for “virtual” pots – i.e. those pots that you get when you use select in order to layer several different
functions onto one pot. In that situation the position of the physical pot can be different than that of the virtual one,
so the gauge shows you the effective virtual value.

Furthermore, by illuminating the inner four LEDs, the gauge showswhen the pot hits exactly 0.5. This can only happen
if you use the notch parameter. Otherwise its practically impossible to hit exactly.

The LED gauge is automatically activated if you use select. If you don’t like the LED gauge, you can turn it off with
ledgauge = off. Otherwise ledgauge set’s the color of the indicator in the sameway as the R-registers do and at the
same time enables the gauge even if you don’t use select.

Here are some color examples that you can use for the value of ledgauge:

0.2 cyan

0.4 green

0.6 yellow

0.73 orange

0.8 red

1.0 magenta

1.1 violet

1.2 blue

startvalue 0 1 + This parameter onlymakes sense if youwork with the select input in order to create overlayed virtual pots. Then the
virtual pot value will be set to this value when your starts. Also the current value will no longer be persisted to
the SD card. Otherwise it starts at 0.5 at the very first time and is than persisted to the SD card. Please also have a
look at the reset input.

reset A trigger here resets the virtual pot value to 0.5 or – if startvalue is patched – to that value. This onlymakes sense if
you use select for creating overlayed virtual pots.

Output Type Description

output 0 1 Your pot output comes here.

DROIDmanual for blue-1 160 Table of contents at page 2

Output Type Description

bipolar Optional outputwith a range from-1.0 to1.0,where the center notch is at 0.0 (or from-outputscale to+outputscale
if that is used).

absbipolar Avariation of bipolar that always outputs a positive value, i.e. the potwill go 1 ... 0.5 ... 0 ... 0.5 ... 1 (if outputscale
is not used).

lefthalf This output allows you to split the pot into two hemispheres. Here you get outputscale ... 0.0 while the pot is in the
left half. In the middle and right of it you always get 0.

righthalf This is the same but for the right half. It outputs 0 while the pot is in the left half and 0.0 ... outputscale from the
middle to the fully right position.

lefthalfinv This outputs 1.0 - lefthalf, i.e. the value range 0.0 ... 1.0 ... 1.0 when the pot moves left→mid→ right (and the
scaled by outputscale).

righthalfinv This outputs 1.0 - righthalf, i.e. the value range 1.0 ... 1.0 ... 0.0 when the pot moves left→mid→ right (and the
scaled by outputscale).

onchange This output emits a trigger whenever the pot is turned in either direction.

One pot circuit needs 208 bytes of RAM.

DROIDmanual for blue-1 161 Table of contents at page 2

9.39 quantizer – Non-musical quantizer

Thisquantizer circuit is very simple. It readsan input volt-
age, quantizes it to thenext discrete step that you config-
ured and outputs it.

You canuse it formusical purposes by setting the number
of steps to 12 per Volt (which is default). It will quantize
the input to semitones.

The following example scales down a pot P1.1 to 1 V (i.e.
one octave) and then quantizes it to semitones. Since 12
is the default value for steps this parameter can be omit-
ted here:

[quantizer]
input = P1.1 * 1V
output = O1

Note1: In fact you can select 13 semitones here because
if you turn the pot fully CW it will output 1, which will be
scaled to1Vand thenquantized to1V–which is the13th

semitone above the lowest possible note.

Note2: if you are looking for a more musical quantizer
then have a look at the Minifonion circuit.

You can use the Quantizer circuit as a sample & hold cir-
cuit if you set steps to 0 and use the trigger input:

[quantizer]
input = I1
steps = 0
trigger = I2
output = O1

Input Type Default Description

input 0.0 Patch the unquantized input voltage here

trigger This jack is optional. If you patch it, the quantizer will work in triggered mode. Here the output pitch is always frozen
until the next trigger happens.

steps 1 2 3 12 Number of steps that one Volt should be divided in. The default is 12 andwill quantize the input voltage to semitones.
The number of steps is related to a value of 1 V which means 0.1. It is allowed to use a fractional number here. E.g.
the value 1.2will quantize to 12 steps per 10 V (which means 12 steps per 1.0, which canmake sense. A value of 0.0
(or lower) will basically mean an infinite number of steps and thus practically disable quantization.

bypass 0 If you set this gate input to 1 then quantization is bypassed and the input voltage is directly copied to the output.

Output Type Description

output Here comes your quantized output voltage

One quantizer circuit needs 92 bytes of RAM.

DROIDmanual for blue-1 162 Table of contents at page 2

9.40 queue – Clocked CV shift register

This circuit implements a shift register (a queue) with 64
cells. Each cell contains one CV value. At each clock im-
pulse the CVs each move one cell forwards. The last CV
is dropped. And the current input value is copied to the
first cell.

There are eight outputs, which you can place at any of the
64 cells you like. If you do not specify any placement, the
outputs are placed at the first eight cells – und thus the
information in the remaining 56 cells is not being used.

The followingexample readsCVs fromthe inputI1. O4al-
ways shows the CV value that was seen at the input four
cycles previously:

[queue]
input = I1
clock = I2
output4 = O4

The next example places three outputs at the positions 3,
24 and 64:

[queue]
input = I1
clock = I2
outputpos1 = 3
outputpos2 = 24

outputpos3 = 64
output1 = O1
output2 = O2
output3 = O3

Please note:

• Since the DROID is very precise in processing CV
voltages you can use the queue in order to delay
melodies from sequencers etc.

• As always also the inputs outputpos1 ...
outputpos8 may be CV controlled and change
in time.

Input Type Default Description

input 0.0 This CV will be pushed into the first cell of the shift register whenever a clock occurs.

clock Each clock signal at this jack will move the CV content from every cell of the shift register to the next cell. The CV in
the last cell will be dropped.

outputpos1 ... outputpos8 1 2 3 + Specifies the position of each of the eight outputs – i.e. which cell of the shift register it should output. Allowed are
values from 1 up to 64. These jacks defaults to 1, 2, ... 8, so if you do not wire them the eight outputs reflect the first
eight positions of the shift register.

Output Type Description

output1 ... output8 Eight outputs for eight different positions of the register. If you do notwire outputpos1 ... outputpos8, these outputs
show the content of the 1st, 2nd, ... 8th cell.

One queue circuit needs 468 bytes of RAM.

DROIDmanual for blue-1 163 Table of contents at page 2

9.41 random – Random number generator

This circuit creates random numbers between two tun-
able levels minimum and maximum. In clocked mode each
clock creates andholds anew randomvalue. Inunclocked
mode the random values change at the maximum possi-
ble speed (about 6000 times per second).

Simple example for clocked random numbers between
0.0 and 1.0 (1.0 translates into 10 V at the output):

[random]
clock = I1
output = O1

Example for creating random output voltages between
1 V and 3 V:

[random]
clock = I1
output = O1
minimum = 1V
maximum = 3V

Input Type Default Description

clock Optional triggger: if this input is used then the output holds the current random number until the next clock impulse
(sample & hold)

minimum 0.0 Minimum possible random number

maximum 1.0 Maximum possible random number

steps 1 2 3 0 Number of different voltage levels. If this is set to 0 (default), any voltage can appear, there is no limit. If this is 1,
then there is no random any more since there is only one allowed step (which is the average between minimum and
maximum. At 2 the only two possible output values are minimum and maximum. At 3 the possible levels are minimum,
minimum+maximum

2 and maximum and so on...

Output Type Description

output Output of the random number / voltage

One random circuit needs 88 bytes of RAM.

DROIDmanual for blue-1 164 Table of contents at page 2

9.42 sample – Sample &Hold Circuit

This is a simple sample&hold circuit. Each timeapositive
trigger is seen at the jack sample a new value is sampled
from input and sent to the output.

Example:

[sample]

input = I1
sample = I2
output = O1

Input Type Default Description

input 0.0 Input signal to be sampled

sample A positive trigger here will read the current value from input and store it internally.

gate This is an alternative way of making the circuit take a sample from the input. Here it is sampling all the time while the
gate is high. In that way it is a bit like bypass. But as soon as the gate goes low again, the output sticks to the last
sample value just before that.

timewindow 0.0 This optional parameter helps tackling a problem thatmany (non-analog) sequencers show: often their pitch CV is not
at its final destination value at the time their gate is being output. Often you see a very short “slew” ramp of say 5 ms
after the gate. During that time the pitch CVmoves from its former to the new value.

Now if you trigger thesample circuitwith the sequencer’s gate youwill essentially sample thepreviouspitchCV instead
of the new one. Or maybe something in between.

Now the timewindow parameter introduces a short time window after the sample trigger. During that time period the
sample & hold circuit will constantly adapt to a changed input CV (is essentially in bypass mode). When that time is
over, the input is finally frozen.

The timewindow parameter is in seconds. So when you set timewindow to say 0.005 (whichmeans 5ms), you give the
input CV 5ms time for settling to its final value after a trigger to sample before freezing it.

bypass While this gate input is high, the circuit is bypassed and input is copied to output.

Output Type Description

output The most recently sampled value is sent here.

One sample circuit needs 108 bytes of RAM.

DROIDmanual for blue-1 165 Table of contents at page 2

9.43 sequencer – Eight step sequencer

This circuit implements a sequencer that is a bit similar
to thewidely knownMetropolis sequencer by Intellijel. It
lacks a couple of its features – but most of these can be
patched externally by use of other circuits. On the other
hand it is not limited to8stages sinceyoucanchainmulti-
ple instance of this sequencer together to form one large
sequencer very easily.

Since everything in the is controllable via CV, of
course pitch and gate signals are included, which makes
the circuitmuchmore versatile than itmay seemat a first
look.

Here is a small example of a CV sequencer that is playing
four voltages in a turn (it needs a clock into I1):

[sequencer]
clock = I1
pitchoutput = O1
pitch1 = 1V
pitch2 = 3.5V
pitch3 = 8V
pitch4 = -2V

If you set the outputscale parameter to 1
12 V (which is

the same as the number 1
120 , you can specify pitches di-

rectly in semitones:

[sequencer]
clock = I1
pitchoutput = O1
outputscale = 1/120
pitch1 = 0
pitch2 = 12
pitch3 = 10
pitch4 = 7
pitch5 = 5

pitch6 = 3
pitch7 = 5
pitch8 = 7

The following example uses four expander buttons for
turning the steps on or off and four pots, which are scaled
down to a range of 0V ... 3V.

[p2b8]
[p2b8]

[lfo]
hz = 4
square = _CLOCK

[button]
button = B1.1
led = L1.1

[button]
button = B1.2
led = L1.2

[button]
button = B1.3
led = L1.3

[button]
button = B1.4
led = L1.4

[sequencer]
clock = _CLOCK
pitchoutput = O1
gateoutput = O2
pitch1 = P1.1 * 3V
pitch2 = P1.2 * 3V
pitch3 = P2.1 * 3V

pitch4 = P2.2 * 3V
gate1 = L1.1
gate2 = L1.2
gate3 = L1.3
gate4 = L1.4

Note: the pitch values you dial in with the pots are not
quantized, so it’s a bit hard to hit a musical pitch. Please
have a look at the circuits quantizer (page 162) and
minifonion (page 145) for how to quantize pitch values.

Making longer sequences

The sequencer circuit is limited to 8 steps. But: you can
easily chain a large number of these circuits together to
form longer sequences. This is super easy. Just set the
jack chaintonext to 1 and place another sequencer cir-
cuit with more steps after that. Here is an example for a
12 step sequencer:

[p2b8]

[lfo]
hz = P1.1 * 30
output = _CLOCK

[sequencer]
clock = _CLOCK
reset = B1.1
pitchoutput = O1
gateoutput = O2
outputscaling = 1/120
pitch1 = 1
pitch2 = 8
pitch3 = 13
pitch4 = 25

DROIDmanual for blue-1 166 Table of contents at page 2

pitch5 = 4
pitch6 = 11
pitch7 = 7
pitch8 = 21
chaintonext = 1 # continue at next sequencer

[sequencer]
pitch1 = 2
pitch2 = 9
pitch3 = 14
pitch4 = 26

Youcanmake the chain longerbyaddingmoresequencer
circuits. All but the last must have chaintonext set to 1.
Here comes a 19 step sequencer:

[p2b8]

[lfo]
hz = P1.1 * 30
output = _CLOCK

[sequencer]
clock = _CLOCK
reset = B1.1
pitchoutput = O1
gateoutput = O2
outputscaling = 1/120
pitch1 = 1
pitch2 = 8
pitch3 = 13
pitch4 = 25
pitch5 = 4
pitch6 = 11
pitch7 = 7
pitch8 = 21
chaintonext = 1 # continue at next sequencer

[sequencer]
pitch1 = 2
pitch2 = 9

pitch3 = 14
pitch4 = 26
pitch5 = 2
pitch6 = 9
pitch7 = 14
pitch8 = 26
chaintonext = 1 # continue at next sequencer

[sequencer]
pitch1 = 3
pitch2 = 10
pitch3 = 15

Notes:

• Define all the input and output jacks like clock,
pitchoutput etc. just for the first sequencer. All
subsequent ones just have pitch, gate, repeat,
slew and cv definitions.

• The parameter chaintonext is dynamic. You could
make or break the chain with a toggle button or
something else if you like.

DROIDmanual for blue-1 167 Table of contents at page 2

Input Type Default Description

clock Each trigger into this jack advances the sequence by one step.

reset A trigger here resets the sequence to the first step

stages 1 2 3 + Number of inputs of pitch.., gate.., slew.., cv and repeats that should be used. If you set stages to a number
higher than the number of used inputs, all inputs will be used. If you omit this parameter, all used inputs will be used.

steps 1 2 3 0 With this input you can force the sequencer to begin from start after a certain number of clock cycles. If you omit the
parameter or if it is set to 0, the sequencer will play all stages with all repeats until it resets to the beginning.

transpose 0.0 This voltage is added to the pitch output.

outputscaling 1.0 The output pitch is multiplied by this parameter.

gatelength + The length of the output gates. If it is unpatched, the original input clock is fed through 1:1 (with its own duty cycle).
When used it is a ratio from 0.0 to 1.0 and relative to the cycle of the input clock.

pitch1 ... pitch8 0.0 These are the pitches of the various steps. You can put fixed numbers here but also of course pots or variable inputs.
Note: The number of used input jacks defines the length of the sequence, unless you override that with stages.

cv1 ... cv8 0.0 Each step has an optional CV assigned. You can use that CV for modulating something or even outputting a second
pitch information.

gate1 ... gate8 1 The gate inputs should be 0 (off) or 1 (on). For stages with a 0-gate no output gate is produced and the pitch informa-
tion is kept at the previous state. Unpatched gates are considered to be on!

slew1 ... slew8 0.0 Enables slew limiting for that stage. The input is not binary but you can set the amount of slew here – individually for
each step. 0.0 switches the slew off, higher values create slower slews.

repeat1 ... repeat8 1.0 Set this to a positive integer number like 1, 2, and so on. It sets the number of times this stage should be repeated until
the next stage will be approached. It is currently not allowed to have 0 repeats – although this would make sense in a
future version.

chaintonext + If you set this input to 1, the next sequencer circuit’s pitch and other step inputs will be added to this sequencer. See
the general circuit notes for details.

Output Type Description

pitchoutput The pitch output. It is unquantized.

cvoutput The optional CV output, in case you use the cv1 ... cv8 inputs.

gateoutput The gate output.

DROIDmanual for blue-1 168 Table of contents at page 2

One sequencer circuit needs 844 bytes of RAM.

DROIDmanual for blue-1 169 Table of contents at page 2

9.44 slew – Slew limiter

This is a CV controllable slew limiter for CVs. Special
about it is that it implements three alternative algo-
rithms. The traditional exponential algorithm (as is com-
monly implemented in analog circuits), a linear algorithm
and a special S-shaped curve.

Here is a simple example for a slew limiting on I1−→ O1
which is controlled with the pot P1.1:

[slew]
input = I1
slew = P1.1
exponential = O1

Exponential shape

This is the “classical” slew limit shape, which originates
from the (negative) exponential loading current of a ca-
pacitor. It is also the shape of a low pass filter that is
used for slew limiting. The slope is proportional to the
distance between the current and the target voltage. Or
in other words the voltage changes fast at the beginning
and slower at the end:

0

2

4

6

time

V
ol
ts

Exponential original pitch

Linear shape

The linear algorithm simply limits the voltage change per
time to a certain change rate, e.g. to 10 V per second.
If the input voltage changes faster (for example suddenly
jumpsup), theoutput voltage follows thatwith thatmax-
imum rate. At a pot position of 0.5 themaximum slew is
120 V per second.

0

2

4

6

time
V
ol
ts

Linear original pitch

S-Curve shape

The S-curve – when applied to pitches – sounds different
than an exponential curve since it more reflects the way
e.g. a trombone player accelerates and deaccelerates his
arm in order to move to another pitch. In our algorithm
we assume that in the first half of the time the arm accel-
erates at a constant rate (which is controlled by the slew
parameter) and at the second half of the time it deaccel-
erates (again at that rate, just negative), until it exactly
reaches the target pitch.

There is one audible difference to a real trombone player,
however. The real musician would start to move his arm

before the new note begins, in order to be at the target
position right in time. But here themovement is initiated
by the pitch change it self so it is delayed by the slew lim-
iting.

0

2

4

6

time

V
ol
ts

S-curve original pitch

DROIDmanual for blue-1 170 Table of contents at page 2

Input Type Default Description

input Wire the CV that you wish to slew limit here.

slew 1.0 This controls the slew rate. A value of 0.0 disables slew limiting. The output immediately follows the input without
any delay. A value of for example 2.0 in linear mode means that 2.0 seconds are needed for a change of 1 V (which is
a value of 0.1 or one octave if used as pitch). In the other twomodes the slew time is tuned to sound similar. Negative
values of this parameter are treated as 0.0.

slewup 1.0 This allows a special handling when the voltage moves upwards. The slew limiting for upwards is slew multiplied
with slewup. Since slew defaults to 1.0 you can just use slewup and slewdown if you want to control both directions
separately.

slewdown 1.0 Sets the slew rate for downwards movement.

gate + If this jack is patched, the slew limiting is only active while this gate is high. Otherwise it’s like setting the slew param-
eter to zero.

Output Type Description

exponential Output for the resulting CV with the exponential (classical) slew algorithm applied

linear Output for linear slew limiting

scurve Output with the slew limitation according to the S-curve algorithm.

One slew circuit needs 124 bytes of RAM.

DROIDmanual for blue-1 171 Table of contents at page 2

9.45 spring – Physical spring simulation

This circuits implements a physical simulation of a mass
hanging from on an ideal spring, like in the following
drawing. This can create interesting CV sources.

0.00

0.25

0.50

0.75

1.00 mass

gravity

springforce

Without any further parameters the mass starts at po-
sition 0.00 and velocity 0.00 and is accelerating down-
wards until the force of the spring equals the gravity. At
this point it decelerates until the velocity is zero. Now
themass is being accelerated upwards until it reaches the
top position at 0.00 again. This results, in essence, to a
damped sine wave.

The position and velocity are available at their respec-
tive outputs ready to be used for modulation.

[spring]
position = O1
velocity = O2

Now, this could be done more easily with the LFO circuit
(see page 109). But it’s getting interestingwhen you look
at the other parameters and themodulation possibilities.
Please look at the table of jacks for details.

Friction

Perdefault themotion iswithoutany frictionand thus the
mass will move up and down forever. You can apply two
different types of friction. flowresistance is the type
of friction a body has in a liquid or gas. Its force is rela-
tive to its velocity. Whereas the normal friction force
is constant.

When you use any type of friction, the spring will finally
stop swinging. You need to either shove it from time to
time or reset it to its start with the reset trigger input.

The following example will create a slowly decaying sine
wave, which is restarted whenever a trigger is sent to
reset:

[spring]
flowresistance = 0.5
reset = I1
position = O1
velocity = O2

Shoving

You also can shove the mass downwards or upwards. As
long as you send a gate signal into shove the mass will
be shoved downwards. The exact force can be set with
shoveforce and defaults to being the same as the grav-
ity. A negative value will lift the mass upwards.

Setting shove to a constant 1 value will steadily apply
shoveforce, which can be interesting as that is itself a
changing CV (some LFO, feedback loop or whatever).

The physical model

Pleasenote that thephysicalmodel is normalized inaway
such that every parameter is 1. For example the mass is
1kg and the gravity is 1 N

kg . The force of the spring is 1
N
m .

In order to avoid anomalies or infinities, the velocity of
the mass is limited to ±10m

s and the position is limited
to the range of±10m.

DROIDmanual for blue-1 172 Table of contents at page 2

Input Type Default Description

mass 1.0 The mass of the object on the spring. The heavier it is, the farther the spring will move up and down.

gravity 1.0 The gravity of the simulated planet the spring is mounted at. If you set the gravity to zero, themass will move exactly
around the zero position from positive to negative and back. But you need to shove it or set a start position other than
0, in order to get it started.

springforce 1.0 The force of the string per m it is stretched. In an ideal spring the force is proportional to the current elongation.

flowresistance 0.0 Setting this to a value> 0will dampen the oscillation in a way, that higher velocities will be dampedmore then slower
ones. This means that impact of the friction will get less and less as time goes by and the movement slows down.

friction 0.0 Setting this to a value > 0 will also dampen the oscillation, but in a way that is independent of the current speed of
the mass.

speed 1.0 This parameter speeds up (or slows down) the perceived time. It works on a 1V/Oct base. So if you set speed to 1V or
0.1 it will speed up the movement by 100%.

shove 0 While this gate input is logical 1, an extra force of 1 N is applied to themass pointing downwards. You can change that
force with shoveforce.

shoveforce 1.0 This is the force being applied to the mass while shove is active

reset Resets the whole system to its start position.

startvelocity 0.0 Sets the velocity the mass has which starts of a reset is triggered

startposition 0.0 Sets the position the spring has which starts of a reset is triggered

Output Type Description

velocity Outputs the current velocity of the mass

position Output the current length of the string. If the string goes upwards (which is possible with certain modulations), this
can be negative.

One spring circuit needs 208 bytes of RAM.

DROIDmanual for blue-1 173 Table of contents at page 2

9.46 superjust – Perfect intonation of up to eight voices

Introduction

This circuit automatically creates a perfect pure intona-
tion for up to eight input pitches. This means that all
pitches are in just intervals, which correspond to small
whole number ratios such as 3

2 or 5
4 . Assuming that

you have perfectly tuned and calibrated VCOs, If these
pitches are used to play a chord, there will be no or just
minimal audible beatings and the chord will sound very
pure.

In normal tempered intonation all intervals are amultiple
of 12

√
2 and thus there is no just interval at all, with the

exception of the octave. So all chords will sound impure.

The problem about pure or just intonation is, that you
need to decide for just one scale, e.g. C major, and then
tune all 12 notes in a way that chords from that scale
sound good. But as soon as you change the scale, the in-
tervals will sound ugly.

Whatmakes the superjustunique is that fact, that it au-
tomatically creates a pure intonation in a dynamic way.
At every time it “listens” to the notes that are currently
being played and creates a perfect intonation just for
those, not for a scale or so. As soon as at least one note
changes, all notes are retuned in order to find a new per-
fect tuning. This is a bit like a well-trained string ensem-
ble or choir, where each musician listens and adjusts his
or her pitch in relation to all others.

Usage

The nice thing is: you don’t need any configuration. You
need not specify any information about the root note,
the scale or anything else. Neither need the inputs be

quantized so some scale or tuned to 440 Hz. The circuit
will simply analyse all input pitches, apply its algorithm
(patent pending) and then just slightly raises or lowers
each note so that at the end each pair of frequencies have
a rational oscillation ratio with small numerator and de-
nominator. This is done in a way that the average pitch
does not change. Just pipe your pitches through that cir-
cuit and you are done. And if youwant to use a quantizer,
use superjust after quantization.

Here an example for three voices:

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3

Tuning

Of course, an exact tuning of your VCOs is crucial, since
the pitch differences between a normal tempered into-
nation and a perfect intonation are quite small. The cir-
cuit helps you in the process of tuning with the inputs
tuningmode, which you can map to a toggle button:

[button]
button = B1.1
led = L1.1

[superjust]
input1 = I1
input2 = I2

input3 = I3
output1 = O1
output2 = O2
output3 = O3
tuningmode = L1.1

Nowwhen the button B1.1 is active, all outputs will out-
put zero volts. Tuning with 0 V is not optimal in some
cases. You should tune your VCOs always roughly in the
average pitch you play them. So you can set the tuning
voltage with the parameter tuningpitch. Here it is set
to 2 V (2 octaves higher then 0 V):

[button]
button = B1.1
led = L1.1

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3
tuningmode = L1.1
tuningpitch = 2V

Sometimes it is desirable to change the tuning pitch to
other octaves on the fly. This example uses pot P1.1 for
going through several octaves, and uses a quantizer for
creating steps of 1 V each:

[button]
button = B1.1
led = L1.1

DROIDmanual for blue-1 174 Table of contents at page 2

[quantizer]
input = P1.1
steps = 1 # 1 step per octave
output = _TUNINGPITCH

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3
tuningmode = L1.1
tuningpitch = _TUNINGPITCH

Perfect VCO calibration

If you reallywant to eliminate all beatings in your chords
while using analog VCOs, you probably need something
to correct tracking deviations. Here I strongly recom-
mend using the circuit calibrator (see page 73). Here
is an example with three voices, where buttons of a P2B8
are used for fine tuning the VCO tracking in each octave:

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = _O1
output2 = _O2
output3 = _O3

[calibrator]

input = _O1
output = O1
nudgeup = B1.1
nudgedown = B1.3

[calibrator]
input = _O2
output = O2
nudgeup = B1.2
nudgedown = B1.4

[calibrator]
input = _O3
output = O3
nudgeup = B1.5
nudgedown = B1.7

The number of pitch inputs and pitch outputs you patch
should be identical.

Input Type Default Description

input1 ... input8
�
� 1V

Oct + 1st ... 8th pitch input

tuningmode 0 While this is 1, all outputs output the value set by tuningpitch. This is for tuning all outputs. Since perfect tuning is
crucial for perfect intonation, this is quite useful.

tuningpitch
�
� 1V

Oct 0V This pitch CV will be output while the tuning mode is active.

bypass 0 While this is 1, all inputs are passed through to the outputs without changes.

transpose
�
� 1V

Oct 0V This value is being added to all outputs, but not in tuning or bypass mode. It can e.g. be used for making a vibrato on
a chord.

Output Type Description

output1 ... output8
�
� 1V

Oct 1st ... 8th pitch output

One superjust circuit needs 244 bytes of RAM.

DROIDmanual for blue-1 175 Table of contents at page 2

9.47 switch – Adressable/clockable switch

This circuit supports a set of various switching opera-
tions. It can switch several inputs to one output either
by means of addressing the input via CV or by stepping
forward and backward. You can do the same vice versa:
connecting one input to one of several outputs while set-
ting the inactive outputs to 0 V.

You can even use several inputs and outputs at the same
time and thus create an n×m switch with the option of
rotating the outputs against the inputs by means of ad-
dressing or stepping.

At minimum you need to patch two inputs and one out-
put (or vice versa), plus a switch like forward, backward
or offset.

The first example switches four inputs I1 ... I4 to one
output O1 be means of a trigger at forward. At the be-
ginning I1 is wired to O1. Each time a trigger is seen at
forward the switch switches to the next input and at the
end starts over at I1 again. So it cycles through I1→ I2
→ I3→ I4→ I1:

[switch]
input1 = I1
input2 = I2
input3 = I3
input4 = I4
output = O1
forward = I8

Please note, that output and output1 are synonyms
here. You can use either way you like. Just the same is
input just a shorthand for input1.

Now Let’s do the opposite thing: distribute one input to
four different outputs:

[switch]
input = I1
output1 = O1
output2 = O2
output3 = O3
output4 = O4
forward = I8

Nowwhen you try this out youmight notice that a trigger
to forwardmoves the selected output backwards! This is
no bug but very logical. The reason will get more clear if
we build a switch with several inputs and outputs. Let’s
make a 3×3 switch:

[switch]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3
forward = I8

Now a trigger to forwardmoves each output forward to
the next input. That is the same as saying each input
moves backward to the previous output. Of course you
can change the direction by using backward instead of
forward.

Instead of moving the switch with a trigger you also can
address it by using aCVat the inputoffset. In this exam-
ple we use a steady CV being either 0 (for selecting O1) or
1 (10 V) for selecting O2:

[switch]
input = I1

output1 = O1
output2 = O2
offset = I7

Using two inputs and two outputs creates a switch that
can swap these two. Here with offset 0 input1 is con-
nected to output1 and input2 to output2. If offset is
1, input1 will be connected to output2 and input2 to
output1.

[switch]
input1 = I1
input2 = I2
output1 = O1
output2 = O2
offset = I7

Now let’s make another example for a CV addressable
switch. The CV is read from I7. At a voltage of 0 V
output1 is connected to input1, at 1 V to input2, at 2 V
to input3, at 3 V to input4, at 4 V to input1 again, at 5 V
to input2 and so on:

[switch]
input1 = I1
input2 = I2
input3 = I3
input4 = I4
output1 = O1
offset = I7 * 10 # 1 V per switch step

Generally speaking, if you connect less inputs than out-
puts, the unconnected inputs are regarded as getting a
0V input. If you connect less outputs then inputs, the un-
connected outputs send their values into the black horri-
ble void.

DROIDmanual for blue-1 176 Table of contents at page 2

Input Type Default Description

input1 ... input8 0.0 1st ... 8th input

forward If a trigger or gate is received here, the switch adds one to the current internal switch offset. So every output moves
to the next input and every input moves to the previous output.

backward Similar then forward, but switches backwards

reset Resets the switch to its initial position. Assuming offset is at 0, input1 is connected to output1, input2 to output2
etc.

If reset and a trigger at forward / backward happen at the same time (within 5 ms), the reset will win and the switch
is being reset to offset 0. This avoids problems with unprecise timing of external sequencers.

offset 1 2 3 0 This is for CV addressable switching. The number read here is being used a shifting offset and is always added to the
internal offset. For example if you send 5 here, it is like you have triggered forward five times after the last reset.
Please note, then 5would mean 50 Volts, not 5 Volts. So if you patch an external CV like I1 here, you probably want
to multiply with some useful number.

Output Type Description

output1 ... output8 1st ... 8th output

One switch circuit needs 324 bytes of RAM.

DROIDmanual for blue-1 177 Table of contents at page 2

9.48 switchedpot – Overlay pot withmultiple functions (OBSOLETE)

This circuit has been superseded by the new circuit pot
(see page 157). pot can do all switchedpot can do and
muchmore. So switchedpotwill be removed soon.

This circuit allows you to use one of your potentiometers
on your controllers for up to eight different functions.
It is like creating up to eight virtual pots. With the in-
puts switch1 … switch8 you select, which of these vir-
tual pots are currently active. When you turn the (physi-
cal) pot, all active virtual pots are being changed.

Thevaluesof all virtual pots start at center position (0.5).

The current values of all virtual pots are saved in the
’s internal flash memory, so next time you power

on you have all settings of the virtual pots reserved.

Here is an example, where one pot is used to control both
decay and release of an envelope.

[switchedpot]
pot = P1.1
switch1 = B1.1
switch2 = B1.2
output1 = _DECAY
output2 = _RELEASE

[contour]
gate = I1
decay = _DECAY
release = _RELEASE
output = O1

Now –while you press and hold button B1.1 and turn the
knob, the decay parameterwill change. Holding B1.2will
change release. Holding both at the same time is also
possible and will change decay and release at the same
time.

Hints:

• If you do not like to hold the buttons then you
might want to use the button circuit for convert-
ing the buttons into toggle buttons.

• If you want one button per function and want
always one pot to be selected, you can use the
buttongroup circuit for combining the buttons
into a group.

Picking up the pots

Pots are no encoders. So when reusing a pot for more
than one function at a time there is always the problem
that when you switch to one pot function the pot prob-
ably currently is not set to the current value of the func-
tion. As an example let’s assume that – using the upper
example –youfirstpressB1.1andsetdecay fullyCW1.0.
Now you select release. Because 0.5 is the start position
of every virtual pot that is the current value of release.
But the physical pot is at 1.0.

solves this in the following way:

• If you turn the physical pot right, then the value of
the virtual pot is always increased until both pots
reach 1.0 at the same time.

• If the physical pot is already at 1.0when you select
a virtual pot, it cannot be increased further. You
first have to turn the pot left a bit and then right
again.

• If you turn the physical pot left, then the value of
the virtual pot is always decreased until both pots
reach 0.0 at the same time.

• If the physical pot is already at 0.0when you select
a virtual pot, it cannot be decreased further. You

first have to turn the pot right a bit and then left
again.

Let’s assume that the virtual pot is at 0.4 when you se-
lect it. And let’s further assume that the physical pot is
at position 0.8. When you turn it left the physical pot
as a way of 0.8 go until 0.0 and the virtual just 0.4. So
the virtual pot is moving with half of the speed, so that
both reach 0.0 at the same time. When you turn the pot
right, on the other hand, the virtual pot has 0.6 to go un-
til maximumwhile the physical pot has just 0.2 left until
it reaches its maximum. So now the virtual pot moves
three times faster than the physical.

This algorithm is different than the common “picking up”
up pots that you see in Eurorack land quite a lot in such
situations. Wepreferred our solution over that because it
seems to bemore convenient – especially if you justwant
to change a value just a little bit. Also it allows to have
multiple virtual pots to be selected at the same time.

By the way: in the upper example it is possible to select
none of the pots. That is a convenient way to reset the
physical pot to the middle position so that you always
have headroom for movement left and right, before se-
lecting one of the virtual pots.

DROIDmanual for blue-1 178 Table of contents at page 2

Input Type Default Description

pot 0 1 The pot that you want to overlay, e.g. P1.1

bipolar If this input is set to 1, the usual pot range of 0 ... 1 will be mapped to -1 ... +1, which converts this to a bipolar
potentiometer. This is done by multiplying the output with 2.0 and substracting 1.0 afterwards.

switch1 ... switch8 These inputs select which of the virtual pots should be changed when the physical pot is being turned. These should
be set to 0 or 1 (or off and on).

Output Type Description

output1 ... output8 0 1 The output of the up to eight virtual pots.

One switchedpot circuit needs 244 bytes of RAM.

DROIDmanual for blue-1 179 Table of contents at page 2

9.49 timing – Shuffle/swing and complex timing generator

This circuit converts a steady input clock into an output
clock with flexible timing modifications. The most com-
mon use is a ”swing” feeling where every second note is
delayed. But this circuit is much more flexible.

The length of a timing pattern can be up to eight steps.
Thatmeans that you can set a different relative time shift
for each clock pulse in a sequence of up to eight.

Let’s start with a simple swing pattern, which is just a se-
quence of two. We assume an external input clock at G1
and output the resulting modified clock to G2:

[timing]
clock = G1
output = G2
timing1 = 0.0
timing2 = 0.3

In this example every second clock pulse is delayed by
30% of one clock tick’s duration – which gives a standard

swing pattern.

Creating a reverse swing, where every second pulse is
early is as easy as using a negative number for timing2:

[timing]
clock = G1
output = G2
timing1 = 0.0
timing2 = -0.3

Creating a sequencewith anoddnumber of steps can cre-
ate rather weird groove patterns. Look at the following
example:

[timing]
clock = G1
output = G2
timing1 = 0.0
timing2 = 0.2
timing3 = 0.1

Nowevery secondnoteof three is delayed by 20%and ev-
ery third note by 10%.

Of course, you can use timing in order to create a simple
clock shift by creating a pattern with just one timing, as
well. The following example will shift the input clock for-
wards, so that it always comes a bit earlier. This can be
used for compensating a slight delay of a master clock:

[timing]
clock = G1
output = G2
timing1 = -0.03

Notes:

• This circuit needs a steady and stable input clock.
• In order to get a synchronized start together with
the rest of your patch, it is advisable also to make
use of the reset input.

Input Type Default Description

clock Patch a steady clock here for this circuit to be of any use

reset A trigger here resets the internal step counter and restart at step 1.

timing1 ... timing8 + Specifies a relative timing for each step...

Output Type Description

output Here comes the modified output clock

One timing circuit needs 220 bytes of RAM.

DROIDmanual for blue-1 180 Table of contents at page 2

9.50 togglebutton – Create on/off buttons (OBSOLETE)

This circuit has been superseded by the new circuit
button (see page 66). button can do all togglebutton
can do and much more. So togglebutton will be re-
moved soon.

This small utility circuit converts a normal push button
into a toggle button that is either on or off. It toggles its
state every time the button is being pressed. It even can
persist the current state of the button in the ’s in-
ternal flash memory, so at the next time you start your
modular the button will have the same state as just be-
fore you switched it off.

Typically you will wire button to one of your controllers’
buttons like B1.1 and led to the LED in that button
(L1.1). LED will then always visualise the current state
of the button. As a side effect the LED register L1.1 will
store the button state as a value 0 or 1 and hence can be
used by some other as an input.

Here is a typical example. The button is being used for
enabling the loop in the CV looper:

[togglebutton]
button = B1.4
led = L1.4

[cvlooper]
loop = L1.4

If you do not want the state of the button to be persisted
in the ’s flash memory then use startvalue for
setting a start value. This make sense for the CV looper
since the loop is apparently empty anyway if you start
your . By the way: off is a synonym for 0.

[togglebutton]
button = B1.4
led = L1.4
startvalue = off

[cvlooper]
loop = L1.4

Since a multiplication with 0 or 1 can switch off or on a
signal you can use the LED register directly for enabling
a signal. The next example uses a button for switching
between 0 V and the output of an LFO:

[togglebutton]
button = B1.4
led = L1.4

[lfo]
level = L1.4 # 0 or 1
sine = O1

Usually the toggle button switches between the two val-
ues0 and1. Sometimes youneeddifferent values. There-
fore there are the two inputs offvalue and onvalue for
two alternative values for these two states and the out-
put output1 where you can fetch that value (since led
will continue to send 0 or 1 in order for the LED to work
properly). Here is an example for a toggle button that
switches a clock divider between 2 and 4:

[togglebutton]
button = B1.4
led = L1.4
offvalue = 2
onvalue = 4
output = _CLOCK_DIV

[clocktool]
input = G1 # external clock
output = G2
divide = _CLOCK_DIV

Of course offvalue and onvalue are CV controllable.
Howcanmake this sense? Well – as they can takevariable
inputs you can use a togglebutton for directly switching
between two different input CV signals. The following
example will send two different wave forms of an LFO
to O1. The button B3.1 switches between sawtooth and
sine:

[lfo]
hz = 2
sawtooth = _SAWTOOTH
sine = _SINE

[togglebutton]
button = B3.1
led = L3.1
offvalue = _SAWTOOTH
onvalue = _SINE
output = O1

Hint: if you need to have not only two but three or four
different states for your button then have a look at the
circuit button.

Buttons with up to four layers

The toggle button can overloaded with up to four func-
tions. For switching between these layers you need a CV.
This example assigned three different layers to one but-
ton. Each layer has its own state.

DROIDmanual for blue-1 181 Table of contents at page 2

[togglebutton]
button = B1.4
led = L1.4
output1 = _ENABLE_LOOP
output2 = _FANCY_STUFF

output3 = _FOO_BAR
switch = I1 * 2

Now if I1 is near zero volts, then the button behaves like
in the previous example. But when you set it to 5 V (re-

sulting in a number of 0.5 which is multiplied by 2 and
thus evaluates to 1), then a second copy of the button
is activated with its own state. The LED now shows the
stateof that secondbuttonwhichoutputwill outputs the
value of the first button.

Input Type Default Description

button The actual push button. Usually you want to wire this to B1.1, B1.2 and so on: to one of the push buttons of your
controllers. Each time that input goes from low to high the state of the push button will toggle.

reset1 ... reset4 Apositive trigger edge herewill reset the 1st ... 4th button into the state “not pressed” – regardless of its current state

onvalue 1.0 Value sent to output when the push button is on. Setting this to a different value than the default value saves you
attenuating its value later on when you use it as a CV.

offvalue 0.0 Value sent to outputwhen the push button is off.

doubleclickmode off This input can enable a double clickmodewhen set to 1. In thatmode the button only toggles it’s constant state if you
double press it in a short time. Otherwise it behaves like a momentary button, that inverts the persisted state (which
you toggle with the double click).

startvalue State of the push buttonwhen you switch on your system. Setting this to onor offwill force the button into that state.
Using this jack disables the persistence of the state! In switched mode this will be used for the other button layers as
well.

switch 1 2 3 0 When this jack is in use switched buttons are activated. The button then can be switched via this jack to up to four
different overloaded layers. So effectively you have then four buttons but just the selected button is visible at the
LED. output2 ... output4will output the states of the buttons regardless of which one is currently visible. Use a value
of 1 in order to select the second button, 2 for the third button and so on.

Output Type Description

led When the button’s state is on a value of 1.0 will be sent to that output – regardless of the values in onvalue and
offvalue. Usually you will wire this jack to the LED within the button, e.g. to L1.1, L1.2 and so on

output1 ... output4 This jackwill output either onvalue or offvalue depending on the state of the 1st ... 4th button. If you have notwired
those inputs then this is the same as the led output.

inverted The same as output1, but sends onvaluewhen the button is off and offvaluewhen the button is on. Note: there is
no inverted version of output2 ... output4.

DROIDmanual for blue-1 182 Table of contents at page 2

Output Type Description

negated Similar to inverted, but always sends 1when the button is off and 0when the button is on – independent of the values
of onvalue and offvalue.

One togglebutton circuit needs 212 bytes of RAM.

DROIDmanual for blue-1 183 Table of contents at page 2

9.51 transient – Transient generator

This circuit creates transients. It outputs a voltage that
starts at a start value and goes linearly to an end value.
The duration of that transition is either set in seconds or
specified as a number of clock ticks. This circuit is built in
a way that very long transients are possible, even several
days, weeks, months, years or whatever you like.

Here is a simple example:

[transient]
start = 1V
end = 3V
duration = 600
output = O1

Here the duration is meant to be 600 seconds (10 min-
utes). So at the beginning O1 will be at 1 V. Then it rises
slowly until after tenminutes it reaches 3V. There it stays
forever.

There are twoways of restarting it again. Either you send
a trigger to reset or you set loop to 1. When loop is ac-
tive, the transient will start over at start immediately
when it reaches end:

[transient]
start = 1V
end = 3V
duration = 600
output = O1
reset = G1
loop = 1

As an alternative to seconds you can specify the length
in terms of clock ticks. This needs a steady clock signal
patched into the clock input.

[transient]
start = 0.2
end = 0.7
duration = 32
clock = I1
output = O1

Here the duration of one transient is exactly 32 clock
ticks. This makes it simpler to exactly align a transient
with a musical structure of a song or the like.

Changes while in the air

As start, end and duration are CV inputs, they might
change while the transient is running. This is how
transient behaves in such situations:

The start value is just taken into account whenever the
transient starts. this is:

• When the starts
• When there is a trigger at reset
• When the transient reaches the end and loop is on.

Whenever that happens, the current output level is set to
start. Also theoutputphase is set to0. Phase is akindof
internal clock that measures which part of the transient
has been run through already.

At any given time transient assumes that the phase
times the duration equals the time left. And the distance
to go in the remaining time is the current distance from
the current output level to the end. These two values di-
rectly translate into a slope. This slope now determines
how fast the output level is moving and into which direc-
tion.

From this follows:

• When you make the duration longer in-flight, the
speed of change will get slower.

• When you change start in-flight, nothing hap-
pens.

• When you change end in-flight to a value that is
“farer” away from the current level, the speed of
change increases.

• If you changeend tobe the current level of the tran-
sient, it seems to stop, but in fact the slope is just
zero and it still lasts until the duration is over.

• The output level is always smooth. No sudden
steps. With one exception: When the transient re-
sets to its start value.

In pingpongmode (see the table of inputs for details) this
changes accordingly. While the transient is on its way
back, consider start and end exchanged.

DROIDmanual for blue-1 184 Table of contents at page 2

Input Type Default Description

start 0.0 Start value of the transient

end 1.0 Target value of the transient

duration 1.0 Duration: if the clock input is used, it is in clock ticks. Otherwise it is in seconds. A negative duration will be treated
as zero. And a zero duration will make the output always be at end level.

loop 0 If this is set to 1, the transient will start over again as soon as it reaches the end.

pingpong 0 If this set to 1, the transient will start moving backwards towards the start when it has reached end. It will swing back
and forth, in fact looping infinitely.

freeze 0 while this is set to 1, the transient it frozen at its current position.

reset A trigger here will immediately set the transient back to its start value.

clock If you patch a clock here, the durationwill be set in terms of clock ticks, not of seconds. This needs to be a steady clock
in order to get predictable results.

Output Type Description

output Here comes the current value of the transient.

phase This output reflects the current phase of the transient. It behaves as if startwould be 0 and endwould be 1.

endoftransient When loop and pingpong is off, this output goes to 1when the transient has reached the end – and stays there. In loop
mode just a short trigger is sent. In pingpongmode that trigger is not sent when the transient has reach the end-value,
but when it is back at start (i.e. after one full cycle).

One transient circuit needs 192 bytes of RAM.

DROIDmanual for blue-1 185 Table of contents at page 2

9.52 triggerdelay – Trigger Delay withmulti tap and optional clocking

This circuit implements a CV controllable delay for a trig-
ger or gate signal. It listens for triggers at input and
sends the same triggers later to the output. It does not
look at the voltage level of the inputs. The output trig-
gers are always sentwith 10 V (I1 ... I8) or 5 V (on the
G8 expander).

As a difference to an analog trigger delay this circuit is ca-
pable of keepingmemoryof up to16 triggers. Thismeans
it is able to process further incoming triggers while previ-
ous triggers are still in the delay. This allows you to delay
complex rhythmicpatterns, e.g. in order to reuse theout-
put of one track of a trigger sequencer shifted in time for
another instrument.

Furthermore, it is able to retain the gate length of the
original input signal and output the delayed gatewith ex-
actly the same length.

Here is the simplest possible example, which delays an
incoming gates / triggers by exactly one second:

[triggerdelay]
input = G1
output = G2

You can set the delay in seconds via the delay jack. And
if you patch gatelength, the original gate length is being
ignored and overridden by this value (also in seconds):

[triggerdelay]
input = G1
output = G2
delay = 0.1 # 0.1 seconds
gatelength = 0.05 # 50 ms

Clockedmode

triggerdelay supports a clockedmode, inwhich all tim-
ing is relative to an input clock. You enable clockedmode
by simply patching a steady clock into clock. Now delay
and gatelength are relative to one clock cycle.

The following example delays all input triggers by one
clock cycle (which is the default):

[triggerdelay]
input = G1
output = G2
clock = G3

If you specify delay and/or gatelength they are now
measured in clock cycles:

[triggerdelay]
input = G1
output = G2
clock = G3
delay = 16 # clock cycles
gatelength = 0.5 # half a clock cycle

Input Type Default Description

input 0 Patch triggers or gates to be delayed here.

delay 1.0 Amount of time the trigger is being delayed. When clock is not patched, this is in seconds. So in order to delay by
100 ms you need a delay of 0.1, for example.

gatelength + Unless you patch this jack the length of the output gates is exactly the length of the input gates. By use of this param-
eter you override that length and set a fixed length in seconds – or if clock is being used – in clock cycles.

repeats 1 2 3 1 Number of times the delayed trigger is being repeated. Each further repetition is with the same delay.

mute 0 A high gate signal suppresses any further output gates. The current gate is finished normally, however.

DROIDmanual for blue-1 186 Table of contents at page 2

Input Type Default Description

clock When you patch this input, the trigger delay runs in clocked mode. In this mode delay is relative to one clock cycle.
I.e. a delay if 0.5will delay the trigger by half a clock cycle. The same holds for gatelength. That is measured in clock
cycles, too.

Output Type Description

output Outputs the delayed triggers/gates, while keeping the gate length – unless you have changed that

overflow Whenever there are more input triggers than this circuit can keep memory of, this output outputs a gate of 0.5 sec
length. You can wire this to an LED in order to knowwhen this happens.

One triggerdelay circuit needs 356 bytes of RAM.

DROIDmanual for blue-1 187 Table of contents at page 2

	Quick start
	Installation
	Creating DROID patches
	General procedure
	Finding a problem in your DROID patch
	Examples for error codes
	Table of error codes

	Basic structure of the patch file
	Inputs, output and other registers
	Status dump file

	Numbers and voltages
	Attenuating and offsetting inputs
	Internal patch cables
	Using outputs as inputs
	Using inputs as outputs
	The order of the circuits
	Parameter arrays
	Comments & spaces
	How the module's state is saved
	More than one patch on the memory card
	Displaying the value of a register

	Controllers and Expanders
	The P2B8 controller
	The P10 controller
	How to use controllers in your patch
	Controller latency
	The G8 expander

	The X7 expander
	Quick start
	General overview
	Installation
	USB access to your SD card
	MIDI
	MIDI through
	Four gate outputs
	Eight multi color LEDs
	Fast patch upload via Sysex
	Software update for the X7
	Some technical details

	Firmware upgrade
	What version do you have?
	Normal update procedure
	Upgrade from green to blue

	Calibration, Factory Reset other maintainance stuff
	The maintenance mode
	Factory reset
	Calibration of the outputs
	Using your own SD card
	Formatting a micro SD card
	Speed up cards on Mac

	Hardware
	Reference of all circuits
	 adc – AD Converter with 12 bits
	 algoquencer – Algorithmic sequencer
	 arpeggio – Arpeggiator – pattern based melody generator
	 bernoulli – Random gate distributor
	 burst – Generate burst of pulses
	 button – Do all sorts of useful things with buttons
	 buttongroup – Connected buttons
	 calibrator – VCO Calibrator
	 chord – Chord generator
	 clocktool – Clock divider / multiplier / shifter
	 compare – Compare two values
	Equality, analog unprecision

	 contour – Contour generator
	 copy – Copy a signal
	 crossfader – Morph between 8 inputs
	 cvlooper – Clocked CV looper
	 dac – DA Converter with 12 bits
	 droid – General DROID controls
	 euklid – Euclidean rhythm generator
	 explin – Exponential to linear converter
	 firefacecontrol – Control a RME Fireface interface (experimental)
	 fold – CV folder – keep (pitch) CV within certain bounds
	 fourstatebutton – Button switching through 4 states (OBSOLETE)
	 lfo – Low frequency oscillator (LFO)
	 logic – Logic operations utility
	 math – Math utility circuit
	 matrixmixer – Matrix mixer for CVs
	 midifileplayer – MIDI file player
	 midiin – MIDI to CV converter
	 midiout – CV to MIDI converter
	 midithrough – MIDI routing through X7
	 minifonion – Musical quantizer
	 mixer – CV mixer
	 motorfader – Create virtual fader in M4 controller
	 notchedpot – Helper circuit for pots (OBSOLETE)
	 notebuttons – Note Selection Buttons
	 nudge – Modify – ``nudge'' – a value using two buttons
	 octave – Multi-VCO octave animator
	 pot – Helper circuit for pots
	 quantizer – Non-musical quantizer
	 queue – Clocked CV shift register
	 random – Random number generator
	 sample – Sample & Hold Circuit
	 sequencer – Eight step sequencer
	 slew – Slew limiter
	 spring – Physical spring simulation
	 superjust – Perfect intonation of up to eight voices
	 switch – Adressable/clockable switch
	 switchedpot – Overlay pot with multiple functions (OBSOLETE)
	 timing – Shuffle/swing and complex timing generator
	 togglebutton – Create on/off buttons (OBSOLETE)
	 transient – Transient generator
	 triggerdelay – Trigger Delay with multi tap and optional clocking

