DROID User manual

for firmware version blue-2

Universal CV Processor October 14, 2022
OO O O O B¥ O OFRm OFM O R O3 O oo O
@ .. u@».‘.‘ @ @ {;} f_’.‘\} S
IREnINBEIEEE X X X
el T IONORORY
23]y q F. qlir I O
HEARIE MIF

9 18 20 Q 3
@@@@@@ — o,ooo @ @0 - 00

000000000 ® @ & » 0 OOEEEE
@@@@@@@@0000 QOQQQQEEEE
000000006 0060000 - - 00
oMl o ol oW o M o o M o ¥ o Ml o M o O

ER MANN MIT
@7?/

DER MASCHINE

Contents

1

2

Installation

Creating DROID patches
2.1 Gettingstarted L
2.2 WorkingwiththeForge.
2.3 Using the master’sinputsandoutputs
2.4 Numbersandvoltages
2.5 Multiply and add, attenuationandoffset.
2.6 Internal connections
2.7 Using controllers

Creating DROID patches with a text editor

3.1 Generalprocedure
3.2 FindingaprobleminyourDROID patch
3.3 Basicstructure of the patchfile.
3.4 Inputs, outputs and otherregisters
3.5 Attenuating and offsetting inputs
3.6 Internalpatchcables
3.7 Usingoutputsasinputs. v i
3.8 Usinginputsasoutputs.
3.9 Parameterarrays e

3.10 Comments & SPaces v v e e e e
3.11 More than one patch on the memorycard
Droid under the hood

4.1 How the module’s state is saved
4.2 Theorderofthecircuits
4.3 Displaying thevalueofaregister
4.4 Displayingcurrentvalues oo

Controllers and Expanders

5.1 TheP2B8controller.
5.2 The P10 controller
5.3 TheS10controller
5.4 Howtousecontrollersinyourpatch
5.5 Controller latency
56 TheG8expander

10
11
12
12
13

15
15
16
19
19
23
24
25
25
26
26
26

27
27
27
28
30

6

7

8

9

The X7 expander
6.1 Quickstart
6.2 Generaloverview e
6.3 Installation
6.4 USBaccesstoyourSDcard
6.5 MIDl . . . e
6.6 MIDIthrough
6.7 Four gate outputs
6.8 EightmulticolorLEDs
6.9 Fast patch upload via Sysex
6.10 SoftwareupdatefortheX7
6.11 Some technical details

The M4 motor fader controller

7.1 Quickstart e
7.2 InstallingtheM4
7.3 Using the faders in your patches
7.4 Thetouchplates
7.5 TheLEDs e
7.6 Registers
7.7 Themotorfaders
7.8 Adapting the fader power
7.9 The power management
7.10
7.11

Discharging
Software update for the M4

Firmware upgrade
8.1 Whatversiondoyouhave?
8.2 Normal update procedure

8.3 Upgrade from green to blue

Calibration, Factory Reset other maintainance stuff

9.1 Themaintenancemode. o
9.2 Factoryreset
9.3 Calibration of the outputs
9.4 Using your own SD card

10 Hardware

11 Reference of all circuits

39
39
39
40
40
41
45
45
45
45
47
48

49
49
49
50
50
50
50
51
51
51
52
52

53
53
53
55

56
56
57
57
58

59

61

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24
11.25
11.26
11.27
11.28

adc - AD Converter with 12 bits
algoquencer - Algorithmicsequencer 64

arpeggio - Arpeggiator - pattern based melody generator 75
bernoulli - Random gate distributor 83
burst - Generate burstofpulses 84
button - Does all sorts of useful things with buttons 86
buttongroup - Connectedbuttons 90
calibrator - VCOCalibrator 93
chord - Chordgenerator, 96
clocktool - Clock divider / multiplier / shifter 102
compare - Comparetwovalues. 104
contour - Contourgenerator. 106
copy -Copyasignal 111
crossfader - Morph between 8inputs. 112
cvlooper - ClockedCVlooper 113
dac - DA Converterwith12bits 117
droid - General DROIDcontrols 119
euklid - Euclideanrhythm generator 121
explin - Exponential to linear converter 123
faderbank - Create multiple virtual faders in M4 controller 125
fadermatrix - Matrix of up to 4x4 virtual motor faders 127
firefacecontrol - Control a RME Fireface interface (experimental) . 132
fold - CV folder - keep (pitch) CV within certain bounds 134

fourstatebutton - Button switching through 4 states (OBSOLETE) . 136
1fo - Low frequency oscillator (LFO) 137

logic - Logicoperationsutility 143
math - Math utility circuit oo oo 146
matrixmixer - Matrix mixerforCVs 148

DROID manual for blue-2

11.29
11.30
11.31
11.32
11.33
11.34
11.35
11.36
11.37
11.38
11.39
11.40
11.41
11.42
11.43
11.44
11.45
11.46
11.47
11.48
11.49
11.50
11.51
11.52
11.53
11.54
11.55
11.56

midifileplayer - MIDIfileplayer 151
midiin- MIDItoCV converter v v 158
midiout - CVtoMIDlconverter 165
midithrough - MIDI routing through X7 173
minifonion - Musical quantizer 174
mixer -CVmixer e 178
motoquencer - Motor fadersequencer 179
motorfader - Create virtual faderin M4 controller 199
notchedpot - Helper circuit for pots (OBSOLETE) 203
notebuttons - Note SelectionButtons 204
nudge - Modify a value in steps usingtwo buttons 206
octave - Multi-VCO octave animator 208
polytool - Change number of voices in polyphonic setups 210
pot - Helper circuitforpots 212
quantizer - Non-musical quantizer 219
queue - Clocked CV shiftregister 220
random - Random number generator 221
sample - Sample & Hold Circuit 222
sequencer - Eight stepsequencer 223
slew- Slewlimiter 227
spring - Physical spring simulation 229
superjust - Perfect intonation of up to eight voices 231
switch - Adressable/clockable switch 233
switchedpot - Overlay pot with multiple functions (OBSOLETE) . . . 235
timing - Shuffle/swing and complex timing generator 237
togglebutton - Create on/off buttons (OBSOLETE) 239
transient - Transientgenerator 242
triggerdelay - Trigger Delay with multi tap and optional clocking . . 244

Table of contents at page 2

1

Installation

Controller connector

The connector for the controllers has 6 pins (two
rows of three pins) and is used for connecting a
chain of B32, P2B8, P4B2, B32, P10 and M4.
Also the X7 is connected here. An X7 must always
be the first in the chain.

Programming port

The 6 pin programming port is not mounted in a
box. Caution: Do not connect anything to this
port! Itis solely for the initial programming in our
labs. Later firmware upgrades are done via the
Micro SD card.

Power connector

The power connector has 10 pins (two rows of
five pins). Use the shipped 10 pin ribbon ca-
ble in order to connect it with the bus board of
your Eurorack case. Important: Put the red
stripe down!

DROID manual for blue-2

“DROIC

MASTER. ...

by HMathias Kettner

vzzi o

pladimiv Pantelic Musikelektronik
vpme.de | designed in Darmstadt

. design by:

c25 €15 1c7
- [t

Do not mix up the connectors! This will destroy
your electronics. Do not force in cables in the

wrong orientiation or with the wrong number of
pins! Do not attach anything to the program-
ming port.

Expansion port for G8

The connector for the G8 expander has 8 pins (two
rows of four pins). Here you can add one op-
tional G8 expander for an additional 8 gate in-
puts/outputs. Please refer to page 38 for details.

Table of contents at page 2

2 Creating DROID patches

2.1 Getting started

The DROID is a very flexible universal processor for con-
trol voltages (CV) in a Eurorack modular system. It can
do almost any CV task you can imagine, such as se-
quencing, melody generation, slew limiting, quantizing,
switching, mixing, working on clocks and triggers, creat-
ing envelopes and LFOs or other fancy voltages, or any
combination of these at the same time! While doing this,
it is very precise both in voltage and in timing.

To bring your DROID to live, you create a Droid patch and
load it to your master.

What is a Droid patch? Well, the DROID is like a self con-
tained modular system for CV in a module. In order to
avoid confusion with “real” modules - the building blocks
in a Droid patch are called circuits. There are very sim-
ple circuits like a mixer for CVs. And there are also very
complex circuits like an sophisticated algorithmic trigger

DROID manual for blue-2

sequencer called algoquencer (see page 64).

Much like real modules, the circuits have input and out-
put jacks. These are called inputs or outputs, or some-
times also “parameters”. Each of them can be set to a
fixed value, wired to one of DROID’s physical inputs or
ouputs, set by a knob or button on a Droid controller or
internally wired to other circuits in order to create more
complex applications.

Now a Droid patch lists all the circuits you want to use
and describes how that are connected and how the pa-
rameters are set.

Technically, a patch is a small text file with the name
droid. ini, which is located on the micro SD card in the
SD slot of the master. You can create and modify this
file with any text editor you like, and the chapter Writing
Droid patches with a text editor goes in all length through

the structure of that file (see page 15).

However, starting in November 2022 there is a new ap-
plication for Mac and Windows called the Droid Forge
- or simply the Forge. That's the new graphical tool
for creating patches and makes working with the Droid
super easy. The Forge is available for free down-
load for on https://shop.dermannmitdermaschine.
de/pages/downloads.

Working with the Forge is highly recommended, and even
the most experienced Droid users switched to it once it
came it. However, in this manual you will find lots of ex-
amples that refer to the text representationindroid. int,
because it's much easier for showing just small portions
of a patch than a full sized screen shot of the Forge. And
it is straight forward to recreate these examples in the
Forge.

Table of contents at page 2

https://shop.dermannmitdermaschine.de/pages/downloads
https://shop.dermannmitdermaschine.de/pages/downloads

motoquencer_minimal - DROID Forge

o DROID O O, 88 O X0 2288 o

) %%

B
4

Circuit

TR
YY |-) i@
Parameter o] M Q O J Q JO Q |__| o

[(FOandsequencer |
Controller

Master clock
hz 20 * Potentiometer P1.1 +

5 —r

+! MOTOQUENCER

g This motoquencer has as many steps as you have M4 faders
clock T e CLOCK
Output O1
Output O5

DROID manual for blue-2

0 problems

Table of contents at page 2

A first patch example - step by step

So let’s start! First install the Droid Forge. Download it
from the upper link and install it to your Windows PC or
Mac. After starting it you get a window like in the screen-
shot above. The Window is divided into three areas:

(untitled) - DROID Forge

Untitled section

0 problems

- At the top there is the rack view, where you see the
Droid modules that you are working with

- At the bottom right is the patch view, where you
see the circuits and their parameters

- At the bottom left is the list of sections. They are
for dividing your patch into sections and make it
easier to read.

DROID manual for blue-2

Now let’s create a first simple patch. From the Edit menu
choose New circuit.... This opens a dialog for adding a cir-
cuit to your patch:

[Add new circuit
Modulation Sequencing CV Processing Controls Clocks / Triggers Math /Logic Pitch MIDI Other Deprecated

CONTOUR - Contour generator 512 bytes
An enhanced version of the classic ADSR-envelope generator with the six phases predelay, attack, hold, decay,
sustain and release.

w frequency oscillator (LFO)
frequency oscillator with seven different wavefo
form morphing and other interesting features.

nodulation, flexible sync mechani

RANDOM - Random number generator ytes
A random number generator with clocked and unclocked mode, that can either create voltages at discrete steps and
completely free values

SPRING - Physical spring simulation 208 bytes
A physical simulation of a mass hanging from on an ideal springk which can create interesting "bouncing" CV/
sources.

TRANSIENT - Transient generator 192 bytes
This circuit creates (possibly very slow) linear transients from a defined start value to an end value.

¢ search: | Manual Cancel

Start with typical example

Select the LFO circuit and click OK. This adds an LFO to
your patch. Because the setting at the bottom left is set
to Start with typical example, your LFO will already have
a couple of inputs and outputs defined:

(untitled) - DROID Forge (modified)

5 problems

Input are written in blue, outputs in red. You learn about
all available parameters of a circuit in its chapter here in
this manual. Have a look at the LFO circuit on page 137.
For example:

- hz sets the speed of the LFO in cycles per second.

+ level defines the maximum voltage level of the
output

+ bipolar changed the range from 0 V... 10 V to -
10V.. 10V, ifsetto 1.

The outputs provide various wave forms of the LFO.

If you want to add more inputs or outputs, choose New
parameter... from the Edit menu or press the icon Pa-
rameter in the toolbar. And of course every action in the
Forge has a keyboard shortcut, in this case 8 N (or CtrI N
on Windows).

Table of contents at page 2

Now move the cursor to the row square, either with the
cursor keys or by clicking with the mouse. Move the cur-
sor to the second column.

In the rack view, click on the Droid master on the first jack
in the third row of jacks. That jack is called “Output 1”
or simply 01. This inserts Output O7 as a value for the
square parameter. The LFO will now send a square wave
to output 1 of the Droid master.

Move the cursor to the second colum of the parameter hz
and type 5 and hit the enter key.

Move the cursor to the first column of all other parame-
ters and delete those rows by hitting the backspace key
so that you just have two lines left. We don’t need these
parameters for the while.

This is how it should look like when your are finished:

DROID manual for blue-2

(untitied) - DROID Forge (modified)

Your first patch is ready!

There are two ways to load the patch to your master. The
first is by manually swapping the SD card:

+ Pull the memory card from your master and put it
into a card reader in your Mac / PC. After a couple
of seconds the toolbaricon Save to SD becomes ac-
tive.

+ Press that icon to copy your patch to the SD card.
It will automatically be ejected afterwards.

+ Put the SD card back to your master and press the
master’s button. That loads the patch and the LED
for output 1 will start flashing in 5 Hz (five times a
second).

The second way to deploy a patch is much more conve-
nient, but needs an attached DROID X7 expander (see
page 39 for more details on the X7). With the X7 you can
deploy the patch via MIDI sysex:

+ Wire the X7 with the shipped USB-C to classic USB
cable to your Mac / PC.

+ Set the switch on the X7 to the right. After a short
delay the Activate! icon in the Forge becomse ac-
tive.

+ Click Activate!. Your patch will immediatly be
loaded an become active.

Table of contents at page 2

2.2 Working with the Forge

Before we have a deeper look at how Droid patches work,
let’s first have a closer look at the Forge.

Problems

Your patch can have problems. These are inconsistencies
that would confuse your DROID, if you loadit. One exam-
ple is a parameter line without a value. In order to avoid
such trouble, the Forge does not let you load a patch while
it has problems.

OMRIIDO O68 O X0

@ o@w
R
lERh el

DROID manual for blue-2

As you see from the screenshot, there is a red triangle in
the toolbar and also a note in the statusbar telling you
that there are two problems. If you click on either of
them, your cursor will jump to the next unsolved prob-
lem. Fix these and you will be able to load the patch.

When loading a patch does not work

As we have seenin the first section, the two toolbaricons
for loading a patch are only active, when that is possible.
If you encounter problems with Save to SD, please check:

- Make sure, your micro SD card in the card reader of
your computer.

- Make sure, it is an SD card that already has been
used in the Droid. New and empty cards will not be
accepted.

+ If unsure, check with your Finder or Explorer, if the
card is really accessible.

In case of a problem with Activate!, check the following:

+ This button only works if you have an X7 expander
attached to your master.

+ Check the correct wiring of the X7.

- The switch of the X7 must be in the right position.

+ The X7 must be connected with a USB cable to your
Computer.

- USB-Cto USB-Cdo not work! Use the cable shipped

with the X7 or a similar one.

- If the icon still does not get active, try putting the
X7 switch to the middle position and after a small
pause right again.

Working with sections

In the bottom left of the Forge you see a pane with the
entry Untitled section. Sections are a good way to or-
ganize more complex patches. Each section contains a
list of circuits - and thus a part of your patch. You can
move around sections with drag & drop. You can dupli-
cate, rename and delete them and do many other practi-
cal things.

Table of contents at page 2

2.3 Using the master’s inputs and outputs

Inputs and ouptuts

Your master has eight CV inputs and eight CV ouputs,
both ranging from -10 V to +10 V. The inputs are abbre-
viated with I1, I2, ... I8, the outputs with 01, 02, ... 08.
These jacks allow your Droid patch to communicate with
the outside world. The abbreviations 01 and so on are
also called registers.

To use an output, you need to connect a output parame-
ter of a circuit to it. There are several ways to do this:

+ Click on the output jack in the image of the master
while the cursor is right to an output parameter.

+ Type the output’s name while the cursor is at that
position, e.g.03.

- Press enter while the cursor is next to an output.
That opens a dialog where you can see all options.

DROID manual for blue-2

Edit output parameter

External output Control Internal cable

03
O: Output
G: Gate
L: LED in Button

N: Normalization

R: RGB-LED R: RGB-LED

X: Special S: Swich

Main output of the envelope. Patch this to your filter, VCA or wherever you like.

This output outputs arbitrary types of CV values.

For inputs it's much the same. Move the cursor into the
second column, right next to the input name, and assign
one of the inputs.

Input normalization

Eurorack modules know the concept of input normaliza-
tion. This means that an input gets some default signal
when nothing is patchedin the jack. The DROID supports

10

this by offering the registers N1 ... N8. These behave like
outputs that are internally connected to the normaliza-
tions of the input jacks.

When circuit send an output signal to N1, this signal is
seen by input I1, as long as nothing is patched into that
input. This allows you to create more flexible patches.
You might for example have an internal clock in your
patch (created with an LFO circuit) that can be overrid-
den by patching something into I1.

Todothat, sendyourinternal LFO clock signaltoN1. Then
let the rest of the patch use I1 as clock input.

Using the G8 gates expander

If you have a G8 expander (see page 38), you have eight
additional gate inputs or ouputs. Each jack of the G8 can
be used as input or output, depending on how you use it
in your patch.

Using the G8 in the Forge is straight forward. Either as-
sign it by clicking on one of the jacks in its image, press
Enterforaguided dialog and select G: Gate, or simply type
one of G1, G2, ... G8.

Note: The G8 cannot output continous CV values. When
used as output it either sends 0V or 5 V. And inputs see a
high signal at a voltage about 0.75 V.

Table of contents at page 2

2.4 Numbers and voltages

How voltages are converted

DROID is a CV processor that inputs and outputs con-
trol voltages. But internally it works with just numbers,
because this is much more convenient. Here is how the
DROID operates:

1. When reading voltages from the input jacks, these
are converted from the range -10V to +10 V into
the number range from -1 to +1.

2. All circuits operate on these numbers.

3. When sending numbers to the output jacks, the
numbers are converted back from -1 to +1 to the
voltage range -10 Vto +10 V.

This means that if the DROID reads a voltage of 2.5V at
one of its inputs, in the DROID patch this will appear as
0.25. Orif you send a value of 0.5 to one of the outputs,
it will output exactly 5.0 V. This is in fact very convenient
as you will see.

DROID manual for blue-2

In your patch you can either write 2.5V or 0.25. Both
mean the same. It’s up to you which of both you prefer.

Voltages out of range

The DROID’s hardware cannot work with voltages be-
yond +10 V. This is no limitation, since Eurorack has a
maximum voltage range of +£12 V and barely any module
reaches even 10 V atits output. Many digital modules are
even limited to therange 0 V...5 V.

That means that any voltage out of that range appearing
ataninput is simply truncated. Send -10.8 V at an input
and DROID will seeitas-10V. Or send the number 1.1 to
an output (which would be 11 V) and it will output 10 V
nevertheless.

But: internally - in your DROID patch - numbers can get

arbitrarily low or high. Soin intermediate steps it’s abso-
lutely no problem to work with larger numbers. Some cir-

11

cuits even require such numbers. E.g. in the minifonion
(see page 174) you specify the root note B by saying root
= 11. On the side of the jacks that would mean 110V, but
that's not relevant here.

For those of you wanting to dig more into the de-
tails of number processing: DROID works inter-
nally with 32 bit floating point values. The ex-
ponent is 8 bits. The largest number is slightly
above 300000000000000000000000000000000000000
(a 3 with 38 zeroes).

The smallest number greater than zero is approximately
0.000000000000000000000000000000000000011
(that’s 37 zeroes after the decimal point). The negative
range is similar.

One word about the G8 expander: its outputs can only
output two possible voltages: 0 V and 5 V. The rule is:
any number >= 0.1 sent to one of its registers G1 ... G8
will set its output to 5V, any other number to 0 V.

Table of contents at page 2

2.5 Multiply and add, attenuation and offset

As you might have noticed, input parameters of circuits
have three columns where you can enter values, where as
outputs just have one. These three columns are:

A: Input value
B: multiplication / factor / attenuation

2.6 Internal connections

One important concept for building more interesting
patches is adding connections between circuits. These
connections are called internal cables.

Consider the following example: You have one LFO cir-
cuit that outputs a square wave, which should be used as
a clock signal. That clock shall trigger an envelope circuit
(called contour).

Let’s assume you want to create a cable from the square
output of the LFO to the gate input of the envelope. To
do this, move the cursor to the second column of the
square output and press = (equals). This starts creating
a cable. You will see an indicator in the statusbar.

Now move the cursor to the target of the cable: the pa-

DROID manual for blue-2

C: offset

So the value that’s actually used by the inputis Ax B+C.
That’s much like Eurorack modules that have an addi-
tional potentiometer for CV attenuation (hence multipli-
cation) or and offset.

rameter value of the gate input. Here press = again (or
enter, if you like). This opens a small dialog for giving
the cable a name. Choose a speaking name, for example
CLOCK.

After hitting enter or pressing OK, you get a connection
from the square output to the gate input. The envelope’s
output is wired to 01 in this example, so you get an enve-
lope triggered at 8 Hz at output 1.

These are the rules for internal cables:

+ Every cable must be connected to exactly one out-
put.
- Every cable must be contents to at least one input.

12

The special thing about DROID is: Even the attenuation
and the offset can themselves be CVs (come from exter-
nal sources, other circuits, etc.). So essentially evey input
has a small VCA and mixer included.

That means that you can use a cable as a multiple and dis-
tribute signals to several circuits. But if a cable has noin-
puts or no or more than one output connects, it counts as
a problem and you cannot load the patch.

Note: There are more ways to create patch cables:

+ In a cell type an underscore followed by the name
of the cable.

+ In acell press enter and choose a cable in the value
dialog (or type a name for a new cable)

+ Hold XX while clicking into another cell (Windows:
Alt key). That creates a cable between the two
cells.

Table of contents at page 2

2.7 Using controllers

Adding controllers

The fun part with DROID is attaching one or more con-
troller modules to your master. When the project started,
there was just the P2B8 controller available, which has
two potentiometers - or short pots - and eight buttons.
Hence the name! Now there are alltogether six con-
trollers that you can get for Droid. Learn more about
the available controllers and how to connect them to the
master on page 31.

In a nutshell, when wiring the controllers please check the
following things:

- Check that the small green jumper on each con-
troller is set to Park (or removed). Just on the last
controller it must be at Last.

+ The X7 must always be the first in the chain.

+ The cable coming from the master must go to IN,
the cable to the next controllers is plugged into
OUT.

Once your system is setup, it's very easy to use con-
trollers in your patch. The first step is adding them to
the rack view of the Forge. To do this double click on
the background or choose New controller from one of the
menus or use the Icon Controller in the sidebar. The or-
der of the controllers from left to right in the Forge must
match the order of the wiring in your rack.

Notes:

+ You can rearrange controllers with drag & drop.
The patch will automatically be adapted so all
references to the controls still work as expected.
That's an easy way to adapt a foreign patch to your
rack.

DROID manual for blue-2

- When you remove a controller the Forge offers you
to remap its controls to other existing controllers.

+ The master, X7 and G8 cannot be moved.

- If you don’t have or don’t use the G8 or X7, you can
hide it from the rack view. Check the View menu
for that.

Using pots

The easiest way of using a potentiometer is by moving
the cursor to a cell of an input parameter and then click
on the potin the rack view. This will insert something like
Potentiometer P1.2in the cell.

Here P1.2 is the register name for the pot and it means
controller one pot two. If you aren’t the mouse guy, you
also can type P1.2 if you like (omit the word Potentiome-
ter, that will appear automatically). Or you press enter
in a cell to get the value selector where you find the pots
unter Controls.

A pot always represents a value from 0.0 to 1.0 depend-
ing on the pot position. Often that range is not what you
need, but with the help of the columns 2 and 3 (factor and
offset) you can create any custom range. Consider using
potP1.2 for setting and LFO speed between Tand 10 Hz.
This can be done by:

Column 1: Potentionmeter P1.2
Column2: 9
Column3:1

In the text representation this would be:

hz = P1.2 * 9 + 1

13

The math is easy: If the pot is totally at its left position,
the register P1.2 has the value 0.0. S0 9 x 0.0 = 0.0 and
thus adding one gives 1. At the right position the value of
the potis 1.0,s09 x 1 + 1 = 10.

You can do much more complex things with potentiome-
ters. Forany of those please have a look at the circuit pot
(see page 212). For example you can:

- Overlay one pot with several independent func-
tions by using select

- Save different values of a pot into up to 16 presets

- Create a virtual center notch, to make an easy se-
lection of the exact middle position possible.

- Havea potoutputdiscrete numbers, forexample 0,
1, ... 8, to select preset numbers, patterns lengths
und much more

- Apply a non-linear slope for the output value

If you don’t need any any of these, just use pot directly
without the pot circuit. That keeps your patch simpler.

Hints:

- If you right-click on a pot, button or other control
in the rack view, you get a context menu.

+ You can rearrange assignemts of controls with drag
& drop in the rack view.

+ Double clicking on a control allows you to label
them.

Using buttons

A button outputs the value 1 while pressed or 0 other-
wise. It's register abbreviation is B, so B3.4 is the button
four on controller 3. You assign them just like pots.

Table of contents at page 2

The main difference is that buttons contains an LED. So if
you want to make use of that, you need to output a value
to the LED.

The button LEDs have their own registers, namely L. So
the LED in button B3.4 is called L3.4. If yousend a 0.0
to an LED, it will be dark. A 1.0 will make it shine at full
brightness. Anything inbetween selects some intermedi-
ate brightness.

Sounds complicated, but at the end it makes sense, as
you will see. And it also gives you flexibiliy.

Most times you don't like to hold the button all the time
to make it do its work. You want it to switch between
on and off with each press. This is done with the circuit
button (see page 86). And that also helps you dealing
with the LED.

The following example is in Droid source syntax, but it is
straight forward to setup this in the Forge. Add the circuit
Button and the two parameter lines button and led:

[button]
button = Bl.1
led = L1.1

DROID manual for blue-2

Now each press at button 1 on controller 1 will toggle the
button. led is an output parameter so the LED register
L1.1 will hold the current state of the button - either 0 or
1.

You can use that as an input to some other circuit, for ex-
ample for switching on and off an LFO but setting its level
toOor1:

[button]
button = B1.1
led = L1.1

[1fo]
hz = 3
level = L1.1
sine = 01

There are much more ways for using buttons. Please look
at page 86 for more examples. And also look at the circuit
buttongroup (see page 90). It can group several buttons
together in a conveniant way.

Hint:

+ If in a circuit the LED definitions do not match the
buttons, a light bulb icon will apear in the circuit

14

header. Click that to make the LEDs automatically
match the buttons.

Switches

The S10 controller has ten switches. They have the regis-
ter abbreviation S. The first two switches have eight po-
sitions and output the discrete numbers 0, 1, ... 7. The
small switches just have three positions: 0, 1 and 2.

You can either use these switches directly in your patch or
might want to try the circuit switch (see page 233), for
assigning something for every switch position. Create a
circuit with one input for every position and just one out-
put.

You get more details on the S10 on page 34.

Motor faders

The motorized faders from the M4 are always accessed
via special circuits. Please refer to page 49 for all details
about the M4.

Table of contents at page 2

3 Creating DROID patches with a text editor

3.1 General procedure

If you don’t like to use the Forge, you can write patches
by directly editing the text file. This is the general proce-
dure:

Create a text file called droid. ini.
Copy this file to a micro SD card.

Insert the card into your DROID master.
Press the button on the DROID master.

HwN =

If the DROID finds an error in your patch, LEDs will blink
and tell you more about that error. Fix your error and try
again. That's all.

If you have an X7 expander attached to your master, the
whole procedure is a lot easier. The X7 gives you direct
USB access to the SD card. The card is attached to your
computer by putting the little switch on the X7 to the left.
This is like inserting the card into your computer. Now
you can edit or copy your droid. ini. Afterwards simply
put the switch back to its center position. That will re-
move the card from your computer (eject it first with your
file browser). Also the patch will be immediately loaded
by your master, no need to press the button.

Since the Forge operates on the same kind of text files,

DROID manual for blue-2

you can open such a manual file with the Forge and also
edit Forge-created files with a text editor. The Forge even
has a simple built in editor for editing the patch or just
parts of it in its text form.

Procedure in details

Here is the procedure again with some more details:

1. Use your PC, Mac or Linux box for creating a text
file with the name droid.ini. A text file is not a
MS Word file. In Windows you can create or edit a
text file with Notepad or with some more conve-
nient text editor. Note: some might want to edit
droid. intidirectly onthe SD card. Thisis possible,
of course. It's always handy, however, to have a
copy of that file on your computer, justin case.

2. When you are finished, copy this file to the micro
SD card your DROID has been shipped with or to
any other micro SD card that is compatible with
DROID. You need a micro SD card reader for this.
Do not use any subdirectories on the card. Put the

15

file into the main directory. The card needs to be
formatted with the standard FAT filesystem. If you
buy a new card, itis most likely formatted that way
anyway. Hint: If you like, you can create and edit
your file directly on the card, of course. This saves
the extra step of copying it.

. Insert the micro SD card into the small card slot

of your DROID master. Put it in with the metal
contacts downwards. Be gentle, as always :-)

. Press the button left of the SD card slot. Of

course your DROID has to be powered up while
you do this. The DROID now reads the file
droid.inti, copiesitintoits internal flash memory
and restarts, in order to load and activate the new
patch. If everything is OK, one light will make one
quickcircle around the 16 LEDs and your patchis up
and running. After that you can remove the card if
you like. Your DROID does not need it anymore.
Note: If you are using an X7 expander, the memory
cardremainsin the master module all the time. You
also don’t need to press the button on the master,
just use the switch on the X7.

Table of contents at page 2

3.2 Finding a problem in your DROID patch

It is not entirely unlikely that you got something wrong
in your patch, some syntax error, some invalid line, stuff
like that. Humans make errors, but this is no big deal,
since DROID helps you finding the reason and location
of any problem in your DROID patch by two means:

1. It creates a file called DROIDERR.TXT on your SD
card.
2. It flashes some LEDs in a certain way.

So if you experience any strange LED blinking after load-
ing your patch, put the card back into your computer (or
put the switch on your X7 to the left again) and look into
the file DROIDERR.TXT, which should be there now. This
file just contains one line, maybe like this one:

ERROR IN LINE 17: Invalid output '09'. Allowed
is 01 ... 08

This tells you the exact location and reason of your prob-
lem so that you can easily fix it.

DROID manual for blue-2

LED blink codes

As an alternative to the error file, the DROID master also
shows the location and reason of the error in form of LED
blink codes. There are two types of errors that you can
make:

1. General errors concern the patch as a whole. The
SD card is missing. You have misspelled the file
name. Things like that. In such a case all LEDs will
flash in the same color. The color indicates the
reason of the error. On the next page you find a
table of all global error codes.

2. Local errors concern just one specific line in your
DROID patch. In that case just some of the LEDs
will flash. Again, the color shows you the rea-
son for the error, according to the table local error
codes. In addition, the LEDs show you the exact
line number where your error occurs. This is done
in the following way:

16

+ The input LEDS 1 ... 8 indicate the tens of the

line number. If the error happens to be in line
90, then LED 1 + 8 will flash. Ifitisinline 1to
9, then no input LED flashes at all.

- The output LEDS 1 ... 8 indicate the ones and

are added to that number. Again, if a 9 is
needed, then 8 + 1 will flash.

- If your patch has more than 99 lines, then the

error could be in line 100+. In that case one
of the input LEDs will flash white. That LED
indicates the hundreds of the line number.

« If theerrorisinsome line at 900 or more, sev-

eral LEDs will flash white. Just add them up.
So e.g. if LED 2 and LED 8 flash white, this
means 10 times 100, hence 1000.

+ The maximum line number that can be shown

that way is, if all eight LED flash white plus
99. Thatis 100 + 200 + ... + 800 + 99 = 3699.
If your patch has even more lines, better look
into the file DROIDERR. TXT. There you can see
the line number of the error in clear text.

Table of contents at page 2

Examples for error codes

Invalid parameter value in line 81:

DROID manual for blue-2

Invalid register in line 99:

The SD card was not found or could not be read:

Too many circuits or out of memory:

Table of contents at page 2

Table of error codes

All LEDs flashing at once (global error)

Just some of the LEDs flashing (local error in one line in droid. ini)

yellow

cyan

magenta

white

Patch not found: This can happen in the following situations:

1. No file with the name droid. iniis present on the memory card.
2. You DROID started without having loaded a patch ever.

3. You did a factory reset without loading a patch afterwards.

Too many controllers: You have declared more than the allowed num-
ber of 16 controllers.

Patch is too big: The size of your droid. ini file is too big. The maxi-
mum of the size without spaces and comments is 64,000 bytes - which
is quite a lot.

Out of memory: The circuits in your patch use too much memory. So
you have too many large circuits or too many circuits in total. The mem-
ory consumption of each circuit only depends on its type. The smallest
circuit is bernoulli and has a size of about 200 bytes. The largest cir-
cuits are midifileplayer with 7000 bytes and cvlooper with 18,000
bytes. Most circuits need between 400 and 800 bytes. And the total
available memory is about 110,000 bytes.

Invalid firmware file: The firmware upgrade failed because the con-
tents of droid. fwis invalid. The file is incomplete or corrupted.

No SD card found: No card could be found. Maybe you inserted itin the
wrong way? Or your card is not supported. Or you pressed the button
too early. Sometimes it helps to simple press the button again.

Note: If you get your start animation with just white LEDs instead of colored ones, your

DAC calibration needs to be redone. See page 57 for details.

DROID manual for blue-2

yellow

orange

red

magenta

Unknownregister: You used a non-existing register name (registers are
the things like 01, I7 and so on). Please check the list of allowed regis-
ters in this manual on page 21.

Unknown parameter name:; that circuit does not support that param-
eter. Please check the circuit references in chapter 11.

Unknown circuit: This type of circuit does not exist. Please check the
exact spelling. Maybe you have an old firmware that does not support
that circuit yet? On page 53 you learn how to do a firmware upgrade.

Line too long: One line in your patch exceeded the maximum allowed
line length of 127 characters.

Internal patch cable misused: One of your internal patch cables (see
page 24) is not properly used:

1. No input: One patch cable is only used as output.
2. No output: One patch cable is only used as input.

3. Double output: One patch cable is used twice as an output.

1. Invalid header of circuit: DROID was expecting an opening square
bracket [, but found something else.

2. Invalid parameter line: DROID was expecting something like clock
= I7, but found something completely different. Parameters always
start with a letter. This is followed by an equals sign.

3. Invalid parameter value: Your parameter has an invalid value.
Please checkout this manual about allowed values for parameters and
their exact syntax.

Table of contents at page 2

3.3 Basic structure of the patch file

Droid offeres a long list of pre-programmed functionali-
ties - called circuits - from which you can pick and choose
for your needs. Each circuit takes input values, processes
them and produces output values. It is your task to set
the inputs to values you like. Such a value could be taken
from a hardware input, a button, a pot, or simply be a
fixed value. The ouptuts of the circuit can be connected
to hardware outputs, LEDs or even to the inputs of other
circuits in order to create more complex patches.

All this is configured in a simple text file with the name
droid. ini, which is also called the Droid patch. Using
a simple text file has lots of advantages:

+ You can edit it with nearly every operating system.
- No special software is needed. This will probably

3.4 Inputs, outputs and other registers

Your DROID has lots of inputs and outputs. Alsoits LEDs
behave like outputs and buttons and pots behave like in-
puts. All these are called registers, because they behave
like things that can store values. Each register consists of
a special character followed by a number or number com-
bination.

Most important of course are the eight CV input and out-
put jacks I and 0. With the normalizations N1, N2, .. N8
you can specify a signal or value that should be used for
I1, 12, .. I8 when no patch cable is inserted. But we will
come to that later.

When you have attached the G8 expander you get eight
more jacks called G1 through G8. Each of these can either
be used as an input or an output. They are simple gate

DROID manual for blue-2

still work in 30 years, when you just have bought
avintage DROID on ebay for a couple of thousand
bucks.

+ You can easily post and share your DROID patches
or patch snippets in our Discord community or on
other internet boards.

+ You can copy & paste parts from other one’s
DROID patches.

+ You can add comments to your patch.

Here - again - is an example of a DROID patch:

[lfo]
hz = 0.5
triangle =

inputs/outputs that just know “On” and “Off”, or 0 and 1.
When used as an output they output either 0V or 5 V.

The stuff on your P2B8, P4B2, B32, P10 and other con-
trollers can also be accessed via registers. Here there is
always a dot in the name, separating two numbers, like
P1.2 or B4.8. The first number is always the number of
your controller. The second number is the number of the
element on the controller. So B4.8 is the 8t button on
the 4th controller. P10 controllers just have P registers,
noBor Lregisters. Likewise the B32 has just buttons and
thus no P registers.

Please note that each button has two registers: one with
the letter B for the button itself. DROID will set that to
1.0 while the button is pressed (and hold) and to 0.0 oth-

19

[contour]
gate = I1
decay = _CABLE_1
sustain = P1l.1
release = I2
output = 01

As you can see the droid. intiis a list of circuit declara-
tions. In the upper example we see two circuits: [1fo]
and [contour]. Each one comes with a list of inputs and
outputs which are assigned to jacks, fixed values or inter-
nal patch cables.

In the example all jack declarations are indented for bet-
ter readability.

erwise. The second register is for the LED in the button
and begins with L. This is an output register where you
can write values to. A value of 0.0 will set the LED off,
while 1.0 creates full brightness. But the LEDs also sup-
port any number in-between and will have a brightness
according to that number. Negative numbers are treated
like positive numbers here, so -0.5 will produce the same
brightness as 0.5.

As long as you do not actively use the L-registers the
LED in a button will automatically be lit while you hold
it. Please look at the button circuit in page 86 for how to
convert a push button into one that toggles its state on
each press.

Table of contents at page 2

Overriding the LEDs of master, G8 and X7 those of the X7 expander. This is sometimes very useful is doing.
when you have a couple of unused inputs (and thus un-

The registers R1 through R32 let you override the func- used LEDs). Sending some internal values to one of these
tion of the LEDs for the inputs, outputs and gates, also LEDs gives you some feedback about what your DROID
DROID manual for blue-2 20

Table of contents at page 2

Here is the complete table of all register types:

Register Type Description

I1 12 13 14 I5 I6 I7 18 input The eight inputs of the DROID master

N1 N2 N3 N4 N5 N6 N7 N8 output The normalization of these inputs. When nothing is patched into an input, the according I-register will take its value
from the matching N- register instead. Any they are 0.0 if you have not set them.

01 02 03 04 05 06 07 08 output The eight outputs of the DROID master

Gl G2 G3 G4 G5 G6 G7 G8 input/output | The eight gate jacks of the G8 expander. Each can be used either as an input or as an output.

G9 G10 Gll1l Gl12 output The four gate jacks of the X7 expander. These are always outputs.

Rl R2 R3 R4 R5 R6 R7 RS output The colored LED squares in the first two rows (those for the inputs)

R9 R10 R11l R12 R13 R14 R15 R16 output The colored LED squares in row three and four (those for the outputs)

R17 R18 R19 R20 R21 R22 R23 R24 output The colored LED squares on the G8 expander

R25 R26 R27 R28 R29 R30 R31 R32 output The colored LED squares on the X7 expander

P1.1 P1.2 P2.1 P2.2 P3.1 P3.2 .. input The pots on your P2B8, P4B2 or P10 controllers. P3.2 is the 2" pot on your 374 controller.

Bl1.1 B1.2 B2.1 .. B2.1 B2.2 B2.3 .. | input The push buttons on your P2B8, P4B2 or B32 controllers. B3.6 is the 6th push button on your 3" controller.

L1.1 L1.2 L2.1 .. L2.1 L2.2 L2.3 .. | output The LEDs in these push buttons

X1 output Special register for displaying a value encoded in the master’s 16 LEDs

And here is a table of some colors and their values that you need to send to the R1 .. R32 registers:

0.2 cyan
0.4 green
0.6 yellow
0.73 | orange
0.8 red

1.0 magenta

1.1 violet

1.2 blue

DROID manual for blue-2

21 Table of contents at page 2

Specifying numbers in your patch

Note: you always need to write the numbers in ”plain”
format, forexample 0.01 or 12345.67 or -5.0. Scientific
notations like 3.4”~-10 are not allowed. It’s also not al-
lowed to write just .5 instead of 0.5.

There are two suffixes that you can attach to a number:
% and V. Appending a percent sign basically divides the
number by 100, so ...

pulsewidth = 45%
... isjust the same as

pulsewidth = 0.45

DROID manual for blue-2

Appending a V divides the number by 10, which is exactly
what you need in order to convert a number to a voltage
to be output at a jack. So:

pitch = 2V
... is just the same as
pitch = 0.2

Sometimes thisis easier to read. Please be just aware that
the Vis applied just to the number itself. You could write
1/12V, but that is not 5 V, but is ﬁ which is - when

you convert the voltage back to a number - ﬁ, which is
0.8333. Whereas % V would be 0.008333 - a hundred
times smaller!

Some inputs or outputs behave like gates that only know

22

0 or 1, low or high, on or off. For your convenience you
canuse the words of f - whichisjustashorthand for0.0,
and on - which stands for 1.0, if you like. Here is an ex-
ample:

[contour]
loop = on
output = 01

This is exactly the same as:

[contour]
loop =1.0
output = 01

Table of contents at page 2

3.5 Attenuating and offsetting inputs

Attenuation / Amplification / Multiplication

Eachinput of a circuit (not the outputs!) has a built-in op-
tion for attenuation and offsetting. Attenuation is done
by multiplying the input with a value. Well, if you “atten-
uate” with a number greater than 1, the name attenua-
tion would not really be correct, since the signal in fact
gets amplified and not attenuated.

Let’s assume you want to control the level parameter of
an LFO with the first pot of your first controller (see page
137 for details on the LFO circuit). That pot can be ad-
dressed with P1.1:

[1fo]
level = P1.1
output = 01

The pot has arange from 0 to 1, which corresponds to 0 V
..10 V. That’s maybe too much for you application. So
let’s limit the range to 5V, which is the same as 0.5. This
is done by multiplying the pot with 0.5:

level = P1.1 * 0.5
Now level will range fromOVto5V.

The attenuation does not need to be a fixed number. Let’s
CV control the level of the LFO with the external input I1.
Now we multiply that with the pot P1. 1, which makes the
latter an attenuator for the CV. How cool is that?

level = I1 * P1.1

Fixed numbers can also be negative. The following line
basically inverts the LFO’s output since its output voltage
is negated:

DROID manual for blue-2

level = P1.1 * -1
If you like, you can use a short hand for that:

level = -P1.1

But that is really just an abbreviation for -1 * P1.1.
From that follows, that -P1.1 * Ilisnot possible, since
thiswouldbe -1 * P1.1 * I1, whichwould be two mul-
tiplications!

Division

There is another shorthand: It is allowed to use division,
if the thing you divide by is a fixed number. So Instead of
pitch = I1 * 0.0833333 you can write:

pitch = I1 / 12

Again, this is a short hand for I1 * 0.0833333 and this
its treated as a multiplication. For that reason you can-
not write I1 / P1.1 or anything similar, since here the
DROID would really have to do a dynamic division with
the current value of P1.1. Use the math circuit for such
things (see page 146).

Offsets / Summing

An offset is applied by adding a number. This must be
written after the (optional) attenuation. Let’s have the
level of the LFO set by P1.1 but be at least 2 V:

[1fol]
level = P1.1 + 0.2

23

Now the level would range from 2 V to 12 V. Since 10 V
is the maximum, we could multiply the pot with 0.8 first,
which results in arange from2Vto 10 V:

level = P1.1 * 0.8 + 0.2

Again you are not restricted to fixed numbers. You can
also use any DROID register you like. In this example
we use P1.1 as a coarse tune and P1.2 as a fine tune (20
times finer) for the rate of an LFO:

[1fo]

square = 01
rate = 0.05 * P1.2 + P1.1

Using + can even be used for mixing together two input
signals. The circuit copy just copies aninput to an output,
but since the offset can be used with any register you can
build a simple CV mixer:

input = I1 + I2

Note: If you want to sum more than two signals, use the
mixer circuit (see page 178 for details).

Subtraction

Mathematics says, that subtraction is nothing else than
the addition of a negative number. So you can subtract
0.5 from P1.1 by writing:

input = P1.1 + -0.5

Since this looks clumsy, you are allowed to write as a
short hand:

input = P1.1 - 0.5

Table of contents at page 2

Note: you can also use the negation on a register:
input = I1 - I2

But note: here this is an abbreviation for -1 * 12 + I1!
So you already have “used up” your multiplication, even
if youdon’t seeit. The general ruleis: If DROID can trans-
formyourline into the form A * B + C, everything is good.

3.6 Internal patch cables

One of the fun parts is the fact, that internally you can
connect several circuits without using any real inputs or
outputs. Instead of an output you simply put a name of
your choice that begins with an underscore. That same
name can be used at another circuit as an input. Here is
an example of an internal LFO triggering an envelope:

[1fo]
square = _TRIGGER
[contour]
trigger = _TRIGGER
output = 01

DROID manual for blue-2

Summary and Further notes

- Generally the formatis A * B+ C. So you are limited
to one attenuation (multiplication) and one offset
(addition / subtraction)

- Each of A, B and C can be a fixed number, any of
the registers or an internal patch cable (for those
see page 24).

- Attenuation must be written first, offset last.

+ There are some abbreviations for subtraction and
division. They work if the thing can be transformed
intoA*B+C.

- No other operations are allowed (no brackets, ad-

This patch cable is always a multiple, so it can be used by
more than one circuit:

[1fo]
square = _TRIGGER
[contour]
trigger = _TRIGGER
attack = 0.0
release = 0.2
output = 01
[contour]
trigger = _TRIGGER
attack = 0.5
24

ditional operations, divisions, etc.)
+ If you need more complex math operations, have a
look at the math circuit (see page 146).

Are you curious why DROID does not allow more com-
plex operations here? Why is it so restrictive? The rea-
son is a matter of CPU performance! When your patch is
parsed, everything is converted to A * B + C. If you don't
use the multiplication, B is set to 1. No offset? Then C
is 0. So when it comes to the real time computation of
these values, it’s just the simple A * B + C. No conditions
to be tested, no if/then/elses or similar stuff. It's really
super fast. And that’s important because you want your
DROID to have low latency and smooth envelopes.

0.8
02

release
output

Note: There are two rules, which are checked by the
DROID. And it will show an error message in green if one
of these are found to be broken (see page 16 for an expla-
nation of the error codes).

1. Eachinternal patch cable must be used as an input
and as an output (otherwise it would be useless).

2. No internal patch cable may be used twice as an
output. This would make no sense and is in effect
a short circuit.

Table of contents at page 2

3.7 Using outputs as inputs

There is another way of connecting circuits: You can use
an output register as an input to another circuit. The
following example creates an LFO that outputs a square
wave to LEDR1, in order for it to flash in the speed of the
LFO. R1 is the LED designated for input 1, but we sim-
ply misuse that as a signal LED for our LFO. Then an eu-

3.8 Using inputs as outputs

Using input registers as outputs is not allowed. And it
would not make any sense. If you try so, you will get a
yellow blinking error message for the according line.

Look at the following example. Here - due to a copy &
paste error - the LED states are sent to the button regis-

DROID manual for blue-2

clidean rhythm is triggered with that same signal, simply
by using R1 as an input here:

[1fo]
hz =2
square = R1

ters. That won’t work. And for that reason DROID won’t
allow it:

[buttongroup]
buttonl = Bl1.1

25

[euklid]
clock
lengt
beats
outpu

button2
button3

ledl
led2
led3

h

t

Bl

Bl
Bl

R1
12

01

B
B
.1
.2
.3

1.2
1.3
Argr. should be L1.1!
Argr. should be L1.2!
Argr. should be L1.3!

Table of contents at page 2

3.9 Parameter arrays

Some of the circuits have arrays of similar jacks, like
outputl, output2, output3 and so on. Here you can al-

3.10 Comments & spaces

You can use comments in your DROID patch by making
use of #. Then all further text until the end of the line is
being ignored: # Here comes the envelope for the foobar
voice

3.11 More than one patch on the memory card

Sometimes you might want to have more than one
DROID patch on your card and switch back and forth be-
tween these without going back to your computer. This
can be done if you have at least one controller with but-
tons, such as P2B8, P4B2 or B32.

It goes like this: Put your additional patches on the card
with special filenames droidXY .ini, where X is the
number of the controller and Y the number of the but-
ton. Then droid14.ini will be loaded if you first press
and hold the button 4 on your first controller while then
pressing the load button on the master.

This way if you have one P2B8 you can choose between
nine different patches. If you have a second P2B8 con-
troller, this is extended to 17 patches, because now hold-
ing button 1 on controller 2 will load droid21.1ini and
so on. A B32 gives you a total of 32 alternative patches
to load and so on. And yes: if you have 10 or more
controllers and some B32 amongst them, droid124. int
would be loaded by button 24 on controller 1, but also by

DROID manual for blue-2

ways omit the digit 1 if you just want to address the first
jackin the list. So output is just the same as outputl.

[contour]
trigger = _TRIGGER # wired to sequencer
attack = 0.5 # another comment
release = 0.8

button 4 on controller 12.

Important: It is crucial that every of your patch files con-
tains the appropriate [p2b8] or other controller declara-
tions! Otherwise you won'’t be able to switch over to the
other patches since button presses will not longer be reg-
istered by the DROID master. It will instead fall back to
the normal droid. iniin that case.

26

output

= 02 # wired to foobar trigger

Table of contents at page 2

4 Droid under the hood

4.1 How the module’s state is saved

If you ask people what’s the number one annoyance when
using a module, most will answer this: When a module
is loosing its state when you power cycle your modular.
That’s also the number one reason for people running
their system the whole night through.

Therefore the DROID - of course - will save it’s state al-
ways automatically. But what do | mean with “state” in
the first place? It's very simple: If you have defined a
button, DROID remembers wether it is currently on or
off. If itis on now, so will it be after a power cycle of your
system or a restart of the module (the same holds for off,
of course).

Other ciruits have states as well, for example the
algoquencer (state of the step buttons, the accents, the
patternlength), the matrixmixer (state of all matrix but-
tons), the calibrator (state of the calibration adaption),
the pot (the current value of all up to eight virtual pots)
and so on.

Only the result of manual interaction is saved, not for ex-

4.2 The order of the circuits

You might ask yourself what role the order of the circuits
plays in your patch file. Well - in most cases it doesn’t
matter at all, in some cases, however, it might cause very
subtle timing differences in the range of a couple of hun-
dred ps. In order to understand this, we need to have a
closer look at how the DROID works:

DROID manual for blue-2

ample the contents of the cvlooper or the current phase
of an 1fo.

Please note: All these states are saved to the micro SD
card into a file with the name DROIDSTA.BIN. That file
is created with a fixed size of 128 KB when your DROID
starts. Allmanual changes to your circuits are saved there
after a short delay of about 1.5 seconds. Also when you
press the button for loading a new patch, the states are
saved immediately, even if the last change was less than
1.5 seconds ago.

This has the following implications:

- When no memory card is in the DROID, no states
will be saved. But you can always put one there
even if the module is already running for some
time. It will be detected automatically and all
states will be saved after a second or two.

- When you move the SD card from one DROID
to another, the current circuit states will also be
moved.

The basic working process of your DROID is a simple loop
that is repeating over and over again - at a speed of ap-
proximately 180 us per cycle, which means that it is run-
ning at approximately 5.5 kHz! In each cycle of the loop
the following things happen:

- The current values of all inputs, gates, buttons and

27

- If you want to erase all your settings, you can do
this by starting the DROID without and SD card
and inserting it later. The settings file will only be
loaded right at the beginning. If it’s not present, all
circuits start with their default settings.

The format of the file is binary and looks chaotic. You
cannot open or edit it with any software. But the format
is very efficient, so the ongoing saving of states doesn’t
have any impact on the precise timing or performance of
the DROID.

Note: If you forget to have the SD card inserted when
you power up your DROID, it will run with default states.
Inserting the SD card afterwards will not load the saved
settings but the other way round! It will save the cur-
rent states on the card. This way you loose your original
settings. So if you have forgotten to start with the card,
power off the module, then insert the card, then power
it on again. That way you won'’t loose your settings.

pots are read in and stored in the I, G, B and P reg-
isters.

+ Each circuit creates a new value for each of its out-
puts. That might include writing new valuesinto 0,
G, L or Rregisters.

+ The contents of the 0 and G registers are converted
into voltages for their respective output jacks. The

Table of contents at page 2

contents of the L and Rregisters are translated into
brightness and color of the according LEDs.

Now let’s look at two circuits that are internally wired:

[bernoulli]
input = Gl
distribution = P1.1
outputl = _TRIGGER
[contour]
trigger = _TRIGGER
output = 01

4.3 Displaying the value of a register

In the section about finding errors in your patches we al-
ready talked about the status dump file (see page 30).
That shows you the exact value of every single input, out-
put, potentiomenter and other register.

But there is another way of showing a current value from
within your patch, and that live. This can be useful, for
example, if you want to spare a potentiometers and use a
fixed value instead but first need to find out which value
fits best. Maybe you need a simple envelope with a fixed
non-zero attack value. You could try out different values
by changing your patch over and over again. But that’s
quite annoying.

Here the experimental X1 register helps. It's an output
register. When you send a value there, all the LEDs of the
front panel will show that value in a way similar to the
line-error-encoding of the patch parser. Here is an exam-

ple:

[p2b8]

DROID manual for blue-2

Here an external trigger at 61 (on the G8 expander) is be-
ing used to trigger an envelope randomly, which is then
sent to 01. Here - because of the order of the circuits -
the envelope will start in the same loop cycle in which the
trigger is seen at G1.

Now let’s change the order:

[contour]
trigger = _TRIGGER
output = 01

[bernoulli]

[contour]
attack = P1.1
release P1.2
trigger = Bl.1
output = 01

[copy]
input = P1.1
output = X1

Now turn the knob P1.1 for setting some nice attack
value. As soon as you remove that fromits zero-position,
all LEDs will move around in red and white and show the
current value of P1.1 with three digits. Input LEDs are lit
white and red. White digits account for 0.1 and red digits
for 0.01. The red digits at the outputs account for 0.001.
Here are some examples:

The value 0.148:

28

input = Gl
distribution = P1.1
outputl = _TRIGGER

Now it is different. In the cycle in that the trigger is de-
tected at G1, the envelope has already been processed. It
getsits trigger through the internal wire _TRIGGER not be-
fore the next cycle. This introduces a short delay of up to
160 us. Thisis not very long, but it can easily be avoided.

Note: However, when your patch contains quite a lot of
circuits, the loop time gets longer. Even then, it is likely
to stay below 500 us.

The digit 9 will be displayed as 8 + 1. So here is 0.951:

Table of contents at page 2

FEIM
CiIAK

LIEIEIR
EHRAEIE

DROID manual for blue-2

A zero digit means of course that no LED is lit in the ac-
cording section. Here is 0.950:

NEEIM
EHRAEIE

But what if digits in the input section collided? E.g. 0.550
would need the LED of input 5 to be red and white at the
same time. Well, then it will blink between white and red:

29

NEIEIM
Mk

NEEIR
ERAEE

Once you have found a nice value, simply replace P1.1
with that fixed value and your pot is free for something
elsel

Note: When you send 0 to the X1 register, it will be inac-
tive and the LEDs behave like normal and show the actual
values of your inputs and outputs.

Table of contents at page 2

4.4 Displaying current values

There is an easy method for getting the current value of all registers! Simply double press DROID status

the master’s button - just similar to a mouse double click. If you do this, all LEDs will

flash white once. And on the SD card a file with the name STATES1.TXT is being created. Firmware version: blue-1

This file will not only show you the current value of all registers but also the values of all Running since: 34.576 sec

internal patch cable (see page 24). Free RAM: 110579 Bytes (97.857%)
Size of patch: 1333 Bytes (2.082%)

When you do this again, a STATES2.TXT and so on is created. When STATES99.TXT is Inputs:

reached, it starts over again from STATES1. TXT. When you create the first dump file af-

ter the DROID has started, all old files from the previous run are automatically deleted. I1: 0.3201 I2: 0.8210 I3: 0.0000 I4: 0.0000

I5: 0.0000 I6: 0.0000 I7: 0.0000 I8: 0.0000
Here is what such a file looks like: . .
Normalizations:
N1: 0.0000 N2: 0.0000 N3: 0.0000 N4: 0.0000
N5: 0.0000 N6: 0.0000 N7: 0.0000 N8: 0.0000

Outputs:
01: 1.0000 02: 0.2000 03: .3333 04: 0.0000
05: 0.0000 06: 0.0000 07: 0.0000 08: 0.0000

(=]

Gates:
Gl: 1 G2: 0 G3: 0 G4: 1
G5: 0 G6: 0 G7: 0 G8: 0
RGB-LEDs:

R1: 0.000 R2: 0.000 R3: 0.000 R4: 0.000
R5: 0.000 R6: 0.000 R7: 0.000 R8: 0.000
R9: 0.000 R10: 0.000 R11l: 0.000 R12: 0.000
R13: 0.000 R14: 0.000 R15: 0.000 R16: 0.000

Controller 1 [p2b8]:
Bl.1: 0 B1.2 0 B1.3: 0 Bl1.4: 0
B1.5: 0 Bl1.6: 0 Bl1.7: 0 B1.8: 1
L1.1: 0.000 L1.2: 0.000 L1.3: 0.000 L1.4: 0.000
L1.5: 0.000 L1.6 0.000 L1.7: 0.000 L1.8: 0.000
P1.1: 0.77631 P1.2: 1.00000

Internal patch cables:

_CLOCK: 1.00000
_PITCH: 0.23430
_RELEASE: 0.30000

DROID manual for blue-2 30 Table of contents at page 2

5 Controllers and Expanders

The DROID master can be extended with an ever growing range of controllers and other expanders. These are what makes the DROID ecosystem so flexible. You can attach up to 16

controllers to your DROID.

=
—
=
\5“‘
o)

O

Pl The B32 controller provides
[] you with a plentitude of 32

The M4 Motor Fader
Unit brings four mo-
torized faders to your
DROID. These can be
used either for easy
switching between pre-
sets or for overloading
one fader with lots of
different functions at
the same time.

DROID manual for blue-2

The P2B8 controller
has two potentiometers
(pots) and eight push
buttons - thus the name
P2B8. You can freely
use these pots and but-
tons for any purpose
in your DROID patch.
Using controllers is very
easy and adds lots of
playability.

The S10 controller has
two mechanical rotary
switches with eight
positions each and eight
toggle switches with
three positions. The
large switches outputs
number from 0 to 7. The
small switches output O,
Tor2.

31

The P4B2 is very sim-
ilar to the P2B8. The
only difference is that it
has four big pots and just
two buttons. They are
useful if you need more
controls of continuous
values but the small pots
of the P10 are too small
for you.

The G8 expander ex-
tends your DROID by
eight gate inputs or
outputs, which is perfect
for clock, trigger and
gate signals. Every jack
can be used as a gate
input or output. You can
attach one G8 to your
DROID.

o [¥l

The P10 works very
similar to the P2B8, just
it has no buttons but 10
pots. Two are large and
eight are small, but all
of them have the same
functionality. You can
control any parameter
with each of the pots.

The X7 expander pro-
vides three different
functions: MIDI in +
out, both via USB and
DIN/TRS, supporting
both Korg and Arturia
standard (also known
as MIDI-A and MIDI-B),
direct access to the
masters’s SD card via
USB and four additional
gate outputs.

Table of contents at page 2

5.1 The P2B8 controller

i Ci1
GG D
- @)
[& IRRSTE IR)

R

(&

(¥
¢ -
e €y
HW design by

Uladimir Pantelic
vpme.de

9izp IRB

DROID manual for blue-2

Using controllers is very easy and adds lots of playabil-
ity to your DROID patch. The P2B8 controller is the most
common and flexible of the DROID controllers and it was
the first one available. This chapter shows you how to in-
stall and use it. The same does apply for the P4B2, P10
and B32 controllers - just that the P10 has no buttons
and the B32 has no pots. The M4 is special and will be
described in a dedicated chapter once it is available.

Installation

H

Qxiunmdm.

1. Wire the controller output of the master to the first
controller by use of the 6 pin ribbon cable. Make

32

sure that you attach it to the input header of the
P2B8 controller. Put the red stripe down on both
modules.

2. If you use more than one controller, connect the
LINKOUT header of each controller to the LINKON
header of the next one.

3. Onthe last controller, set the jumper to Last.

4. On all other controllers, remove the jumper or set
it to Park.

Note (1): do not mix up input and output. The right
hand connector must be connected to the master, the
left hand one to the next controller.

Note (2): do not use the 6 pin programming header (the
one without the box) on your master or P2B8!

The controller modules are powered by the master. When
you switch on your system, all controllers will flash the
LEDs for a short time, to show you that you have wired
them correctly.

If you set the jumpers not correctly, the controllers will
power up and flash their LEDs as usual, but the buttons
and pots will not work.

If the LEDs on the first controller behave as they should
but not the buttons and pots then you have probably set
the jumpers incorrectly. Please check.

Another test is pressing a button: If you have correctly
declared your controllers in your DROID patch, the LED
in that button should be lit as long as you hold the but-
ton. This shows that the communication with the master
is working fine.

Table of contents at page 2

5.2 The P10 controller

O P18l O P18 O P10

DROID DROID DROID

DROID manual for blue-2

The P10 controller is very similar to the P2B8 controller.
Please look at page 32 for how to connect the controllers
to your DROID master and how to chain them. The only
difference is that the P10 does not have any buttons (nor
LEDs in these buttons) but instead eight small pots. That
makes a total of 10 pots - all behaving in the same way.
They are numbered from 1 to 10, so if your P10 would be
the first in the chain, these pots are adressed ina DROID
patchbyP1.1,P1.2,P1.3... P1.10.

The P10 is handy if you need to control lots of continuous
values.

33

Table of contents at page 2

5.3 The S10 controller

The S10 controller has ten switches.
They have the register abbreviation S.
The first two switches have eight po-
sitions and output the discrete num-
bers0, 1, ... 7. The small switches just
have three positions: 0, 1 and 2.

DROID manual for blue-2

In many cases the output values of the switches can be
used directly for controlling something. In other sitations
you might want to use the switchcircuit. It's a perfect so-
lution for having the switch select one of a list of values.
Here is an example:

[switch]

offset = S1.1
inputl = 0
input2 = 2
input3 = 3
input4 = 5
input5 = 6
input6 = 10
input7 = 11
input8 = 100

outputl = _FADERMODE

Here the switch 1 (S1.1) sets on offset to a switch cir-
cuit and sends one of the values 0, 2, 3, 5, 6, 10, 11 and
100 into the cable FADERMODE.

As always: inputs can be CVs. So you can also have dy-

34

namic inputs into the switch circuit. Here we use one of
the small three-way switches to select one of three wave-
forms of an LFO:

[lfo]
hz = 3
sine = _SINE
saw = _SAW

square = _SQUARE

[switch]
offset = S1.3
inputl = _SINE
input2 = _SAW
input3 = _SQUARE
outputl = 01

The switches are programmed in a way that if you move
them fast, intermediate values will not be seen by the
Droid circuits. So for example if you move one of the
small switches directly from up (0) to down (2), the in-
termediate middle position with the value 1 will not get
“visible”, not even for a short time.

Table of contents at page 2

5.4 How to use controllers in your patch

Before you can use the controllersin your patch, you need
to declare them right at the top of your patch: Just write
one line with the content [p2b81, [p10], [b32], [p4b2],
[m4] for each foryour controllers. The order of these dec-
larations must exactly match the order of your controllers
in the chain, beginning with the one that is directly con-
nected to the master. Here is an example with two P2B8s
followed by one P10:

[p2b8]
[p2b8]
[p10]

If you work with the Forge, you simply add the controllers
to your rack view. The Forge will then do the declaration
for you.

Now you can use the pots, buttons and LEDs by indicat-
ing these special registers in your patch as follows:

Px.y | potentiometers

Bx.y | buttons

Lx.y | LEDsin buttons

Replace x with the number of the controller and y with
the number of the pot or button on that controller. Ex-
amples:

- P1.2is the second pot on the first controller
- B3.8is the eighth button on the third controller
+ L3.8isthe LED in that button

DROID manual for blue-2

Here is a schematics of the numbering of three P2B8 con-

trollers:

O P2B8

@

@

O P2B8

@

@

O P2B8

@

&

35

Look at the following example. Here we have three con-
trollers attached to the master: One P2B8, then one P10
and finally one more P2B8. Then we use some of the pots
of the P10 for controlling the timing of an envelope cir-
cuit:

[p2b8]
[p10]
[p2b8]

[contour]
trigger = G1
output = 01
attack P2.5
release = P2.6

Details on the potentiometers

The potentiometers of the P2B8 and P10 output a num-
berin the range 0.0 ... 1.0. This corresponds to a voltage
from 0.0 V to 10.0 V. Wherever there is a CV parameter
in a circuit (labelled /\/\/‘ in the table of inputs) you can
set a pot here. An example would be an envelope gener-
ator:

[p10]

[contour]
gate = Gl
output = 01
attack = P1.3
decay = Pl1.4
sustain = P1.5
release = P1.6

Table of contents at page 2

If you do not like the range of the pot you can easily
change it by attenuation and offsetting as described on
page 23. Let’s make attack just go from 0.0 to 0.3:

[p10]

[contour]
gate = Gl
output = 01
attack = P1.3 * 0.3
decay = Pl1.4
sustain = P1.5
release = P1.6

Of course you could use the same pot for more than one
input. The following example use one single pot for at-
tack, decay and release - with different scaling, however!

[plo]

[contour]
gate = Gl
output = 01
attack = P1.3 * 0.3
decay = P1.3 * 0.5
sustain = P1.4
release = P1.3 * 0.7

Sometimes you want to use a potentiometer in a bipo-
lar way - e.g. with arange from -1.0 to 1.0. This can be
achieved by multiplication with 2 and subtracting 1:

[p2b8]

[copy]
input =P1.1 x2 -1
output = 01

DROID manual for blue-2

For more complicated tasks about pots there is the circuit
pot (see page 212). Here are some of its features:

+ Make it easy to exactly dial in 0.5 by creating an ar-
tificial notch.

- Overlay the same pot with several independent vir-
tual values.

- Easily create a bipolar pot with access to the left
and right half of the values.

+ Use the master’s 16 LEDs for highlighting the cur-
rent pot value

Details on the buttons

The buttons like on the P2B8 yield a value of 1.0 while
pressed and hold and 0.0 otherwise. While this is suffi-
cient for using them as trigger, in most cases you want
the button to toggle its state between on and off each
time you press it.

Here the circuit button helps (see page 86). It converts a
push button into an on/off switch. The following exam-
ple usesB1.1in order to switch an LFO between unipolar
and bipolar:

[p2b8]
[button]
button = B1.1
led = L1.1
[1fo]
bipolar = L1.1
sine =01

Please note, how the LED L1.1 is set by the button, so
that you have visual feedback of the current state. And

36

since that register contains 0 or 1 depending on the but-
ton’s state it can directly be used for the input bipolar of
the LFO.

The button circuit can do much more interesting things,
for example:

- Create buttons with three or four toggle states

+ Combining more buttons into a group, similar to
“radio buttons”.

. Overlay one button with severalindependent func-
tions

- Detect double clicks and long presses

See page 86 for all the details.

5.5 Controller latency

As stated above, you can attach up to 16 controllers to
one DROID master. These controllers are connected via a
ribbon cable with six wires. Four of these wires comprise
a power supply for the controllers with 5V (except for the
M4 - Motor Fader Unit, which has its own power supply).
The remaining two wires form a digital serial connection
between the modules. The master sends data to the first
controller, the first controller to the second and so on un-
til the last controller sends all collected data back to the
master.

This serial line sends approximately 7200 bytes per sec-
ond. Every controller needs a different number of bytes
per update and for the P2B8 it’s 11 bytes. So if you have
just one P2B8, you get % = 654 updates per second.
That’s roughly one update per 1.5 ms - which is pretty
fast. That means that a button press is registered by the
master after 1.5 ms plus some internal computation time.

If you have the maximum of 16 controllers (which would

Table of contents at page 2

be 80 HP of controllers), things slow down a bit, of would need about 25 ms to be registered. This is still way with the buttons would not be very tight (I wouldn’t sug-
course, since now every controller get’s just Tle of the fast enough for the typical switching tasks that you typ- gest that anyway).
datain the serial connection. In that case a button press ically do with the DROID. However, playing live drums

DROID manual for blue-2 37 Table of contents at page 2

5.6 The G8 expander

by Mathia< Ketther

DROID manual for blue-2

Simply use the 8 pin ribbon cable that has been shipped
with your G8 and connect the G8 to the 8 pin port of the
master as shown in the following picture. Put the red
stripe down in both modules.

e .®

() ‘Ej () a %)

LINK OUT
|

8

see2s1:

The G8 expander gives you 8 further digital inputs and
outputs. These are accessible via 61, 62 ..G8. They can be

38

used as clock and reset inputs, trigger outputs and similar
tasks.

- Each jack can either be used as input or as output.

- When used as input it will read a value of 1 (= 10V)
at an input voltage of approx 0.75 V or above and
0 otherwise (also for negative voltages)

+ When used as an output they output 5 V when you
send a value 0.1 or higher to 61 ..68. And 0V oth-
erwise.

The G8 also has 8 multicolored LEDs. These will indicate
inputs in blue lights and outputs in red when high. You
can override the default function of LEDs in order to sig-
nal something. Use the registers R17 ...R24 for that pur-
pose.

There is nothing special to do in your droid. ini for set-
ting up the G8 expander. Using G1 ..G8 without actually
having the expander will simply behave as if nothing was
patched there.

One question aside: Why do the gates not output 10 V?
Well, while this would be more logical, it was actually im-
possible to do in hardware easily since we use a very spe-
cial chip here that is able to switch between input and
output via software. And this chip does not support 10 V.
99.9% of all eurorack modules will happily accept 5V as a
valid trigger. If that’s not the case for you, simply use one
of the outputs of the DROID master.

Table of contents at page 2

6 The X7 expander
6.1 Quick start

You already know what the X7 is all
about? Want to start immediately? Here
is a super short quick start guide for ex-
perienced DROID users:

1. Wire the X7 to your master just like
a controller. It must be the first in
the chain.

2. Use the MIDI functionality via
the circuits midiin (see page
158), midiout (page 165) and
midithrough (page 173).

3. Access the four gates via G9, G10,
Glland G12

4. Connect the USB cable and set the
switch feft for USB access to the
SD card. Set it back to the middle
position for disconnecting USB and
loading the patch.

DROID manual for blue-2

6.2 General overview

Features and applications

Welcome to the X7 expander. The X7 gives you USB and
MIDI connectivity for your DROID and also four gate out-
puts with modular levels.

You can process incoming and generate outgoing MIDI
streams, both via classical DIN cables and via USB. Bothin
and out directions support polyphony with eight or even
more voices.

For size reasons the X7 uses 3.5 mm TRS jacks for MIDI
instead of the classical DIN jacks. But it comes with two
DIN <> TRS adapters, so you are free to use either form
factor.

As a bonus feature, the X7 provides super fast loading of
DROID patchesvia USB - without any need for putting the
SD card in and out anymore.

Here are some examples of what you can do with the X7:

- Attach an external keyboard to your modular.

- Use an external hardware sequencer for playing
melodies and beats in your modular.

+ Use an external MIDI controller to control your
DROID patch.

- Do the same with a MIDI controller app on your
tablet or phone (via USB).

+ Use your modular for playing polyphonic music and
beats on your hardware synths or software synth
plugins in your DAW, tablet or phone.

- Connect two DROIDs (both with X7) and exchange
real time CVs and triggers.

39

+ Use the four additional gate outputs on the X7 for
sending clocks, gates and triggers and free your
valuable CV outputs for other things.

+ Access the SD card in your master just like a USB
thumb drive for direct access to it via your PC, Mac,
phone or tablet.

. Alternatively load new patches to your master via
MIDI sysex from your PC - and get your new patch
ideas up and running in less than a second.

The switch

At the top the X7 has a switch with three positions. This
switch selects the current function of the USB port:

left Activate USB access to the SD card

middle | Don’t use the USB port

right Activate MIDI via USB

Beware: in the left position the master will not work as
usual and does not run your patch. See below for details.

The jacks

The X7 has the following jacks:

+ One USB-C port for MIDI via USB and for access to
the master’s SD card from your PC

+ One 3.5 mm stereo jack (also called TRS, which
stands for “tip ring sleeve”) for MIDI input, with au-
tosensing for MIDI TRS type A and B

+ One 3.5 mm stereo jack for MIDI output

Table of contents at page 2

- Four gate outputs for gate and trigger signals at
modular level

This sums up to a total of seven ports, hence the name X7
(the original idea of naming it “UTM2G4” was soon aban-
doned, since that was too clumsy and also wouldn’t fit on
the face plate).

The LEDs

Similar to the master, the face
plate has multicolor LEDs indicating
what’s going on at the seven ports:

- The top left LED shows the
current state of the SD card in
the master.

+ The top right LED shows
what’s going on on the USB
MIDI connection.

+ The LEDs in the second row
show incoming and outgoing
MIDI data at the TRS ports.

+ The four LEDs labelled 9, 10,
11 and 12 show the current
state of the four gate outputs.

afb
md [

M=

6.3 Installation

The installation of the X7 is very easy. These are the rules:

1. Wire the X7 to the shrouded 6-pin header on the
top right of the master, just like P2B8, P10 or other
controllers.

2. Thereis no jumper. You don’t need one here.

3. Always install it as the first module in the chain!

DROID manual for blue-2

4. Make sure that the switch is in the middle position
when you start.
5. You can only attach one X7 to your master.

Just like all the controllers, the X7 has an input connector,
whichis at the top right side if you look from the back. On
the left side is the output connector. Connect the master
with the shipped 6 pin ribbon cable to the input connec-
tor. If you have any controllers, like P2B8, P10 and so on,
wire the first of these to the output connector of the X7.

That's all. the X7 is powered from the master so there is
no dedicated power cable.

Note: You don’t need to change anything in your DROID
patches for now. Even if the X7 is connected to the mas-
ter like a controller, it does not need to be declared. And
it also does not count when it comes to the numbering of
P1.1andsoon.

6.4 USB access to your SD card

The X7 can give you direct access to the SD card of the
master via USB. Start with the switch in its middle posi-
tion. And make sure the micro SD card isin its slot on the
master. The top left LED of the X7 always shows you dim
white light whenever a SD card is present.

40

i
Ti3

|EEI
T=

Now connect the USB-C port on the X7 with your PC, Mac,
Linux, phone or tablet (I'll just use “PC” for the rest of this
manual) and set the switch on the X7 to the left. This en-
ters “USB stick mode”.

Note: Please use the USB-A <+ USB-C cable that was
shipped with the X7 or a similar one. USB-C +> USB-C
cables do not work!

After a few seconds, your PC should detect a new stor-
age device with the exact contents of the micro SD card.
Since X7 is a “class compliant” mass storage device you
don’t need any driver on your PC.

If you work with the Forge, you should see the Save to
SD icon become active and you can use that to write your
patch to the SD card. Much faster is using MIDI Sysex,
however.

If you don't like the Forge, you can edit droid. ini di-
rectly on the card or copy a patch from your PC to the
card, just as you are used to when you are working with
your SD card reader. The USB-Stick mode is also helpful
for getting the ERRORS . TXT or STATES1. TXT file from your
SD card, even if you work with the Forge.

When you are finished, eject the volume / disk on your PC.
After that set the switch back to its middle position. This

Table of contents at page 2

will remove the USB connection and also automatically
launch the new DROID patch. So you don’t need to press
the button on the master.

A few notes:

« If your patch has an error (blinking LEDs and stuff,
see page 16) put the switch back to the left, wait for
the SD card window to popup and look for the file
DROIDERR.TXT. Open it and you will see the exact
reason for the error.

- The access to the SD card via the X7 is slightly
slower than using an SD card reader on your PC
since it takes the extra miles via the X7

- If you need to re-format the card for some reason,
better do this in the micro SD card reader that was
shipped with your master. It's much faster that
way.

- If you are working with Mac and experience that
the access is slow, check out disabling Spotlight on
the card. A script for that can be found on page 58.

6.5 MIDI

MIDI features overview

One key feature of the X7 is working with MIDI. The com-
bination of the DROID master with the X7 probably forms
the most flexible, comprehensive and powerful MIDI con-
verter in Eurorack land. Here are some of the key fea-
tures:

« Support for both MIDI — CV and CV — MIDI at the
same time.

+ Unlimited polyphony (number of simultaneuous
notes) except that you run out of jacks.

+ The MIDI streams of USB and TRS can be used in-

DROID manual for blue-2

dependently in parallel, so you have two input and
two output streams.

+ Flexible “MIDI through” routing while splicing in
and out events

+ Comprehensive support and access to the vast ma-
jority of MIDI features such as CCs, clocks, the run-
ning state, pitch bend, all types of pedals and much
more.

- Automatic pitch stabilization detection in the
CV/gate — MIDI conversion, thus working pre-
cisely with Eurorack sequencers and quantizers.

+ Super fast DROID patch upload via USB-MIDI Sy-
sex.

And of course you benefit from DROID’s own flexibility
when it comes to quantization, LFOs, chord generators,
switches and all that stuff.

MIDI over DIN

For space reasons, the X7 uses 3.5 mm stereo jacks (TRS)
for MIDI. But we ship two TRS to DIN adapters with the
X7. Use these for connecting classical DIN MIDI devices.

Note: When you use one of the shipped adapters for the
MIDI output via DIN, make sure that the switch at the
back of the X7 is set to position B (up).

41

-

B .

designed in 1,

Darmstadt '’

by Vladimir Par _

LI e ST vpme.des |
1 :

N

(5 I §

TN 6%
(3 A G
RN =2 f>o
: o e el [

MIDI over USB

The X7 supports MIDI over USB. Hereby it acts as a USB
device. This does not mean any limitation of being an in-
put or output device. It can be both. Even at the same
time. But the actual limitation is that the X7 cannot pro-
vide power to your MIDI devices and cannot be a USB
host.

That means that MIDI devices that are USB devices them-
selves cannot be connected to the X7 via USB, even if you
have a matching cable. Connect your MIDI keyboards and
controllers with the TRS jack if USB doesn’t work for you
here.

But the USB port is perfectly suitable for connecting the
X7 toyour PC, Mac, tablet or phone. The MIDI implemen-
tation is “class compliant”. That means that you do not
need any driver software. Simply connect the X7 with the

Table of contents at page 2

shipped (or any other) USB-C cable to your PC and set the
switch to the right. You should now see a new MIDI de-
vice, which can be selected as input or as output depend-
ing on what you are going to do.

Note: As of now the USB-MIDI standard has a concept of
up to 16 virtual MIDI “cables”. The X7 receives data on all
cables and always sends on cable 0. Future software up-
dates might make this more flexible, if there is demand.

By the way: MIDI over USB is not restricted to the stan-
dard MIDI data rate of 31250 bits per second.

The LEDs

When working with MIDI, watch the corresponding LEDs.
Here is what the colors mean:

black no data transmitted

dim white | steady activity

green note on
red note off
blue some other MIDI event

The top right LED shows the status of USB-MIDI:

DROID manual for blue-2

m=

The third LED shows MIDI data via incoming TRS:

= o llc
|E|EI|HH|

The fourth LED shows MIDI data via outgoing TRS:

m=|L 1k

N
N

MIDI to CV (MIDIl input)

The most common application for MIDI and modular syn-
thesizers is converting MIDI note events to CV/gate sig-
nals. When you press a key on a MIDI keyboard or when
a MIDI sequencer starts playing a note, a MIDI “note on”
message is being sent over the wire. Likewise at the end
of the note a “note off” message is sent.

A typical MIDI to CV module receives these messages and
feeds at least two jacks: one with the pitch of the cur-
rently played note in form of the typical 1 volt per octave
scheme. And one gate output which is high (e.g. at 5V)
while the key is being hold.

Of course there is much more, like clock signals, con-
trollers and so on. This X7 can give you access to the vast
majority of MIDI features.

The hardware connection is done either with the 3.5 mm
TRS jack or via USB (or both at the same time). The X7
comes with two identical TRS <+ DIN adapters, soyou can
use the much more wide spread classical MIDI cables with
DIN plugs.

Even if you don’t use our adapters but use the 3.5 mm
jacks directly, you don’t need to care about MIDI “A and
B”. The X7 does autosensing at its input. Either way will
work. Just make sure you use stereo cables. Normal mod-
ular patch cables don’t work.

The basic operation is super simple. All is done with the
circuit midiin (see page 158). This example converts
MIDI to a pitch CV at output 01 and a gate at output 02:

[midiin]
pitch = 01
gate = 02

Table of contents at page 2

The source is the TRS jack. But you can easily select MIDI
via USB instead with the usb parameter:

[midiin]
ush = 1
pitch = 01
gate = 02

Per default, midiin processes notes from all 16 MIDI
channels. You can select one specific channel with the
channel jack:

[midiin]
channel = 5
pitch = 01
gate = 02

Note: You can use up to 32 midiin circuits in your patch.
So you could add one circuit for each MIDI channel that
you want to process.

For polyphonic patches with more voices simply specify
more pairs of gate and CV. This example supports three
simultaneuous notes:

[midiin]
pitchl = 01
pitch2 = 02
pitch3 = 03
gatel = 05
gate2 = 06
gate3 = 07

If you have a G8 expander (see page 38) you directly con-
trol eight analog voices:

DROID manual for blue-2

[midiin]
pitchl = 01
pitch2 = 02
pitch3 = 03
pitchd4 = 04
pitch5 = 05
pitch6 = 06
pitch7 = 07
pitch8 = 08
gatel = G1
gate2 = G2
gate3 = G3
gated = G4
gate5 = G5
gateb = G6
gate7 = G7
gate8 = G8

Notes have velocities, also there are MIDI controllers like
the volume, the modulation wheel or more. These can di-
rectly be accessed via output parameters:

[midiin]
pitch = 01
gate = 02

volume = 03

modwheel = 04

ccnumberl = 17 # get CC number 17
ccl = 05 # output that on 05

Also you get simple access to various MIDI clocks and the
start and stop status:

[midiin]
clock = G1
start = G2
stop = G3

running = G4 # alternative to start/stop

43

The MIDI notes needn’t be used for playing voices. The
following example uses the note for selecting a root note
foraminifonion (see page 174):

[midiin]
pitch = _PITCH

[minifonion]
root = _PITCH * 120

You even can use MIDI keys (maybe from controller pads)
as buttons.

[midiin]
notel = 24 # MIDI note number of C-0
notegatel = _KEY_C

[button]
button = _KEY_C
onvalue = 0.8
offvalue = 0.2
output = 01

This was just a quick overview and there are much more
inputs and outputs available. Please have a look at page
158 for more details on midiin.

CV to MIDI (MIDI output)

While MIDI to CV interfaces still are the vast majority of
MIDI modules, the other way round becomes more and
more interesting. With more and more complex quan-
tizers, sequencers and other fascinating and inspiring CV
modules people want to integrate existing hardware or
software synths into their modular systems for playing
melodies and beats that are generated by these modules.

Table of contents at page 2

For that task you need a CV to MIDI converter. That con-
verts pitch and gate information that are present in form
of CVs, into a stream of MIDI events and sends these over
DIN or USB to the sound modules.

Such CV to MIDI converters are still rare in Euroland and
many of the existing modules have severe restrictions or
instabilities. One crucial problem is that most sequencers
do not output gate and pitch information exactly syn-
chronously. Anotheris that you need to have high quality
jitter free AD converters for precisely catching your pitch
CVs.

The X7 aims to be the most precise, comprehensive and
flexible CV — MIDI converter available and we are confi-
dent thatitindeed is. It supports an unlimited number of
voices (even if your master just has eight CV inputs, more
voices can be created internally with all your sequencer,
algoquencer, chords, arpeggio, minifonion and other
circuits). Also it gives you access to almost every con-
ceivable MIDI feature. And it benefits from the master’s
super precise and stable AD converters.

So let’s get started with the hardware. Just as with MIDI
IN, you can choose between USB and TRS. But here there
is a difference. The problem arises from the fact that the
mapping of the MIDI DIN plug to 3.5 mm stereo jacks has
been - well - fucked up by the hardware vendors. Some
have chosen the tip of the plug to be the TX signal, others
have found the ring to be more suitable. So two incom-
patible “standards” haven arisen, which were later called
MIDI “type A” and MIDI “type B".

While at the input there is an autosensing, at the output
side this is not possible. So this time you need to get it
right. For that reason on the back side of the X7 there is
a small switch where you can select either type A or type
B for your TRS output. If you are unsure which one is the
correct one for your specific device, simply try both.

DROID manual for blue-2

Note: For our shipped adapters set the switch in posi-
tion B!

Using the CV — MIDI feature of the X7 is easy. Use the
circuit midiout (see page 165) for that purpose. Here is
an example for a monophonic patch with just one voice.
The pitch input is read from I1, the gate from I2:

[midiout]
pitch = I1
gate = I2

Per default, X7 sends on MIDI channel 1 on TRS. You can
change both with the parameters usb and channel:

[midiout]
ush =1

To create a polyphonic patch simply add more pitch/gate
pairs:

[midiout]
pitchl = I1
pitch2 = I2
pitch3 = I3
gatel = I5
gate2 = 16
gate3 = I7

Of course you can use internally generated or shaped
pitch information, as well. In this example the pitch in-
put from Il is quantized to C minor before sending it to
MIDI (see page 174 for details on theminifonion circuit):

44

[minifonion]
input = I1
degree = 7
output = _PITCH

[midiout]
pitch = _PTICH
gate = I2

You can even create a MIDI to MIDI quantizer - without
any further eurorack module:

[midiin]
pitch = INPITCH
gate = _GATE
[minifonion]

input = _INPITCH
degree = 7
output = OUTPITCH

[midiout]
pitch = _OUTPITCH
gate = _GATE

Of course you can also access all the CCs and other con-
trollers, such as velocity, aftertouch, and polyphonic key
pressure. Also you can send your modular clock and reset
signals via MIDI. Please see page 165 for all details on the
midiout circuit.

And by the way: as always, all parameters are CV con-
trollable and can be changed on the fly - even things like
channel and usb.

I think you can guess the flexibility of this approach!

Table of contents at page 2

6.6 MIDI through

The X7 can forward MIDI data, that are incoming via TRS
or USB, to one of its two outputs (TRS / USB), while still
being able to “feed in” additional events into the same
output (using midiout (see page 165)) or processing the
events (using midiin (see page 158)).

Use the midithrough (see page 173) circuit for forward-
ing data from an input to an output. Here is an example:

[midithrough]
fromush = 1
tousb = 0 # means TRS jack for output

This will forward MIDI events from the USB port to the
TRS output. Note: All midiin and midiout circuits still
work, so the output stream on the TRS jack will both con-
tain the original events from MIDI-USB and the events
you create with your midiout circuits.

midithrough cannot do any filter or processing on the
fly. But if it would become an issue, we might add use-
ful feature here in future.

6.7 Four gate outputs

The X7 has four gate outputs. These are easy to use and
also not very thrilling. But useful. Each of these can out-
put modular level triggers or gates of 5 V.

For using the gates, refer to them as 69, 610, G11 and
G12. Why not starting at 61?7 Well, the gates 61 ... G8
are reserved for the G8 expander (see page 38), even you
don’tuse one. Note: the gateson the X7 are only outputs,
whereas the G8 can also use them as inputs.

DROID manual for blue-2

Of course you can use the gates in combination with
MIDI. Here is an example for outputting three different
MIDI clocks as well as a reset signal at the gates:

[midiin]
clock = G9 # 16th notes
clock8 = G10 # 8th notes
clock4 = G11 # quarter notes
start = G12 # trigger at MIDI start message

6.8 Eight multi color LEDs

Just as with the master and the G8, you can override
the functions of the eight LEDs on the X7 with your own
choice of colors. Use the registers R25 through R32 for
that purpose.

Here is an example for changing the LED color with a pot:

[p2b8]

[copy]
input = P1.1
output = R25

ﬁ |EEI|IIEI|
—EllTl=

6.9 Fast patch upload via Sysex

MIDI defines a type of event that is called “Sysex”, which
is an abbreviation for “MIDI System Exclusive Message”.
These are portions of data bytes that just have a mean-
ing to certain types of devices and are not standardized
by MIDI. These messages can mean anything to a device.
In fact one of the original ideas was to load “patches” to
and from a hardware synth.

And exactly that original application is implemented by
the X7: You canupload DROID patches to your master via
MIDI sysex. Why would you do that, if you could simply
use “USB stick mode”? Well, there are a couple of advan-
tages:

+ The upload via sysex is really super fast.

+ Your DROID does not stop playing music for more
than a fraction of a second.

* You don’t need to touch the switch nor the button
of the master. So it's a complete remote control.

+ You don’t need to do this cumbersome “eject” of
the USB drive.

If you use the Forge, using Sysex works just out of the
box. Put the X7 switch to the right. Let it there. At any
time you can upload your current patch just by clicking
the Activate! icon in the toolbar!

If you don't use the Forge, it’s a bit more complicated to
setup, since you need a software for sending patches via
Sysex. But if anything goes wrong you can always fall
back to USB stick mode.

Patch upload via sysex on Linux

The best way to setup the patch upload via sysex de-
pends on which operating system you use. Let’s start

Table of contents at page 2

with Linux, just because it’s the easiest. On any decent
regular Linux installation there usually is a tool called
amidi. It’s part of the sound driver (ALSA), so it’s usually
already installed. amidi can send any MIDI commandsin-
cluding sysex.

Now in the Firmware ZIP-file that you find for
download on your shop, you find the directory
utilities/sysex/linux and in there the script
droidpatch. Copy that script to /usr/local/bin and
make sure it is executable.

Now you can upload a patch file by calling droidpatch
with the name of your patch file. It needn’t be called
droid.ini:

user:~ $ droidpatch mypatch.inti

Of course the switch on the X7 needs be on the right
(MIDI). That's it.

Patch upload via sysex on Mac

Now let’s look at the Mac. It’s basically the same pro-
cedure as on Linux just with one change. Mac does not
have amidi. Instead you need another tool for doing MIDI
on the command line. | recommend to use sendmidi.
This has several advantages over more complex software
suites:

- Itis small.

- Itis free.

- It is command line based and thus good for au-
tomating things.

You can get sendmidi here: https://github.com/
gbevin/SendMIDI/releases. Choose your operating
system and download and unpack it. Basically thereis no

DROID manual for blue-2

installation necessary since this tool really just consists
of one single file, which is called sendmidi. | suggest that
you copy that file to /usr/local/bin, so thatitis always
ready for you to use.

Just as with Linux, in the Firmware ZIP-file you find the
directory utilities/sysex/mac and in there the script
droidpatch. Copy that script to /usr/local/bin and
make sure it is executable. Put the X7 switch to the
right and you can send patches with the new command
droidpatch:

user:~ $ droidpatch mypatch.inti

One side note: sendmidi on Mac sometimes has a prob-
lem that every 256th byte is lost. The problem seems to
lie deep in the APl of Mac itself. If you run into that prob-
lem, you can try to enter a space into your patch file at
the right position. Or you might consider using the Droid
Forge instead of the command line.

Patch upload via sysex on Windows

Just as with Mac, the first step is to install sendmidi.
You can get it here: https://github.com/gbevin/
SendMIDI/releases. Thereis no real “installation”. Just
take the program sendmidi.exe and copy that to the di-
rectory where you keep your DROID patches. If you have
none, it’s a good time to create one now.

Open a terminal window, go to the directory with cd and
try it out by simply calling that program. It should outupt
a version number:

C:\Users\dmmdm\patches> sendmidi
sendmidi v1.0.15
https://github.com/gbevin/SendMIDI

46

Usage: sendmidi [commands] [programfile]...

Now connect your X7 with USB to your computer. And
put the X7’s switch to the right. Then check if sendmidi
detects the X7, by adding the word 1ist:

C:\Users\dmmdm\patches> sendmidi list
Microsoft GS Wavetable Synth
DROID X7 MIDI

Hereitis! Now forevery subsequent call to sendmidi add
dev x7 inorder to select the X7 as output devices.

Now let’s try the MIDI connection by sending a note
event. This small tool is really cool. In fact you can send
all sorts of MIDI events. You can even create sequences
with lots of notes events and pauses in between. It’s kind
of really low level MIDI sequencing. So let’s play a C2 at
full velocity (value 127):

C:patches> sendmidi dev x7 on c2 127

If everything goes well, you should see the LED 2 on the
X7 shortly flash green:

ale,

—ofld]o
M=

Table of contents at page 2

https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases

If this works, you know that the USB-MIDI connection is
working and sendmidi is also ready. The next step is to
convert your DROID patches into MIDI sysex files. To do
this you just need to add a sequence of five specific bytes
at the beginning, then add the patch and one final special
byte at the end.

With the X7 software releases there are the files
sysexhead.txt and sysextail.txt in the subdirec-
tory utilities/sysex/windows. These need to be glued to
the beginning and the tail of the patch in order to form a
MIDI sysex file. | recommand that you copy them to your
patch directory.

Note: For this all to work it is very important that your
patch files don’t contain non-ascii characters. So don’t
use German umlauts or any other special character that’s
not part of the English language (you would do that just
in comments anyway).

On the command line you can use the command copy for
gluing together the head, the patch and the tail. Use a
plus sign between the file names like this:

C:patches> copy sysexhead.txt + yourpatch.inti
+ sysextail.txt yourpatch.syx

Write this in one line. This will convert yourpatch.ini
into a new file called yourpatch.syx. That file can easily
be sent via sendmidi:

C:patches> sendmidi dev x7 syf yourpatch.syx

That’s all' Your master should now load the patch, show
a very short restart animation and your patch is up and
running.

DROID manual for blue-2

6.10 Software update for the X7

Other than the simple expanders like the P2B8 or the P10,
the X7 has a rather sophisticated software. Some bugs
might be found. And new feature ideas will be imple-
mented. So The X7 has a software update procedure.

When you start the X7, it shows its current sofware ver-
sion in the 2x2 LED field of the gates. The first released
version is called orange-9 and is indicated by the G9 LED
shining orange:

m=|ElE0

In order to make things as easy as possible for you, the
software update for the X7 is done by the master. You
don’t need to change anything in your cabling for that.
Leave the X7 attached as the first expander on the mas-
ter.

Here are the steps for an X7 firmware upgrade:

1. Copy the firmware file for the X7 (from Discord
or from our Download page) to the SD card in the
master.

2. Rename it to exactly x7. fw

3. Bring the master into the maintenance mode (see
page 56 for details). Long things short: thisis done
by a very long button press.

4. Your maintenance menu should show a green menu
item at position 8 (if not, the SD card or the file
x7.fwon it is missing):

5. Now press the button a couple of times until the
blinking cursor is at position 8.

6. Pressthe button longerin order to start the update
procedure.

If everything goes well, you see a kind of progress bar run-
ning through all 16 master LEDs, while the X7 does the
same kind of animation with its 8 LEDs.

In case of an error, all 16 LEDs blink in one color. If all
LEDs blink yellow, the firmware file is missing (which is
strange, because it was there at the beginning):

Table of contents at page 2

Allblinking blue means aninvalid size of the firmware file:

And orange means that the file could not be read from the
SD card:

DROID manual for blue-2

I M
| “SI'g* g “ar— § I
FaIrrArmMre
| TF § “Wy § IR § °
T ™ P
B ol B Lol BC DI
e 1l Bl |
| ¢ dhk dk RS

After the upgrade, you need to leave the maintenance
menu on your master. Do this by navigating the blink-
ing cursor to the white LED 1 and press the button a bit
longer:

48

6.11 Some technical details

Are you interested in the technical issues of the X7? Here
are some details.

The X7 uses the same micro controller (MCU) as the
DROID master: The STM32F446RET6. It is running at
180 MHz and has a 32-bit hardware floating point unit.
It's a very powerful processor and hard to get these days
(chip crisis). But it's worth it for short latencies and high
datarates.

The communication between the master and the X7 is
running at a much higher bit rate than is used for the con-
troller communication. It's using 1 MBit/sec, whereas the
controller bus is running just at about 50 Kbit/sec. This is
the reason why the X7 needs to be attached as first mod-
ule directly to the master. This higher bitrate allows for
transferring MIDI data with low latency - while the con-
trollers are still being process at the same speed as with-
out the X7.

When you switch to “USB stick mode” (switch to the left),
the bit rate is even increased to 2 MBit/sec in order to
make the access to your micro SD card as fast as possi-
ble.

The auto sensing of the MIDI TRS input is done with a

bridge rectifier, four diodes, so the polarity of the input
is ignored.

Table of contents at page 2

7 The M4 motor fader controller

DROID manual for blue-2

7.1 Quick start

Here is how you get started with your M4 as fast as pos-
sible:

1. Wire the M4 to your master just as the P2B8 or any
other controller. If the M4 is your last controller,
set the green jumper to “Last”, just as usual.

2. Connect the M4 to the bus power of your Eurorack
case. Itis the only DROID controller that needs its
own power connection.

3. Declare the M4s in your patch with [m4].

4. Use the circuits motorfader (see page 199),
faderbank (see page 125), fadermatrix (see page
127) and motoquencer (see page 179) for using the
M4 in your patches.

Note: Whenyou switch on the power, your M4 unit needs
some time for charging their internal power system. That
can last 60 - 90 seconds. While they are charging, here
LEDs show a colored animation and go from red through
yellow to green and finally off.

7.2 Installing the M4

You install the M4 just as all the other controllers (for
more about controllers read about the P2B8 on page 32):
Connect the IN connector to your master with the 6-pin
ribbon cable that came with your module. Make sure that
you always use the shrouded pin headers (there is an ad-
ditional 3x 2 connector at the bottom whichis just for de-
bugging the hardware).

49

If the M4 is the last controller in your chain, set left
jumper to Last. If other controllers follow, connect the
next one to the OUT connector and remove the jumper or
set it to PARK.

The M4 also needs a connection to the power of your Eu-
rorack modular case. It will not take the power from the
master (as the other controllers do). The reason is obvi-
ous: motor faders need a decent amount of power.

There are two more jumpers, labelled with +150mA and
+100mA. These jumpers configure the power manage-
ment. Read below for details and then decide which posi-
tion you want to use. If you are unsure, put both jumpers
into the right position (+0mA). In that setting each M4
needs up to 350 mA from you 12 V rail.

After you switch on your rack you will see an LED anima-
tion on the M4. It starts with red, then gets yellow, then
green and finally the LEDs go off. This animation shows
you that the power management of the M4 is charging its
gigantic capacitors in order to provide the full strength to
the motors later. During this charging phase the M4 will
not respond to anything that happens in your patch.

Similar - when you turn off your rack - the M4 needs to
discharge the capacitors for safety reasons. It does this
by running all motors at full speed down and also doing
an LED animation in white and blue. Just before the end
the LEDs just glim red, because the green and blue part of
the LEDs need a higher voltage and go off first.

Before unmounting the M4, switch of the rack and wait
until this animation has stopped completely. Thenit is
save to remove and put away the M4,

Table of contents at page 2

7.3 Using the faders in your patches

The traditional way of using motor faders is that you have
several presets. Every preset holds a certain fader posi-
tion. With some other control, e.g. a button, you can
switch between presets and the new setting of the fader
becomes active immediately. This is the classical applica-
tion for mixing desks, where you can use presets for dif-
ferent mixes that you have prepared for different musical
situations.

Thereisasecond even more interesting application, how-
ever: You can assign multiple overlayed functions to one
fader. For example one single fader could control attack,
decay, sustain and release of an envelope. So justin or-
der to save rack space and money you use one input de-
vice for controlling several parameters. In this applica-
tion switching between the different functions does not
alterany value. It just gives you access to control another
parameter. And - as opposed to encoders - the motor
faders act as a display for showing you the current values
of the parameters.

The DROID motor faders are designed to do both applica-
tions: presets, overlayed functions and even both at the
same time, because it make absolutely sense.

A speciality of the M4 - however - are its capabilities for
force feedback. With the help of the motors it can sim-
ulate artifical notches or dents and thus convert a fader
into a linear switch with a specific number of fixed po-
sitions. You can really feel these notches and that way
easily switch between clock divisions, notes of a musical
scale and whatever else you like - without the need of any
display. It can also simulate something similar to a pitch
bend wheel, where the fader always wants to move back
into the center.

The most basic and elementary way to use faders in

DROID manual for blue-2

your patch is using the motorfader (see page 199) cir-
cuit. When you are creating patches with banks of many
faders, please also have a look at faderbank (see page
125) and fadermatrix (see page 127). Those circuits
manage a collection of faders with a single circuit and
make your patches simpler.

In addition there is the motoquencer (see page 179) cir-
cuit which is a building block for simple and complex per-
formance sequencers based on motor faders and the ex-
perimental specialised firefacecontrol (see page 132),
which turns an RME Fireface audio interface into a mo-
torized mixing desk.

As a starting point for further reading | suggest starting
with the circuit motorfader (see page 199).

7.4 The touch plates

Below each fader the M4 has one touch plate with aninte-
grated RGB LED. The touch plates are usable as buttons
in your patch. Whenever a finger is touching the plate,
the respective button register Boutputs 1, otherwise 0. In
addition, the circuit motoquencer (see page 179) makes
implicit use of the touch plates (and maybe some future
circuits, too).

Unfortunately, however, touch plates don’t have two def-
inite metal contacts like in the buttons of the P2B8, B4B2
and B32, but work by measuring the time an internal ca-
pacitor needs to load. If you lay your finger on a touch
plate, this time increases as some of the current is devi-
ated into your finger and thus the loading time increases.
Which means some inherent fuzziness and the touch
plates need some preconditions in order to work reliably.
If you experiance your touch plates not to react properly
to your finger, check the following:

50

+ The wetter your fingers are the better the plates
work.

. They also work better, if your power supply pro-
vides a ground connection to the 120 /240 V net-
work.

+ As alast resort touching some jacks of your modu-
lar with one hand while using the touch plates with
the other hand will almost always work.

“Real” buttons would have been a better solution, but
alas - there is simply not enough space behind the face
plate for them. The motorized faders don’t come in
smaller sizes and we already have worked hard in mak-
ing touch plates and LEDs possible. Consider the touch
plates as a bonus add-on. If you don’t like them, use the
normal buttons in your controllers. Also, with the the
motoquencer (see page 179), you can use the faders as
an alternative for settings gates.

7.5 ThelEDs

The LED below the touch plates can be accessed withan L
register - just likein the P2B8. In addition, thereisaRreg-
ister that controls the color of the LED, similar to those
on the master. If you just use the Rregisters, the LED will
light in full brightness. If you just use the L register, the
LED lights white in the brightness specified by the value
you feed into that register. Using bothRand L at the same
time gives you control over brightness and color.

7.6 Registers

Here is the summary of all M4 registers, assuming that
[m4] is your first declaration in your patch:

Table of contents at page 2

Bl.1...B1.4 | Touch plates

L1.1...L1.4 | LED brightness

R1.1...R1.4 | LED color

P1.1... P1.4 | Currentreal physical fader values

7.7 The motor faders

The DROID M4 has four industrial class motorized faders
with 60 mm action range from ALPS. They are a combi-
nation of normal linear potentiometer with an electrical
motor that can move that potentiometer. The motor is
not a step motor but runs continously. The M4 software
determines the current position of the fader by reading
out the value of the potentiometer and controls the mo-
tor to move to the desired position.

The motor control is done via pulse width modulation
(PWM), whose frequency is way beyond the audible
range.

7.8 Adapting the fader power

Using the circuit droid (see page 119) you can adapt the
motor power of the faders. There are two settings. Oneis
for the normal movement power (and hence speed). The
other one is for tuning the power of the haptic feedback
when you work with notches. Try mapping both parame-
ters to pots and you can test their influence:

[droid]
m4faderspeed = P1.1
m4notchpower = P1.2

DROID manual for blue-2

7.9 The power management

Motor faders are nice but need lots of power. As a matter
of fact, one fader could use up to 800 mA from your 12V
rail when the motor is running at full power - if you would
run it directly from the Eurorack power supply. So even a
single M4 would need 3.2 A for full operation. That’s a
lot more than a typical power supply provides. And it's
just one module! That’s probably the main reason why
we haven’t see flying faders in Eurorack sooner.

We have solved the issue in the M4 by means of mod-
ern supercapacitors (supercaps). Those little miracles
can store up to 100 times more energy per volume than
than electrolytic capacitors and can accept and deliver
charge much faster than batteries. They also tolerate
many more charge and discharge cycles than recharge-
able batteries. The four supercaps of the M4 can deliver
3.2 A for the faders with ease - of course with the limita-
tion of doing it just for a short time. That’s not an issue
in a normal usage pattern of the faders, since they move
super fast and just for fractions of seconds.

When you power up your M4, you will notice that it takes
some time to become operational. That is because it
needs to load the supercaps before the show can begin.
That time is somewhere in the range of 60 to 90 seconds.
The current loading state is indicated by an LED travel-
ling from left to right again and again. The colors starts
red, goes yellow and gets green just before the module is
powered up.

Note: when you work with the faders and let them jump
back and forth very fast very often, it can be the case that
the supercaps run out of power. In that case the fader
motors will go off for a couple of seconds, the supercaps
recharge and the powerup LED animation is visible (with
green LEDs).

51

The M4 has an intelligent charging mechanism that man-
ages the power of the supercaps and makes sure that
there is enough power for fader movements while not ex-
ceeding a limit of current that is drawn from your Euro-
rack +12 V power rail. With two jumpers on the back of
the module you can set the maximum charging current of
the M4:

+ The minimum charging limit of the M4 is 350 mA.
- With the left jumper you can raise that by 150 mA.
+ With therightjumperyou canraise that by 100 mA.

That way you can choose between 350 mA, 450 mA,
500 mA and 600 mA. The more power your allow the M4,
the faster it charges up and the more fader movements
per second it can do.

If you allow the M4 to draw too much current, your Euro-
rack power supply can overload. That might lead to vari-
ous problems:

+ It could overheat.

+ It could blow its fuse.

+ Itcould triggerits short circuit detection and switch
off itself.

+ The voltage of the 12 V rail could drop too much.

Please make sure that you use the M4 in a way that is
within the specification of your power supply.

The good new for last: once the M4 is charged up and
when you use the fader in a reasonable way, the power
consumption of the M4 is much lower than the maximum
limit. This is an important difference from modules like
those with vacuum tubes that need their heating power
all the time.

Table of contents at page 2

7.10 Discharging

When you switch power off, the M4 still has lots of en-
ergy stored in its supercaps. For safety reasons, it will
discharge the supercaps as fast as possible as soon as
it detects main power off. Dischard is done by con-
stantly moving all fader motors downwards and lighting
the LEDs in which with the maximum brightness - with
one blue LED wandering from left to right.

At some point in time the voltage is not suffient to drive
the motors anymore. The LEDs are still animated. Later
they will get red and slowly fader out.

DROID manual for blue-2

Do not unmount the M4 from the rack until all LEDs are
off!

This is important to avoid short circuits by accidentally

connecting the supercaps with metal of the case or the
like.

7.11 Software update for the M4

Because the M4 is much more complex than the other
controllers, it has a more complex software that might
need firmware updates from time to time.

52

The procedure is exactly the same as for the X7 (see page
47 with the following additional notes:

+ The firmware file on the SD card must have the
name m4. fw.

+ In the master’s maintainance menu the upgrade of
the M4 is on position 6 (not 8 as the X7). And its
color is yellow (not green).

- The M4 that you want to upgrade must be the
only module that is attached to the master! The
jumper on the lower edge of its back must be set to
"Last”.

Table of contents at page 2

8 Firmware upgrade

8.1 What version do you have?

DROID s an active project, new features are being added,
bugs are being fixed. Also new controller modules require
changes in the software of the master module. All these
things are reasons why, from time to time, we release a
new firmware (software) version for the DROID master.

If youwantto use the new features or have the bugs fixed,
you can update your firmware. You find the newest re-
lease always on our download page and also in our Dis-
cord community .

Unless most other software, DROID uses a combination
of a color and a number in order to name a software ver-
sion. For example the version this manual is written for
is called blue-2.

When your master starts you can see your current version
in a short LED animation. Look at the first two rows of
LEDs (which normally show the inputs) and their num-
bers from 1 to 8. One or more of them will light up in a
color. Read these as a number and add the color and you
have the firmware version. The other two lines show a
rainbow animation and are not important.

This is how the version green-8 is being shown:

DROID manual for blue-2

If two numbers light up, don’t add them but read them as
a number, for example this is blue-13 (not 4!):

8.2 Normal update procedure

Here is how you upgrade the firmware of your DROID:

1. Download the most current firmware
file from the DROID’s homepage at
https://shop.dermannmitdermaschine.de/droid.

2. Copy that file to your micro SD card and rename it
todroid. fw.

3. Insert that micro SD card into your DROID and
press the button, or power your DROID on while
the SD card is inserted.

Now if everything is well, the 16 LEDs show a dark cyan
color:

53

Now your DROID reads the contents of the file droid. fw
and burns it into the internal flash memory. While this
is going on the LEDs change their color one by one into
bright cyan:

If everything goes well then at the end all LEDs flash a
couple of times and the DROID starts into normal mode.
Here are some things that could possibly go wrong:

Table of contents at page 2

https://shop.dermannmitdermaschine.de/pages/downloads
https://discord.com/invite/9TUcRmH
https://discord.com/invite/9TUcRmH
https://shop.dermannmitdermaschine.de/droid

Missing firmware file

If you have not copied the file droid. fw or missspelled it
orit cannot be found for some other reason like a defunct
SD card then simply nothing happens. The DROID starts
like usual.

Invalid firmware file

A magenta blink code means that your firmware file
droid. fw is somehow not valid. It has the wrong size.
This usually has one of two reasons:

+ You copied to wrong file to droid. fw

- Youtry toupdate to ablue versionona DROID that
currently has a green version. If you want to switch
to blue, you need one extra step. Please see on the
next page in the section Upgrade from green to blue
for details.

Fail to program

If there is some error when programming the file into your
DROID’s memory, all LEDs blink dark red. Retry down-

DROID manual for blue-2

loading and upgrading the firmware again!

Firmware already up-to-date

If the firmware in the file droid.fw already has been
flashed successfully in a previous update, nothing hap-
pens. The DROID automatically detects this and skips
the update. So it is save to leave the SD card with
droid.fwin the SD card slot.

54

Table of contents at page 2

8.3 Upgrade from green to blue

After the firmware version green-8 there is a bigger
change. So the next version is not green-9 but blue-
1. The main difference is that blue firmwares are larger
and allow for more cool circuits and other stuff in your
DROID.

In order to make that possible we needed to change the
firmware format. For that reason - if your DROID has a
green firmware installed - you need to update your boot-
loader first. The bootloader is that part of the software
that does the actual firmware upgrade. If your master
came already shipped with a blue firmware, everything
is fine and you can stop reading here.

With the bootloader from the green firmware you will get
all LEDs flashing magenta if you want to update to blue-2
(or any other blue firmware). So in this case you need to
do the following steps:

1. Update to green-8. This is important since only
this firmware has a menu entry for updating the
bootloader.

2. Use the maintenance menu to update the boot-
loader. After which you are on green-8.

3. Update to blue-2 orany other blue firmware just as
described on the pages before.

DROID manual for blue-2

Here is how step 2 works in detail. Do the following steps
for this:

First make sure that you have the firmware file of green-
8 on your SD card. This is probably the case anyway if
you just updated to green-8. Now press the button long
in order to enter the maintenance menu (see page 56 for
details).

If everything goes well, LED 7 must show a new blue
menu entry:

If the blue menu entry does not appear, it’s for one of the
following reasons:

+ The file droid.fw does not match the firmware
that is currently running (update your firmware

55

first)

+ Your bootloader is already uptodate (identical with
the oneindroid. fw).

- The file droid. fw is missing on the card.

+ The file droid. fw is damaged.

+ Thefiledroid. fwcannot be read from the card (try
reformatting the card with a FAT filesystem in that
case).

+ The SD card is not readable.

+ No SD card is present.

Now use short button presses in order to move the blink-
ing cursor to LED 7. There press the button long. This will
start the update. A blue LED will run one cycle around,
the DROID will restart and your are done. This whole
thing should last just a few seconds.

IMPORTANT: Do not switch off your DROID until the
procedure is finished!!! Doing so will make it completely
unusable. It has the be reprogrammed in our labs if that
happens.

If you enter the maintenance menu again, the menu item
7 should have disappeared, since your bootloader is now
up-to-date.

If you need any help, please post a question on our Dis-
cord community .

Table of contents at page 2

https://discord.com/invite/9TUcRmH
https://discord.com/invite/9TUcRmH

9 C(Calibration, Factory Reset other maintainance stuff

9.1 The maintenance mode

The DROID has a special mode for various maintenance
tasks. This mode is a bit “hidden” so that you do not en-
ter it accidentally. You enter the maintenance mode by
holding the button on the master for a couple of seconds.
After 1.5 seconds of holding the button, an animation of
light blue LEDs going from O8 over to |1 starts:

m
i
e 4

Y
e d
Y
h d

| o | o |
dn d
o | e |
b 4
Y
— |
|

d

When the blue LEDs reach 11, continue holding the but-
ton. DROID restarts. Still hold the button. Now the ani-
mation of the blue LEDs starts in the opposite direction:

DROID manual for blue-2

When the end is reached - this time at O8 - and you now
release the button, the DROID enters the maintenance
mode. If you let go the button before this you go back
into normal operation.

In maintenance mode you will see a white “cursor” blink-
ing at the LED for I1. Cell I3 is red, Cell 14 is magenta:

The four positions I1... |14 represent four different menu
options:

1. WHITE (I1): leave the maintenance mode and
restart the DROID.

2. black: currently unused.

3. RED (I13): reset the DROID to factory mode (but
keep calibration).

4. MAGENTA (l4): start the procedure of calibrating
the voltage of the eight outputs.

A short press of the button moves the cursor to the next
cell. Pressing three times brings you to cell 4:

56

A long press of the button selects the item the cursor is
currently at. It starts an animation on the LEDs of O1 ...
08 in the same color as the selected item (in this case cal-
ibration mode):

When the animation reaches O8, the item is being se-
lected.

Table of contents at page 2

9.2 Factoryreset

The factory reset can help in situations where - due to
some software problem, maybe in a beta or testing ver-
sion - the DROID is stuck and does not want to run
again. The problem might be triggered by the current
saved states of the circuits or by the currently loaded
patch.

You do a factory reset in the maintenance menu by select-
ing position I3 (red).

9.3 Calibration of the outputs

The DROID comes with 8 high precision DA converters
(DACs) that produce highly accurate voltages for the out-
put jacks. These need to be calibrated in order to match
their designed precision. Calibration of the DACs is done
in our labs before we ship the units to you.

There is a super tiny chance that your calibration get’s
lost: When you switch of your rack just in that fraction of
a second when you load a new patch by pressing the but-
ton and at the same time deleting the calibration backup
file on your SD card! However unlikely: if your DROID
does not start with its usual rainbow animation but with
a white LED animation, your DACs are not calibrated an
not very precise anymore. In that case do as described
here.

Otherwise you probably never will need to calibrate your
outputs. If you want to do so anyway, please make sure
that your DROID has warmed up before you start. That
gives the best precision. Calibration is easy and you just
need a patch cable. As a preparation unplug all jacks be-
fore you start.

DROID manual for blue-2

All circuit states are erased. Also the current patch is
erased from the internal flash memory of the master.

Now enter maintenance mode and select cell number 4
(magenta):

After entering the calibration mode, the top 8 LEDs are
black and the bottom 8 LEDs are cyan - with the excep-
tion of input 1 blinking magenta and output 1 blinking
cyan.

57

Note: If the patch is still on the SD card, it will immedi-
ately be reloaded after the reset, so if you want to avoid
this, put either a different patch on the card or remove
the card while doing the factory reset.

The calibration of the voltages of the outputs is not lost,
when you make a factory reset!

cF1E1IM
clelaln

Now use a patch cable and connect input 1 to output 1.
DROID now tries out different output voltages and mea-
sures them by means of the precision ADC of input 1. This
information is being used for the exact calibration. The
result of the calibration is saved to the DROID’s internal
flash memory.

As soon as channel 1is calibrated the LED O1 changes to
green. The cursor moves to the next channel:

Table of contents at page 2

N
L3
M
=15

™S
_|

;

9.4 Using your own SD card

Formatting a micro SD card

DROID comes shipped with a micro SD card ready to use,
but you can use your own card if you like. Usually when
you buy a card it should work out of the box. If not, you
might need to reformatit. The following filesystem types

Speed up cards on Mac

The Apple Mac automatically creates several files and di-
rectories on every storage device it finds, in order to sup-
port spotlight search and a trash bin. Both of which is not
needed for your DROID and substantially slows down the
card access when you use it with the X7.

The card that comes with your master has been prepared
by us in a way that avoids these special Mac features - if
your master came shipped with at least version blue-1. If
you create your own card, or if yours came shipped with

DROID manual for blue-2

Now proceed to the second pair of jacks and connect in-
put 2 to output 2. Do this until all eight channels are
green. DROID will then automatically end calibration
and start normal operation.

If one of the channels will not go green in spite of having
a proper connection between the relevant input and out-
put you might have a hardware problem. Please contact
us.

Hint: If you like you can use eight patch cables and patch

are supported:

- FAT 12
- FAT 16

an older firmware version, you can prepare it yourself.

This can be done by the following commands that you
need to enter on the terminal while the card is inserted
into your Mac. Hereby we assume that the name of you
card is Untitled. If not, please adapt the commands to
your name:

mdutil -1 off /Volumes/Untitled
cd /Volumes/Untitled

58

all eight connections at once. Then you just have to wait
for a couple of seconds until everything is calibrated.

By the way: If you are looking onto your SD card, you will
find a file with the name DROIDCAL.BIN. This is a backup
of your DAC calibration. Don’t touch it. Just leave it
there. If you delete it, it will automatically reappear any-
way. If your DROID looses it’s calibration for some rea-
son (currently there is none | can think of...), starting the
DROID with acard with this file will automatically restore
the DAC calibration.

+ FAT 32

Exfat is not supported. Also the cluster size (sector size)
needs to be 512 Bytes.

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Please double check what you are typing. Especially the
rm command is very dangerous if you are not in the right
directory or have mistyped one of the dots or curly brack-
ets!

Table of contents at page 2

10 Hardware

Master
Doepfer A-100 compatible “Eurorack” module with 8 HP

- STM32F446 Micro controller running at 180 MHz

- 8 CVinputjacks with a voltage range from -10 V to
+10V, driven by highly accurate low jitter 16 bit AD
converters

- 8 CV output jacks with a voltage range from -10 V
to +10V, driven by highly accurate low jitter 16 bit
DA converters

- 16 full color LEDs

+ MicroSD card reader

+ Button for reloading the MicroSD card

- Expansion port for an optional G8 expander

- Expansion port up to 16 controllers

Power consumption:

+12 Vrail: 154 mA
-12 Vrail: 15mA

G8 Expander

Eurorack compatible expander for the DROID master,
with 4 HP

- 8 tristate gate/trigger-jacks that can each be used
either as an input or an output
« 8 full color LEDs

Power consumption:

+12 Vrail: 41 mA
-12Vrail: 0 mA

DROID manual for blue-2

X7 Expander

Expander with USB, MIDI TRS in/out, four gates, with
4 HP

+ STM32F446 Micro controller running at 180 MHz

+ USB-C connector supporting USB 2.0 device mode

+ Four gate outputs withOVor5V

- Switch for USB mode with with three positions: SD
/ off / MIDI

- 8 full color LEDs

+ Port for connection to the master

- Expansion port for connection to the controllers

Power consumption:

+12 Vrail: 94 mA
-12 Vrail: 0 mA

P2B8 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

+ STM32F030 Micro controller running at 48 MHz
+ 2 potentiometers
+ 8 buttons with LEDs

Power consumption:

+12 Vrail: 12 mA
-12 Vrail: 0 mA

P4B2 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

59

+ STM32F030 Micro controller running at 48 MHz
+ 4 potentiometers
+ 2 buttons with LEDs

Power consumption:

+12 Vrail: 11 mA
-12 Vrail: 0 mA

B32 Controller

Eurorack compatible expander for the DROID master,
with 10 HP

+ STM32F030 Micro controller running at 48 MHz
+ 32 buttons with LEDs

Power consumption:

+12 Vrail: 24 mA
-12 Vrail: 0 mA

P10 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

+ STM32F030 Micro controller running at 48 MHz
. 2 large potentiometers
- 8 small potentiometers

Power consumption:

+12 Vrail: 10 mA
-12 Vrail: 0 mA

S10 Controller

Table of contents at page 2

Eurorack compatible expander for the DROID master,
with 5 HP

+ STM32F030 Micro controller running at 48 MHz
- 2 switches with 8 positions each
- 8 small switches with 3 positions each

Power consumption:

DROID manual for blue-2

+12 Vrail: 10 mA
-12 Vrail: 0 mA

M4 Controller

Eurorack compatible expander for the DROID master,
with 14 HP

+ STM32F030 Micro controller running at 48 MHz

60

+ 4 alps motorized faders with a fader way of 60 mm
+ 4 RGB multicolor LEDs
- 4 touch sensitive plates

Power consumption:

+12 V rail: 350 mA - 600 mA (configurable)
-12 Vrail: 0mA

Table of contents at page 2

11 Reference of all circuits

This is a reference of all circuits that are supported by firmware version blue-2 of DROID. The description of each circuit is made of two parts: a general introduction with some
examples and a table of all input and output jacks that the circuit offers.

Just like real synth modules the input and output jacks of DROID's circuits have different characteristics, which are denoted by one of seven symbols in the reference:

Jacks with the symbol /> work with continous CVs in the full voltage range from -10 V to +10 V.

% This symbol denotes jacks that work on a precise “one volt per octave” base. Such outputs can be patched to the V/Oct inputs of VCOs. Inputs with this symbol expect pitch

information e.g. from sequencers or musical quantizers.

oL N1 | Thisjack has arange from 0.0 to 1.0. Input values greater than 1.0 are truncated to 1.0, values below zero are set to 0.0. This input can be seen as a fraction or percentage.
When you use fixed values you can write percentages, for example 55% instead of 0.55. Since potentiometers yield values in exactly that range you can directly assign one
to such a CV. If you control that CV with an external voltage, the rangeis0V .. 10 V.

oo+ | Thisjackis very similar to that of type o)., butits neutral value is in the middle position - at 0.5 or 50% or 5 V. An example is the jack distribution of the algoquencer
circuit: At the middle position beats are distributed evenly in the bar. Left or right of the center the beats are more oriented to the first or second half of the bar, respectively.
If you assign a pot, the center position of the pot is the neutral position.Values out of the range 0.0 ... 1.0 are truncated into that range. Hint: The input notch of the pot
circuit at page 212 helps you exactly centering a pot at 0.5. The range for external voltagesis OV ... 10 V.

10203 | Thisjack operates with integer numbers such as 1, 2, 3 and so on. An example is the Length input of the euklid circuit. For some jacks O can be allowed as well. One example

is the inputoffset jack of the switch circuit. Any non-integer number will be rounded to the nearest integer. So a value of 0.6 will be interpreted as 1. Wiring an external
input directly to such a jack does not make much sense, since the range 0 V... 10 V just maps to 0 ... 1. For a 2 you would need 20 V. So you need to add some scaling, for
example somejack = I1 * 10, which converts an external 2 V to the number 2.

This denotes a stepped voltage. This is one that only appears in discrete steps. An example of a stepped output CV is the pitch output of the sequencer circuit.

Jacks with this symbol just know 0 and 1 or on and off. These are things like a gate from an envelope, where the length of the input counts. Some circuits also have switch
inputs or settings of that type that enable features like “looping on”. Also all inputs that are meant to be wired to buttons like B1.1 are of that type, since buttons output
exactly such gate signals. Output jacks of that type always either send 0.0 (0 V) or 1.0 (10 V). Using G1 ... G8 for these is also fine, but they output 5 V instead of 10 V. When
you you wire an external input to such a jack, it will see a 1 at a voltage of at least 1V and and 0 otherwise.

These jacks are trigger inputs or outputs. A trigger input just is interested about points in time where the voltage changes from 0 to some positive value above roughly 1 V.
The duration of the time where the voltage is not zero is not interesting here. A typical use are clock or reset inputs. When the DROID outputs a trigger, is it sends a signal
of 10 V for a duration of 10 ms. Using G1 ... G8 from the G8 expander for these is just fine, but the output voltage will be 5V in that case. For external input voltages use any
regular clock/trigger/gate signal from your system.

The column Default shows the value a parameter has if you don’t patch anything into it. Here the special symbol =¥ denotes a certain “intelligent” behaviour when this jack is not
used. Please read the description for details.

DROID manual for blue-2 61 Table of contents at page 2

11.1 adc - AD Converter with 12 bits

Thiscircuit converts aninputvalueintoabinary represen-
tation of up to 12 bits. Consider the following example:

[adc]
input = Il
bitl = 01
bit2 = 02
bit3 = 03

In this example three bits are being used. Three bits can
represent a number from O to 7. These are mapped to the
input range from 0 to 1 (or 0 V to 10 V) in the following
way:

input bitl | bit2 | bit3 | bitvalue
—o00... 0.125 0 0 0 0
0.125... 0.250 0 0 1 1
0.250... 0.375 0 1 0 2
0.375... 0.500 0 1 1 3
0.500... 0.625 1 0 0 4
0.625...0.750 1 0 1 5
0.750... 0.875 1 1 0 6
0.875... 00 1 1 1 7

Values lower than O are treated as 0. Values higher than
1 are treated as one.

In other words: this circuit will convert an analog input
value into three different gate outputs.

The expected range of the input value is from 0 to 1 per
default, but you can change that with the parameters
minimum and maximum. For example you could have just
the range of 0.1 to 0.5 mapped to the three bits:

DROID manual for blue-2

[adc]
input = Il
minimum = 0.1 # 1V
maximum = 0.5 # 4V
bitl = 01
bit2 = 02
bit3 = 03

Now the table looks like this:

input bitl | bit2 | bit3 | bitvalue

—00... 0.15 0 0 0 0
0.15...0.20 0 0 1 1
0.20...0.25 0 1 0 2
0.25...0.30 0 1 1 3
0.30...0.35 1 0 0 4
0.35... 0.40 1 0 1 5
0.40... 0.45 1 1 0 6
0.45... 1 1 1 7

If you use more of the bit-outputs you get more resolu-
tion. Forexample if youuse bitl... bit8, the total range
will be divided into 256 equal pieces. Since bit 1 is the
most significant bit, adding more and more bits will not
change the way bit 1is behaving.

The applications of this circuit are various and often sur-
prising. For example using different LFO wave forms as
inputs (other than square) and you will get slower and
faster gate patterns.

Please also have a look at the circuit dac (see page 117,
which does the exact opposite!

62

Table of contents at page 2

Input Type Default Description

input /\/\/\ 0.0 Input signal to convert to binary representation.

minimum AAN 0.0 The lowest assumed input value. This value and all lower values will be converted to the bit sequence 000000000000.
maximum AL\ 1.0 The highest assumed input value. This value and all higher values will be converted to the bit sequence 111111111111.
Output Type Description

bitl ... bitl2 _— The 12 bit outputs. bitlis the MSB - the most significant bit. The LSB (least significant bit) is the highest output that

you actually patch. If you do not need the full resolution of 12 bits, simply just use the first couple of outputs.

One adc circuit needs 104 bytes of RAM.

DROID manual for blue-2

63 Table of contents at page 2

11.2 algoquencer - Algorithmic sequencer

The Algoquencer is a versatile performancesequencer,
thatimplements a completely new approach: It combines
a classical trigger sequencer with a turing machine and
other algorithms in order to create a very hands on pat-
tern generator for live improvisation. It’s main tasks are:

- trigger sequencer for drum voices

- pitch sequencer

- melody generator

- generator of repeating random CVs

It can also be used as a simple random number generator
- may it be totally chaotic random numbers or self simi-
lar patterns like those generated by the so called “Turing
Machine”.

There are lots of interesting high-level parameters that
you can easily map to pots on your controllers - such as
Activity, Variation, Déja-vu and many more. With a turn
of a knob you can instantly increase or decrease the den-
sity or complexity or your patterns in various ways.

Here are some of the features:

- Up to 16 step buttons

- change the pattern length on the fly

- manually editable accents for each step
+ ratchets and drum rolls

- fills

- deterministic and chaotic randomization
+ simple muting

- fractal sequencing

If you use the Algoquencer for drumming, each
algoquencer circuit plays just one voice - e.g. a snare
drum. For orchestrating a whole drum kit simply use
more Algoquencers with possibly different parameters.
It totally makes sense to use some of the pots and but-

DROID manual for blue-2

tons with all drum instruments - e.g. a pot for Déja-vu -
and others on a per-instrument base, like Activity.

Here are some examples of how to use the Algoquencer
circuit.

Pseudo random voltages / Turing machine

Without any inputs other than clock the algorithmic se-
quencer creates a sequence of random numbers that re-
peat over and over every 16 steps. This is much like the
“Turing Machine”. The voltage range of the pitch output
defaultstoOV...3V:

[algoquencer]
clock = G1
pitch =01

You can change the length to any other value up to 64 by
using the length parameter:

[algoquencer]
clock = Gl
pitch = 01
length = 12

If you do not like the default output voltage range you can
adjust that with the inputs pitchlow and pitchhigh:

[algoquencer]
clock = Gl
pitchlow = 1V
pitchhigh = 4v
pitch =01

64

dejavu controls the randomness - or to be more precise
how random values are picked. It has a default of 1.0.
This means that once a random decision has been made
foracertain step of the patternit will be that way for ever.
The same random pattern will repeat again and again.
Making dejavu smaller will convert some of the decisions
to be random while others still repeat unchanged over
and over again.

You want to change the entire pattern? You can choose
another one by setting pattern to an arbitrary integer
number:

[algoquencer]
clock = G1
pitch = 01
length = 12
pattern = 5

Another way to change the pattern is to send a trigger to
nextpattern, for example with a button:

[algoquencer]
clock = Gl
pitch = 01
length = 12
dejavu =1
nextpattern = Bl.1

Do you like slowly evolving patterns (which is a feature
from the “Turing Machine”)? The morphs parameter -
which is usually 0.0 - will introduce random changes to
the repeating patternin a very controlled way:

 Changes (aka morphs) are introduced each time
the pattern starts (again) - never in-between

Table of contents at page 2

- The exact number of changes is controlled with the
morphs parameter and is not random.

+ The steps where these changes happen and the
changes itself are random.

morphs takes a number between 0.0 and 1.0. At 0.0 no
morphs happen. At1.0 every step will be morphed - thus
completely changing the pattern every time it would re-
peat. Here is a table of how exactly the parameter affects
the number of morphs per 64 steps. It is done in a way
that is very suitable for mapping it directly to a pot and
gives a very fine resolution at the left half of the pot:

morphs | morphs per 100 steps
0.0 no morphs
0.1 1
0.2 4
0.3 9
0.4 16
0.5 25
0.6 36
0.7 49
0.8 64
0.9 81
1.0 100

As you can see the smallest number of morphs - if you set
morphs just a little above 0 - is one per 64 steps.

Note: If you are curious whether morphs are happening
you can wire the output morphled to some LED. It will
flash whenever morphs happen.

DROID manual for blue-2

Dejavu or morphs?

Did you get the difference between dejavu and morphs?
Here once again:

- dejavu controls, whether to use just complete
random values (dejavu = 0) or repeating pseudo-
random sequences (dejavu = 1).

- morphs comes into play, when dejavu is > 0 and
modifies the pseudo-random sequences from time
to time a bit so they won't get boring.

True random voltages

If you do not want the random pitches to repeat you
can set the dejavu parameter to 0. This transforms the
algoquencer into a simple random number generator:

[algoquencer]
clock = G1
pitch = 01

dejavu = 0

It can be very interesting to map dejavu to one of the pots
of your controllers. That way you can change on-the-fly
between structured melodies and complete randomness
- or anything between!

Using the Algoquencer as drum sequencer

This is how you setup the Algoquencer for use as a drum
sequencer. Like in the previous examples you need a
clock signal. Also using a reset input helps you to sync
your drums with some external stuff. A trigger here re-
sets the pattern to the first step:

65

[algoquencer]
clock = G1
reset = G2

A trigger into clock will move to the next step of the pat-
tern. One into reset resets back to the first step.

Algoquencer supportsup to 16 buttons (aka step buttons)
for manually setting up a trigger pattern. If you assign
less than 16 buttons then your patterns will be shorter.
You probably want to assign these to buttons of your con-
trollers, e.g.

buttonl = Bl.1
button2 = Bl1.2
button3 = B1.3
buttond4 = Bl.4

In order for the LEDs in these buttons to work you also
need to assign the led. .. outputs:

ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

Please make sure that there is no “hole” in your defi-
nitions. You cannot use button8 if you not also use
buttonl through button7.

Note: You can use Algoquencer even without step but-
tons. This is like having an empty pattern, but activity
will still work and create artifical beats if it is not zero.

Last but not least wire the output trigger to the trigger
input of some drum voice.

trigger = 01

Table of contents at page 2

|n

For a simple “normal” trigger sequencer this is enough.
I'd suggest you setup this small example first and once it
is up and running you investigate further features of Al-
goquencer. Here is the example once again complete for
usage while we assume that you have an P2B8 controller:

[p2b8]

[algoquencer]
clock = Il
reset = I2
buttonl = Bl1.1
button2 = B1.2
button3 = Bl1.3
buttond = Bl1.4
ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
trigger = 01

Accents

Algoquencer supports setting or not setting an accent for
each of the steps. For this there is a “second page” of
the buttons where you can edit these accents. In order
to access that accent page you need to wire the input
accentbutton to one of your buttons (e.g. B1.5). Also
wire the output accent to some external output jack and
patch that to the accent input of your drum voice:

accentbutton Bl1.5
accent = 03

Now while you hold the accent button the step buttons
will switch over to showing the accents intead of the nor-
mal beats. And you can set and remove accents now.

DROID manual for blue-2

Note: if you do not want to be forced to hold the button
while editing accents you can convert it into toggle but-
ton using the [button] circuit:

[button]
button = B1.5
led = L1.5
output = _ACCENTS
[algoquencer]

... the other stuff
accentbutton = _ACCENTS
accent = 03

Alternate steps

The Algoquencer just supports 16 steps, but there is a
great way to extend your pattern to 32 or more steps. The
concept for this is a bit unusual, but all the more musical
and hands on. It goes like this:

There is an alternate page of another 16 buttons. These
are like athird layer of buttons (if you account the accents
for the second layer). Just like with the accents you de-
fine a button for bringing up that layer, for example:

alternatebutton = B1.7

While you hold that button you edit the alternate page
instead of the normal steps.

Now: every active step in the alternate page will flip the
according step in the normal page for every second bar.
That way you can have a variation of the pattern every
second bar but you just edit the differences to the normal
pattern. So adding or removing one beat every second

66

bar can be done by activating exactly one step in the al-
ternate page.

You are not limited to a pattern of two bars. By setting
alternatebars to another value you can change the fre-
quency of the alternate bar:

alternatebutton = B1.7
alternatebars = 4

Now bars 1- 3 are played normally and every forth bar the
alternate page is applied. That basically forms a pattern
of 64 steps.

Pattern length and bars

As you have at most 16 buttons one pattern can have a
length of at most 16 steps. The length of the pattern can
be set in various ways:

+ If you wire at least one buttonl then the length de-
faults to the number of wired buttons.

+ This can be overridden by setting length to any
value (e.g. length = 7).

- If you use the lengthbutton then you can interac-
tively change the pattern length during your per-
formance. This will always override the length in-
put.

Add the button for changing the length is easy:

lengthbutton = B1.6

One bar usually has the same number of steps as your
pattern. But if you set repeats = 2, one bar will consist
of two times the pattern (and thus lasts twice as long).
Bars are useful when you use fills or branches.

Table of contents at page 2

Playing fills

Fills are additional beats the Algoquencer adds at the end
of certain bars in order to play a musically interesting fill.
In order to use this first wire fills to some CV or most
likely to a pot:

fills = P1.1

Now if you crank up that pot clockwise then more and
more beats will be added - with a tendency to the end
of the bar. In music - however - playing a fill each bar is
not very interesting. By setting fillorder to 1, 2 or 3 (or
even a higher number) will make the fills assume a cycle
of 2, 4 or 8 or move bars. Please see below for details.

Activity and random

Four inputs are key features of Algoquencer, since they
extend it from a plain old trigger sequencer to an algorith-
mic drummer. These are variation, activity, dejavu
and morphs. The latter two already have been discussed
whenusing Algoquencer as random generator. They have
the same effect here.

The default value of variationis 0.0. That means that
Algoquencer will exactly play the pattern as you have di-
alled it in with your step buttons. If you increase that
value (a pot is handy for doing this, of course) then ran-
domly some of the beats will move to other steps. Setting
various to 1.0 will completely alter your pattern. The
number of beats will stay the same!

activity will change exactly that: the number of trig-
gered beats in one bar. The default value is 0.5 - which
is the center position if assigned to a pot. Here the num-
ber of played beats is exactly the same as you have set in

DROID manual for blue-2

your pattern. Turn it left to remove (randomly) some of
the beats. Turn it right to add some. At 0.0 no beats are
triggered, at 1.0 there is a beat for every clock cycle.

The activity also has an effect when you create ran-
dom voltages. Here the voltage only changes when a
“beat” happens at that step, even if you are not using the
trigger output.

Further nifty parameters

There are some more interesting parameters like rolls,
offbeats, distribution and branches. Please look at
the table of inputs for more details.

Presets

The algoquencer supports up to 16 presets. Each preset
comprises all settings that can be interactively changed,
i.e. the activated steps, accents, alternate steps, the
manually changed length, the state of the mute button
and also the current random seed (which was modified
by nextpattern, prevpatternor reroll.

There are three ways of switching between presets. The
first way is easy to implement. Simply send the number
of the current preset to the input preset. It has to be a
number from 0 to 15. You can for example use a pot if
you multiply it with 15:

[algoquencer]
preset = P1.1 * 15

Now any change you make will immediately be saved to
that current preset. If you change the preset number

67

by turning the pot, another preset will immediately be
loaded and activated.

The second - more sophisticated - way is to use triggers
for loading and saving. These could be buttons, e.g.:

[algoquencer]
preset = P1.1 * 15
loadpreset = Bl1.1
savepreset = Bl1.2

Now turning the knob does not load or save any preset.
The input preset is just evaluated when you press B1.1
orBl.2:

- A trigger to savepreset will save the current set-
tings into the preset that is selected with the
preset input.

+ A trigger to loadpreset will copy the contents of
the preset selected by preset into the current set-
tings.

Note: In the second mode you effectively have 17 pre-
sets, since the "current settings” could also be considered
to be a preset. The advantage of this mode is that play-
ing around with the settings of the algoquencer does not
immediately effect any of the presets.

Hint: In order to avoid saving or loading presets by mis-
take, have a look at the button (see page 86) circuit and
the longpress output. It sends a trigger when a buttonis
pressed and hold for a certain time.

The third way is a combination of the first two ways.
Here you work with triggers, as well. But these triggers
at the same time hold the number of the preset to load or
to save. This makes situations easier where you have one
button per preset

Table of contents at page 2

[mixer]
inputl = B1.1 * 1
input2 = B1.2 * 2
input2 = B1.3 * 3
output = _LOAD_PRESET

[mixer]
inputl = B1.4 * 1
input2 = B1.5 * 2
input2 = B1.6 * 3
output = _SAVE_PRESET

[algoquencer]
loadpreset = _LOAD_PRESET
savepreset = _SAVE_PRESET

This means that if the trigger CV has the value 2 when it
is non-zero, it load preset number 2. This mode is auto-
matically active, if you don’t patch the preset input.

There is one drawback of this method: you cannot eas-
ily access preset number 0 that way, since the CV 0 is not
sufficient for triggering the input. The trick is sending a
value larger than 0.1 (which is the threshold for boolean
“true” values) and less than 0.5 (which would be rounded
to 1). So for example send a trigger with the value 0.3 to
load or save preset number 0.

Sharing buttons between multiple algoquencers

The buttons on your controllers are a valuable ressources
and not to be wasted lightheartedly. And especially the

algoquencer uses quite a lot of buttons. But the good
news is: you can share most of these buttons with other
instances of algoquencer, to create a multi-track se-
quencer with just one set of buttons. You can even share
the buttons with completely other circuits.

The key to this is the select input. If you patch it, all
buttons and LEDs will just be used by this instance of
algoquencer as long as select gets a high gate signal.
Here is an example (which is just a sketch and not com-
plete):

[algoquencer]
select = _SELECT_1
buttonl = Bl.1

button2 = Bl1.2

ledl =L1l.1

led2 = L1.2
[algoquencer]

select = _SELECT_2

buttonl = Bl1.1

button2 = Bl1.2

ledl =11.1
led2 =1L11.2

Now you need to make sure that at any given time ei-
ther _SELECT_1 or _SELECT_2 is active. The easiest way
is with a buttongroup, because here you can add more

and more tracks if you like. Let’s assume that for switch-
ing between tracks you use the buttons B2.7 (track 1) and
B2.8 (track 2). This would look like this:

[buttongroupl]
buttonl = B2.7 # select track 1
button2 = B2.8 # select track 2

ledl = L2.7
led2 = L2.8
[algoquencer]
select = L2.7 # becomes 1 if B2.7 is selected
buttonl = Bl.1
button2 = Bl1.2
ledl = L1.1
led2 = L1.2
[algoquencer]
select = L2.8 # becomes 1 if B2.8 is selected
buttonl = Bl.1
button2 = Bl1.2
ledl = L1.1
led2 = L1.2

Please note: the buttons mutebutton and unmutebutton
and their according LEDs are not handled by the select
jack. Theideais that they always get their own dedicated
buttons. This allows you to quickly mute or unmute sev-
eral tracks at once.

Description

Input Type Default
clock _f_
reset _f_

DROID manual for blue-2

Clock input. This is mandatory. For each clock pulse the sequencer is advanced by one step.

Reset input. A trigger here switches back to step 1.

68

Table of contents at page 2

Input Type Default Description

buttonl ... buttonlé _ 15t . 16th step button. Assign these buttons to buttons on your controllers.

length 10203 = Sets the length of the pattern. Note: if you use lengthbutton, this input is ignored as soon as the length button
has been used for the first time. If you have assigned at least one button, the default value of length is the number
of buttons you have assigned. Otherwise it defaults to 16. The maximum length is 64. Any larger number will be
truncated to 64.

pattern 10203 0 Selects a pattern of pseudo random values. If you set dejavu to 1, all “random” decision are deterministic and repeat
again and again. If you do not like these choices, you can choose a different pattern, just by setting this input to any
integer number you like. The default patternis 0. If you patch a pot here, simply multiply it by the number of different
patterns you want to select, e.g. pattern = P1.1 * 10. This will allow you to select one of the pattern 0, 1, ... 10.

nextpattern I Switches forward to the next pseudo random pattern.

prevpattern I Switches back to the previous pseudo random pattern.

reroll _f_ Select one of the pseudo random patterns completely by random.

clear I A trigger here unselects all step buttons in the currently active page (normal, alternate, accent).

pitchlow AL 0.0 This set a lower voltage boundary for the pitch output for notes that are randomized.

pitchhigh AAN 0.3 This set an upper voltage boundary for the pitch output for notes that are randomized.

pitchresolution 10203 0 If this is non-zero, it make the pitch output adopt that number of possible discrete values. E.g. if you set it to 2, only
the values set by pitchlow and pitchhigh are possible. A value of 3 will allow an additional value in the middle, and
soon.

gatelength AAN 0.1 The gate length in input clock cycles. A value of 0.5 (5 V) thus means half a clock cycle. A steady input clock is needed
for this to work. Please note that if the gate length is >= 1.0, two succeeding notes will get a steady gate, which
essentially means legato.
When playing rolls, i.e. more than one beat per step, the gate length is divided by the number of rolls. That way the
gates get shorter and even at a gatelength close to 1.0 the gates are still audible and do not merge together.

lengthbutton i Map this to a button like B1.1. While you press and hold this button the sequencer switches to change length mode.

While in this mode a press of one of the step buttons will change the length of the pattern. Also while in this mode the
LEDs of the step buttons will show the current length. If you do not like to hold the button but switch it on and off,
you can create a toggle button with [button] and send its output here.

DROID manual for blue-2 69 Table of contents at page 2

Input Type Default Description

repeats 10203 1 Usually one bar has the length of one pattern. Setting this to 2 will consider one bar as a run of two times through
the pattern. So if you have 8 buttons and bars = 2, one bar will be 16 steps, where the 15t and 9th step are set by
buttonl, 2"d and 10th by button2 and so on.
Why should that be useful? Well - the difference shows up when you use fills, or branches or work with the alternate
pattern. These three algorithms work based on bars. And repeats = 2 makes one bar have 16 steps, even if you just
have eight buttons.

alternaterepeats To203 = If you are use using repeats and alternatebars / alternatebutton at the same time, with this input you can specify
a different value for repeats when it comes to selecting the alternate button page.
Assume you have eight buttons and repeats = 2 and alternatebars = 2. Then Algoquencer will play two times
your 8-step pattern normally and two times alternated (since two times the 8 steps form one bar). This results in a
formof AABB.
If you want your form rather to be A B A B, set alternaterepeats = 1. This way, when it comes to alteration, the
length of one bar is just normal length (8 steps here).

branches 10203 0 Enables the branching feature (sometimes also called fractal sequencing. When branches = 1, then every second bar
will be using other random values - giving a sequence of the bars .
With branches = 2 you get a sequence of the form .
A value of 3 creates an even longer sequence that repeats itself after eight bars: @
Note: this only takes effect when you set dejavu > 0. The largest effect is when it is set to 1. And the you need to use
either variation or set activity to a value greater than 0.5. Because otherwise Algoquencer will strictly play the
gates that you’ve set with your buttons and then every bar will be the same, of course.

mutebutton _f_ Wire this to a button like B1.2. When you press then button once then all triggers are muted. Pressing again unmutes
them. So this behaves like a toggle [button] initself. You probably want to wire muteled to the LED in that button,
e.g. L1.2. It show the mute state. The mute button works together with the unmute button (see below). Note: even
if you use the select jack in order to overlay your buttons with several algoquencers, the mutebutton will always be
active. The idea is to always have direct access to this button.

unmutebutton _f_ A trigger to this jack resets the mute button exactly at the beginning of the next bar. While waiting for that to happen,

DROID manual for blue-2

the output unmuteled will blink. Wire this to the LED in the button. Note: even if you use the select jack in order
to overlay your buttons with several algoquencers, the mutebutton will always be active. The idea is to always have
direct access to this button.

70 Table of contents at page 2

Input

Type

Default

Description

accentbutton

alternatebutton

alternatebars

accentlow

accenthigh

activity

variation

DROID manual for blue-2

10203

$3

0(5)1

Om1

0.0
1.0

0.0

While this input is high you are in accent editing mode. This is very similar to the mode where you set the length. But
now for each step you edit whether this step is outputting an accent when triggered. You might want to use a toggle
button for this function, so you can operate without holding down the button all the time.

If this input is high, you are in alternate editing mode. Every Algoquencer has an alternate set of steps. Each step that is
currenty activated toggles the state of the normal step, but only for each even bar. This allows to introduce variations
of the pattern that occur every second bar.

With this input you can change the influence of the alternatebutton. Per default the pattern alternationis done every
second bar. You can change this to any number you like with this input. Values less than 1 will be considered as one -
which means that every bar is alternated.

This value is output at accent when a note without an accent is being triggered or when no note is triggered at all.

This value is output at accent while a note with an accent is triggered. The value will be kept for the full time of the
clock cycle.

This is the most important parameter and you will probably wire it to a pot like P1. 1. The activity controls, how “busy”
the sequencer is playing, or in other words how often a step gets an active gate (und thus a changing output pitch).

Let’s first assume that variation is set to 0.0 (which is the default). Then at a value of 0.5 (or pot at 12’clock) Algo-
quencer will exactly play that pattern that you have set with the step buttons. Turning the knob CCW will remove more
and more beats from the pattern until it is completely silent at a value of 0.0 (or pot fully CCW). But if you turn up the
knob above the middle position then more and more additional beats will be placed into you pattern in a random way
until - at 1.0 - a trigger will happen at every beat.

Note: If you do not use step buttons, this parameter behaves slightly different: A value of 0.5 then means an activity
of 50%, which means that exactly the half of the steps will get an event. This is different from a situation where you
have defined buttons but all are deselected. In that case 0.5 means that exactly the number of beats of your pattern
are being played, which is zero in that case.

The variation controls how strictly Algoquencer will stick to the pattern that you have set with your step buttons. You
probably want to wire this to a knob. A value of 0.0 (or the knob fully CCW) will allow no variations. Your pattern
will be played exactly as it is. If the activity goes beyond 0.5, additional beats will be placed, of course. And these are
random.

If you increase the variation, more and more beats of your pattern are being replaced with other beats - while keeping
the total number of beats the same. If you set variation to 1.0 (or the pot fully CW) then your pattern is completely
ignored except for the actual number of beats it contains.

71 Table of contents at page 2

Input

Type

Default

Description

dejavu

morphs

offbeats

distribution

fills

DROID manual for blue-2

Om1

oL)

0(05)1

0fo0.511

Om1

1.0

0.0

0.5

0.5

0.0

The dejavu parameter controls what random should mean. Ifdejavu = 0.0, thenall random decisions are completely
chaotic - and every time a decision is taken the dice are being rolled again.

At dejavu = 1.0 on the other hand - once a random decision has been taken for a certain step in a certain bar, it
will stay always the same from now on. This will lead to repeating exactly the pattern bars over and over again. We
sometimes call this random to be “deterministic”.

Any position in between will choose some of the steps as chaotic random and some of the steps as deterministic.

This parameter will introduce changes in formerly taken random decisions from time to time. If you set it above zero,
at every start of a bar some of the deterministic random decisions will be remade. Setting morphs = 1 will essentially
disable dejavu, since all decisions are redone every bar anyway then.

If you know the Turing Machine: In principle that has the same idea, but Algoquencer has a few improvements:

- The number of random changes is exactly controlled by the setting. At each specific setting of morphs the same
number of changes will be done at each bar.

- Changes only appear at the beginning of each bar. If you use branches, they will appear whenever you sequence
is over.

-+ Small settings will introduce just one morph each g4th

step.

Whenever random beats are being placed then this setting controlls whether downbeats or offbeats should be pre-
ferred. At at setting of 0.5 there will be no difference. If you increase the value then more and more offbeats will
appear. Offbeats are steps with an even number, like 2, 4, 6 and so on. Value smaller than 0.5 will prefer downbeats.

Offbeats sound more “complex” and downbeats more simple or “down to earth”.

This is very similar to offbeats, but this time you decide whether beats should be placed rather in the first half of the
bar or in the second half.

When this parameter is set above 0.0, additional beats will be placed in order to make the beat more “active”. This
happens at musically useful times controlled by fillorder (see below). The additional beats within the bar are placed
in a way that prefers the end of the bar. If there are already too many beats in the bar then the fill will remove or change
some instead.

72 Table of contents at page 2

Input

Type

Default

Description

fillorder

rolls

rollcount

rollsteps

rollstartvelo

pitchl ... pitchlé

select

selectat

preset

DROID manual for blue-2

o203

Om1

10203

Te203

5

3

T1e203

o203

0

0.0

This integer number controls how fills are being placed:

0 | every bar

1 | every second bar

2 | smallfill in bar 2, big fill in bar 4

3 | tinyfillin bar 2 and 6, medium fill in bar 4, big fill in bar 8

This parameter controls if drum rolls (or ratchets as you might call it) are being created. At 0.0 no rolls are being
created. At 1.0 every beat will be converted into a roll. Rolls always happen before the actual beat, they lead to it. If
you using this feature for snare rolls you might want to use the output rollvelocity for controlling the snare volume.

Number of additional beats for playing the roll. Setting rollcount = 0 would disable rolls. All these beats are dis-
tributed in the clock tick before the beat the roll is leading to. The first beat of the roll is exactly one tick before that
beat - or more if you increase rollsteps.

Length of the roll in clock ticks (steps). The total number of additional beats is thus rollcount x rollsteps

Rolls can be played with an increasing velocity. This first beat starts with the velocity set with this parameter. Then
every beat gets a bit louder until the last beat is played with velocity 1.0. The velocity for rolls is output at the jack
rollvelocity.

You can use these inputs, if you want the pitches of the pitch output play a certain melody. That way the Algoquencer
behaves like a normal melody sequencer - but all the algorithmic parameters will be applied. For example variation
will also be applied to these notes. Note: If Length is larger than 16, these pitch inputs will be cycled through, so step
17 uses pitchl, step 18 uses pitch2 and so on.

The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 16 presets,
so this number ranges from 0 to 15.

73 Table of contents at page 2

Input Type Default Description

loadpreset I A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset _f_ A trigger here saves a preset.

Output Type Description

trigger I Here comes the trigger output. Patch this to the trigger input of your drum or synth voice.

gate _— The gate output is alternative to the trigger and has a variable length. Itis useful when Algoquencer is used for creating
melodies. Patch the gate input of an envelope or something similar here.

pitch _:“—'H’_ Outputs the (pseudo-)random voltage (unquantized) at each step with an active gate. This honors all the settings that
control the randomness and variation, like dejavu, variation, fills and branches.

accent AAN Whenever a beat with an accent is being played, the value set by accenthigh is sent here, otherwise accentlow. If
you are wiring this to one of the jacks of the G8 expander then that will output just OV and 5V of course.

ledl ... ledl6 _:“—'H’_ 15t .. 16th LEDs of the step buttons. Assign these to the LEDs in the step buttons.

barledl ... barled4 i Patch these output to some LEDs in order to show you the current bar in the sequence.

rollvelocity AAN If you enable rolls, then the velocity of the roll beats will be output here. For normal beats this will always be 1. 0.

startofbar I At the beginning of every bar a trigger is output here.

muteled _§ i Wire this to the LED in your mute button. It will then be lit while the voice is muted.

unmuteled i Wire this to the LED in your unmute button (if used). It will blink while the unmute is waiting for the start of the next
bar.

morphled _ i This output will get a trigger every time a morph happens. It is intended to be wired to an LED.

fillsled i This output will get a trigger every time a fill beat is being played. Wire this to some LED if you like.

branch 10203 This output will output the current branch number, e.g. 1, 2, 3 and so on. If you do not use branches then it is always

1.

One algoquencer circuit needs 1788 bytes of RAM.

DROID manual for blue-2

74 Table of contents at page 2

11.3 arpeggio - Arpeggiator - pattern based melody generator

This circuit creates melodic patterns based on simple
rules and many interesting configuration settings, which
can lead to very simple but also most complex patterns.

Introduction

In order to better understand, how the arpeggiator
works, let’s compare four different ways for constructing
melodies:

Sequencer manually composed melodies

Random generator | completely chaotic sequences

Turing machine,
Algoquencer

pseudo-random melodies,
which repeat themselves

melodies constructed from

rules

Arpeggiator

The rules for the arpeggiator can be as simple as on each
clock tick play the next note in the C minor scale. Addi-
tional parametes are for example the pitch range, i.e. the
start and the end note.

The arpeggiator shares root, scale and interval selection
with chord (see page 96) and minifonion (see page 174).
If you own a Sinfonion: the arpeggiator in the DROID is
working a bit differently and is more about general prin-
ciples than about preprogrammed patterns. That makes
it more flexible and powerful.

The simplest possible example

As always, we start with the simplest possible example.
And it is simple, indeed, since each of the many parame-
ters has a useful default value. The only input the arpeg-

DROID manual for blue-2

giator always needs is a clock input. The word “clock”
is probably a bit misleading since it doesn’t need to be a
steady clock signal. It can be any rhythmic pattern you
like. Each clock tick advances the melody to the next note
and a new pitch CV will be presented at output, whichiis,
of course, in the typical 1V/oct scheme.

[arpeggio]
clock = I1
output = 01

Patch I1toanexternal clockand 01 to the 1V/oct of some
synth voice. The easiest way is to use the same clock also
for triggering the voice’s envelope.

Now you will hear a C major scale (lydian) being played
step by step in a range from 0 V to 2 V. This makes 15
notes, since the scale consists of the seven notes C, D, E,
F#, G, A and B and is repeated over two octaves, but the
Cis here three times: at the beginning, in the middle and
at the end:

When it reaches the end it immediately starts over again.
So the second “bar” is really just 7 eights here!

NCT®

NE

NI

I
0

I_

Root, scale and interval selection

You probably don't like lydian C major. Changing that is
easy with theinputs root and degree. Please have a look
at the minifontion circuit (see page 174) for an explana-

75

tion of these parameters. Let’s go for a D minor (natural)
scale as an example:

[arpeggio]
clock = I1
output = 01
root = 2
degree = 7

Now we get:

Patterns

This “go through the scale” mode is just one of sev-
eral possible patterns. The pattern is selected with the
pattern input. And the default value of 0 produces the
result we just have seen. Let’s look at pattern 1. This goes
two steps forward and one step backward in the scale:

[arpeggio]
clock = I
output =
root = 2
degree = 7
pattern = 1

1
01

Since pattern 1repeats its structure every three notes it’s
best to display it in a metric that is divisible by three:

Table of contents at page 2

Pattern 2 is similar, but makes one double step forward
instead of two single steps:

pattern 2

Pattern 3 goes a double step forward, a double step back-
ward and a single step forward:

f) pattern 3 r—— p—
£ I T I Iy y — | N | 11

Pattern 4 is even more sophisticated. It goes a double

step forward, a single step forward, a double step back-
ward and again a single step forward:

A pattern 4
)" 4

 — I I |

i

Pattern5is a bit different since for each note it flips a coin
for deciding whether to go one step up or down.

And Pattern 6 simply randomly chooses one of the possi-
ble notes. So strictly spoken this has nothing to do with
“arpeggiation”, but it’s fun, so what?

Note: it’s entirely impossibl that future versions of the
arpeggiator introduce new patterns. So better do not yet
rely on these numbers to be fixed forever.

DROID manual for blue-2

The range

Perdefault the patternis played inarange of two octaves.
But that can be set easily with two parameters. pitchde-
fines the lowest possible pitch of a note. The arpeggiator
will chose the start note such thatitisin the scale and just
at or above this pitch.

And range defines the voltage range the pattern is being
played upwards until it starts again. So if range is 2 V,
you get a range of two octaves. A range of 0 will deform
the pattern into one single note.

Forinteractive playing, mapping pitch and range to pots
is fun:

[p2b8]
[arpeggio]
clock = I1
output = 01
pitch = P1.1
range = P1.2

Changing the playing direction

Sofarall pattern where going more or less upwards. From
lower notes to higher notes. This can be changed by set-
ting direction to 1. Now the arpeggiator starts with the
highest allowed note and reverses the pattern for going
downwards. Why not map this setting to a nice toggle
button?

[p2b8]

[button]
button = B1.1

76

led = L1.1
output = _DIRECTION

[arpeggio]
clock = I1
output = 01
pitch = P1.1
range = P1.2

direction = _DIRECTION

Another setting that influences the direction is the
pingpong parameter. This is a binary (gate) input, too.
If it is set to 1 the direction of the pattern changes into
the opposite once the end of the range has been reached.
Check this example...

[arpeggio]
clock = I1
output = 01
pingpong = 1
pitch = 0

range = 7/12V

... will create the following melody:

Why is that? Well - % V is the same as 7 semitones,
which is in turn one fifth. Since no root and degree are
defined we are back at C major lydian. The pattern is
0 (default) - hence the simple note-by-note scale. And
pingpong = 1 makes the pattern going down again after
having reached the upper limit.

Table of contents at page 2

Octaves up and down

The nice thing about all these parameter is that you can
combine them all. They interact with each other and
most combinations do useful things (well, when using the
“random” pattern, the direction and pingpong are with-
out effect, of course). And there is one more fun setting:
octaves. This can be 0 (default) or 1 or 2.

When octaves is 1, each note is directly followed by the
same note one octave above. That octave note is ignor-
ing the range-parameter. It is always in addition to the
selected range. Here is an example:

[arpeggio]
clock = Il
output = 01
range = 1V

octaves = 1

And here is the pattern this creates:

octaves = 1

0 oy te e P 2 F
<D ; £ = # i; r }= F :Il
[y, & ‘L;L - —

Set octaves = 2 and you get the same but the octaves
go down instead:

[\ octaves = 2 ’ .
)" 4 I I T |
R e =—EErrEEr e T e
AN\2VJ | | =l 1L | 1 |
J o933 4 4 g ¢ *#
=< > & K
@ @

DROID manual for blue-2

Dropping

The drop input lets you select different schemes of leav-
ing out notes from the original line of scale notes. For ex-
ampledrop = 1lwillleave out every second note. Hereis
an example:

[arpeggio]
clock = I
output
drop =

1
= 01
1

This will create the following melody:

0 g o P -
. S € S s s i i :E

.

If you have a closer look, you will see that in the upper
octave other notes are being played than in the lower oc-
tave. This can sound very interesting!

Dropping can, of course, be combined with other patterns
as well. Let’s see the line for pattern 1:

o} — Py 0 ®
)’ 4 £ | 11 Y e I | o .
A O ™ I o1 o P o P @ .
0NN Q | | e > | g F | * | 11 .
SO~ @ @ I o I I A S N | .
) o [==

There are more dropping-schemes. Please have a look
into the table of input parameters down below.

Note selection

The most important thing comes last. For didactical rea-
sons! What really makes this arpeggiator so musically
versatile is its interval selection. This is the same as for

77

the minifonion (see page 174) and the chord generator
(page 96).

The point is that you are not restricted to the seven
notes of a scale. For this there are seven inputs selectl,
select3, ... selectl3 that select the notes of the
current scale and another five inputs selectfilll ...
selectfill5 that select the notes not in the current
scale. These 12 inputs are binary inputs that expect ei-
ther 0 or one 1. Each of them selects one of the seven
intervals of the scale for being part of the chord. Here is
atable of all these inputs and the notes they would select
in a C major or C minor scale:

Input interval step | Cmai | Cmin
selectl root I C C
select3 | 3rd III E B
select5 sth v G G
select7 | 7th VII B Bb
selects | 9th-2nd 11 D D
selectll | 11th-4th | 1y F F
select13 | 13th - gth VI A Ab

Let’s make a simple example: The arpeggio of a C major
triad over two octaves going up and down again:

[arpeggio]
clock = I1
selectl
select3
select5
output = 0
pingpong =

nn
R R R R

1

And here is the result:

Table of contents at page 2

One typical way to select these notes is with seven tog- led = L1.3 led = L1.7
gle buttons. Much like the Sinfonion. Assign the output
of each of the seven buttons to one of these functions: [button] [arpeggio]
button = B1.4 clock = I1
led = L1.4 selectl = L1.1
[p2b8] select3 = L1.2
[button] select5 = L1.3
[button] button = B1.5 select? = L1.4
button = B1.1 led = L1.5 select9 = L1.5
led = L1.1 selectll = L1.6
[button] selectl3 = L1.7
[button] button = B1.6 output = 01
button = B1.2 led = L1.6
led = L1.2
[button] Now you can switch on and off scale notes for being part
[button] button = B1.7 of the patterns. Have fun!
button = B1.3
Input Type Default Description
pitch D (% oV Sets the base pitch of the arpeggio. The first note of the pattern will be the nearest selected note just above that pitch.
range D é‘ff 2V Selects the range between the lowest and highest note of the arpeggio. A range of 0 means that there is just one single
note possible and the arpeggio will stick to that note. A value of 1V (or 0.1) means that the arpeggio will run over one
octave. The maximum allowed range is 0.8 (8 octaves). Higher values will be capped to that.
clock i This input is vital: each trigger here make the arpeggio move forward by one step and adapt the pitch output. Without
a clock the arpeggio will do nothing but stick to the same note all the time.
reset _f_ Resets the arpeggio to the first step of the current pattern.

DROID manual for blue-2

78 Table of contents at page 2

Input Type Default Description

pattern 10203 0 Selects one of a list of arpeggio pattern. The following patterns are available:
0 | step forward through the allowed notes —
1 | two steps forward, one step backward — =
2 | double step forward, one step backward =
3 | double step forward, double step backward, single step forward =< —

4 | double step forward, single step forward, double step backward, single step forward | = — < —

5 | random single step forward or backward —
6 | random jump to any allowed (other) note 0
direction i 0 Sets the general direction in which the pattern moves. 0 means upwards and 1 means downwards.
pingpong _— 0 If set to 1, the pattern will reverse its direction once it has reached the end of the range. Otherwise it restarts from the

beginning. So enabling pingpong is a bit like a triangle wave, whereas otherwise it's more like a sawtooth.

butterfly — 0 If set to 1, every second note in the range of selected notes will be mirrored. So for example you have selected the
notes 1- 10, the new orderwillbe 1,10, 2,9, 3, 8,4, 7,5, 6

drop 10203 0 Selects a scheme of skipping some of the allowed scale notes. Four different values are allowed:
0 | Do not skip any notes 00600060
1 | Skip every second selected note 02000 ®
2 | Skip every third selected note 00300 6®
3 | Skip the 2" and 3™ note of each group of three | @@ @ @ ® ®

octaves i 0 When thisis set to 1 or 2, each note will be followed by the same note one octave up (for 1) or down (for 2) respectively.
These additional octave notes are in addition to the selected range.

0 | Don’t play octaves

1 | Each note is followed by the same note one octave up

2 | Each note is followed by the same note one octave down

DROID manual for blue-2 79 Table of contents at page 2

Input Type Default Description

startnote 10203 0 When startnote is set to non-zero, it will force the pattern to begin with a certain scale note regardless of the current
note selection. 1 will select the first note of the scale (root), 2 the second and so on until 7, which selects the 7th as
start note. This force start note replaces the note that would originally have been played.

root 10203 Set the root note here. @ means C, 1 means C#, 2 means D and so on. If you multiply the value of an input like I1 with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0o | C
1|
2 | D
3 | D§
4 |E
5 | F
6 | Fi
7 |G
8 | Gi
9 | A
10 | Af
11 | B
12 | C

DROID manual for blue-2 80 Table of contents at page 2

Input Type Default Description
degree 10203 Set the musical scale. This is a number from 0 to 11. At 12 this repeats over again. Please refer to the introduction for
the list of scales. If you multiply an input like I1 with 120, this will internally scale to one scale per semitone and you
are compatible with the DEGREE CV input of the Sinfonion.
0 lyd - Lydian major scale (it has a §4)
1 maj - Normal major scale (ionian)
2 | X" - Mixolydian (dominant seven chords)
3 sus - mixolydian with 3rdy4th swapped
4 | alt - Altered scale
5 hm® - Harmonic minor scale from the 5th
6 | dor - Dorian minor (minor with $13)
7 | min - Natural minor (aeolian)
8 hm - Harmonic minor b6 but #7)
9 phr - Phrygian minor scale (with}9)
10 | dim - Diminished scale (whole/half tone)
11 | aug - Augmented scale (just whole tones)
selectl _ Gate input for selecting the root note as being an allowed interval. When you want to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.
Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. selectl...
selectl3 will be set to one.
select3 i Gate input for selecting the 379
select5 i Gate input for selecting the sth,
select? _ Gate input for selecting the 7th,
select9 _ Cate input for selecting the 9th (which is the same as the 2N9).
selectll i Cate input for selecting the 110 (which is the same as the 4th).
selectl3 i Gate input for selecting the 13th (which is the same as the 6th).

DROID manual for blue-2

81

Table of contents at page 2

Input Type Default Description

selectfilll _ Selects the alternative 9tN (i.e. the 9t that is not in the scale.

selectfill2 _ i Selects the alternative 39 (i.e. the 39 that is not in the scale).

selectfill3 i Selects the alternative 4th or 5t In most cases this is the diminished 5t

selectfill4 _ Selects the alternative 13tD (i.e. the 15'3 that is not in the scale).

selectfills _ Selects the alternative 7th (i.e. the 7th that is not in the scale).

tuningmode _— While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch d % This pitch CV will be output while the tuning mode is active.

transpose D (% This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

Output Type Description

output é%/t This is what it’s all about: here comes the pitch CV for the current arpeggio note.

One arpeggio circuit needs 400 bytes of RAM.

DROID manual for blue-2

82 Table of contents at page 2

11.4 bernoulli- Random gate distributor

This circuit implements a “bernoulli gate”. For each gate Example: Note: each time a positive trigger edge is seen at input
or trigger received at input there is made a random de- a new random decision is made for which output to use.
cision of whether to forward that gate to outputl or [bernoulli] From now on that chosen output gets an exact copy of
output2. The probability for each of the outputs can be input = G1 the input signal - even if it is not a simple trigger signal
shifted with the parameter distribution. It determines distribution = P1.1 but something more complex like an envelope. The other
the probability of a gate signal to go to outputl. outputl = G2 output will send 0 V.
output2 = G4

Input Type Default Description

input _ 0 Send gate or trigger signals here.

distribution 0(0.5)1 0.5 This controls the probability of a gate to be forwarded to outputl. A value of 0.5 means 50%.

Output Type Description

outputl _ i Gates from input are forwarded here if the random decision was in favour of output 1.

output2 i Cates from input are forwarded here if the random decision was in favour of output 2.

One bernoulli circuit needs 56 bytes of RAM.

DROID manual for blue-2 83 Table of contents at page 2

11.5 burst - Generate burst of pulses

This circuit produces - when triggered - a number of
pulses. It can be used for solving various musical or tech-
nical tasks. Look at this example:

[burst]
trigger = I1
hz = 10
count =5
output = 01

When a trigger arrives at I1, the output 01 will send five
triggers in a row, with a distance of 0.1 seconds (thus
10 Hz). The gate length is fixed to half of the cycle (thus
here 0.05 seconds). This means that the pulse width is
50% - or in other words - the faster the burst the shorter
the outgoing triggers.

Note: When a new trigger arrives while the current burst
is still ongoing, it will not be finished but restarted from
the beginning immediately.

If you want the bursts to be synchronized to a musical
clock, you can use the taptempo input (here I2):

[burst]
taptempo = I2
count =4
trigger = I1
output =01

Similar to the circuit 1fo (see page 137), thereis a thirdin-
put for selecting the speed: rate. Thisworksona 1V/Oct
base, so here is an example for outputting the bursts at
half of the clock speed (-1 V pitches down one octave,
which is the same as half of the speed):

DROID manual for blue-2

[burst]
taptempo = I2
rate = -1V
count =4
trigger = I1
output =01

burst can also be used for very fast switching through
things like presets in external gear. Here you might want
fast updates. Simply set a very high frequency. Burst
makes sure that the actual output rate is limited to the
maximum the DROID hardware can do, so not one single
burst can get lost. Also you might want to use the skip
input, which skips a certain number of ticks before start-
ing. This can be used to send out areset signal to some in-
put and after that sending a couple of skip forward trig-
gers to some other input:

[burst]
hz = 5000
skip = 5
count = 3
trigger
output

Il
01

Simple clocked trigger delay

Another application of burst is a clocked trigger delay.
Consider the following patch:

[burst]
taptempo = Il
trigger = I2
skip = 7
output = 01

84

A trigger at I2 will be delayed by 7 clock cycles.

Note:: This simple trigger delay has no memory of more
than one trigger. Any ongoing trigger currently being de-
layed is overridden and forgotten as soon as the next trig-
ger arrives. If thatis what you want, fine. If you are look-
ing for a more complex trigger delay, you find one in the
circuit triggerdelay (see page 244) circuit.

Table of contents at page 2

Input Type Default Description

rate VAT 0.0 Frequency control: The default frequency of the burst rate is 1 Hz (one trigger per second or 60 BPM if you like). Each
volt doubles the frequency. So an input of 1V (a number of 0.1) speeds up to two triggers per second (120 BPM), 2 V
(0.2) creates triggers at 4 Hz (240 BPM) and so on. On the other hand negative voltages reduce the speed, so -1V
(-0.1) will give 0.5 Hz (30 BPM) and so on.

taptempo I Feed a steady clock here and the burst will run at the speed of that clock - albeit optionally modified by rate. At least
two clock ticks are needed for synchronisation, but always the last three ticks are averaged.

hz AL 1.0 Set the frequency in Hz directly by setting a number here. This is exclusive to taptempo, but will work in combination
with rate.

trigger I Send a trigger here in order to start the bursts

reset I Send a trigger here to immediately stop any ongoing burst.

count 10203 1 Number of triggers to send in one burst.

skip 10203 0 Number of time slots to wait before starting with the burst.

Output Type Description

output _f_ The triggers are output here.

One burst circuit needs 144 bytes of RAM.

DROID manual for blue-2

85 Table of contents at page 2

11.6 button - Does all sorts of useful things with buttons

Thisis a utility circuit for efficiently working with the but-
tons of your controllers. It can implement toggle but-
tons (that do on/off) or even have three or four states. It
can detect long presses and double clicks and also helps
you to overload one button with several switchable func-
tions. Note: If you just need a plain momentary button
without any of these or other nifty features, you can use
the register B1.1, B1.2, etc. directly and do not need this
circuit.

Note: don’t forget to declare your controllers at the top
of your patch with lines like [p2b8] or [b32]. In the be-
low examples I've omitted these declarations for sake of
simplicity.

Toggle buttons

The most common use of buttonis toimplement a toggle
button. That’s a button that changes from on to off and
back at each press of the button. The current state of the
button will persist onyour SD card so you don’t loose your
state if you switch off your rack.

Typically you will wire the button input to one of your
controller’s buttons like B1.1 and led to the LED in that
button (L1.1). LED will then always visualise the current
state of the button. As a side effect the LED registerL1.1
will store the button state as a value 0 or 1 and hence can
be used by some other circuit as an input.

Here is a typical example. The button is being used for
enabling the loop in a CV looper:

[button]
button = Bl.4
led = L1.4

DROID manual for blue-2

[cvlooper]
loop = L1l.4

If you do not want the state of the button to be persisted
on the SD card, use startvalue for setting a start value.
This make sense for the CV looper since the loop is ap-
parently empty anyway when your DROID starts. By the
way: off is a synonym for 0.

[button]
button = Bl.4
led =L1.4
startvalue = off
[cvlooper]
loop = L1l.4

Usually the button switches between the two values 0
and 1. Sometimes, however, you need different values.
For this purpose there are the two inputs offvalue and
onvalue. They set two alternative values for the "off” and
"on” states. And the output output outputs the selected
value (led still goes to 0 and 1). Here is an example for
a toggle button that switches a clock divider between 2
and 4:

[button]

button = Bl.4

led =L1.4

offvalue =2

onvalue =4

output = _CLOCK_DIV
[clocktool]

input = Gl # external clock

86

G2
_CLOCK_DIV

output
divide

Of course offvalue and onvalue are CV controllable.
How can this make sense? Well - as they can take vari-
able inputs you can use a button for directly switching be-
tween two different input CV signals. The following ex-
ample will use a button to switch between two different
wave forms of an LFO (see page 137). The button B3.1
switches between sawtooth and sine and sends the result
to 01.

[lfo]
hz =2
sawtooth = _SAWTOOTH
sine = _SINE
[button]
button = B3.1
led = 13.1
offvalue = _SAWTOOTH
onvalue = _SINE
output = 01

Buttons with three or four states

Sometime you might want more than just two values.
button supports switching between up to four values.
Use the states input and set it to 3 or 4. In the following
examples output will go through the values 0, 1, 2 and 3:

[button]
button = Bl1.1
led = L1.1
states = 4
output = _SOMETHING

Table of contents at page 2

If you don't like the default values, use the inputs valuel
through value4 for setting the four values. In fact
offvalue is the same as valuel and onvalue as value2.
If you specify value3 or value3, states is automatically
set accordingly and you can simply omit it .The following
example switches between four different wave forms of
an LFO:

[1fol]
hz =2
sawtooth = _SAWTOOTH
sine = _SINE
square = _SQUARE
triangle = _TRIANGLE
[button]
button = B3.1
led = L3.1
valuel = _SAWTOOTH
value2 = _SINE
value3 = _SQUARE
value4 = _TRIANGLE
output = 01

If you have three or four states, the LED will use different
brightness levels for indicating the current state.

Momentary buttons

If you just need a momentary button (one that just lights
up while you hold it down), strictly spoken you don’t need
a button circuit. You can directly use the B register, like
in this example:

[algoquencer]
nextpattern = B1.1

DROID manual for blue-2

Sometimes, however, you may want to make use of some
of the features of the button circuit without creating a
toggle button. This is easily done by setting states = 1:

[button]
states = 1
button = B1.1
led = L1.1

[algoquencer]
nextpattern = L1.1

Now you are ready for adding some fun stuff like over-
laying one button with multiple functions (see below) or
using the longpress output.

Sharing buttons

You can never have too many buttons! It's more likely
that you have too few. So you want to overlay one or
more buttons with multiple functions.

They key to this is the select input of the button circuit.
If you patch this, the circuit will only interact with the ac-
tual button and LED if select is active (e.g. set to 1).
Otherwise it will continue to output its current value to
output and leave the control of the button and the LED
to some other circuit.

The following example uses the button B1.1, (which is
not overloaded!) for switching between two "layers” or
"banks” of buttons. And in each bank the button has a
different meaning. Note how | use the negated output of
the button. That is 0 if the normal output is 1 and vice
versa.

In order to keep things short, the bank just consists of the
single button B1.2. Of course in practice this wouldn’t

87

make sense since you wouldn’t actually save a button,
but you get the idea...

[button]
button = Bl1.1
led = L1.1

output = _BANK1
negated = _BANK2

[button]
select = _BANK1
button = B3.1
led = L3.1
output = _VIRTUAL_BUTTON_1

[button]
select = _BANK2
button = B3.1
led = L3.1
output = _VIRTUAL_BUTTON_2

Note: If you need more than two banks, consider switch-
ing with a buttongroup (see page 90).

Table of contents at page 2

Input

Default

Description

button

reset

onvalue

offvalue

valuel ... valued

doubleclickmode

states

startvalue

select

selectat

preset

loadpreset

DROID manual for blue-2

Te203

o203

1.0

0.0

of f

The actual push button. Usually you want to wire this to B1.1, B1.2 and so on: to one of the push buttons of your
controllers. Each time that input goes from low to high, the state of the push button will toggle.

A trigger here will reset the button to its start value (which is off, unless you have changed startvalue).

Value sent to output when the push button is on. You can also use a dynamic signal here. This is an alternative name
for the input valuel.

Value sent to output when the push button is off. This is an alternative name for the input value2.

The up to four values to output at output when the button is on the according state. valuel is the same as offvalue
and value2 is the same as onvalue. The default values of these four inputs are 0, 1, 2 and 3, so in many cases you don’t
need to specify them.

This input can enable a double click mode when set to 1. In that mode the button only toggles it’s constant state if you
double press it in a short time. Otherwise it behaves like a momentary button, that inverts the persisted state (which
you toggle with the double click). Note: The double clock mode is only makes sense if the number of states is 2.

Number of states this button can have. The default value is 2, which creates a toggle button which changes between
on and off at each press. A value of 1 creates a momentary button. Note: If you just need a plain momentary button,
you candirectly useB1.1, B1.2 and soon. You don’t need an extra circuit. But if you want things like overloading (with
select) or the longpress output, this does make sense. The maximum number of states is 4. When the button has 3
or 4 states, every press will switch to the next state and then back to the first state again.

State of the push button when you switch on your system. Setting this to on or of f will force the buttoninto that state
and ignore the setting that is saved on the SD card. If you have three states, the start value needs to be 0, 1 or 2. With
four states, it can also be 3. Using this input disables the persistence of the state!

The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 16 presets,
so this number ranges from 0 to 15.

A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

88 Table of contents at page 2

Input Type Default Description

savepreset I A trigger here saves a preset.
Output Type Description
led AL When the button state is on, a value of 1.0 will be sent to that output - regardless of the values in onvalue and

offvalue. If the number of states is 3 or 4 the output get’s intermediate values so the attached LED will be dimmed
into different brightness levels. Usually you wire that output to a LED register, e.g. to L1.1, L1.2 and so on.

5

output This output will output the current button states. Thisis usually 0 foroffand 1 foron. If statesis 3 or4, thevalues2or3
are output for the additional states. You can modify all four values with the inputs of fvalue/valuel, onvalue/value2,
value3 andvalued4. Note: if you haven’t changed any of these inputs and states isunchanged or 1 or 2, the led output

will output the same values.

inverted /\/\/‘ The same as output, but sends onvalue when the button is off and of fvalue when the button is on. If states is 3 or
4, the order of the four output values will be mirrored (probably a feature that is rarely of any use).

negated i Similar to inverted, but always sends 1 when the button is off and @ when the button is on - independent of the values
of onvalue and of fvalue. When states is 3 or 4, this output will be 1 if the buttonis off and 0 in the other three states.

longpress _f_ Emits a trigger, when any button is pressed for at least 1.5 seconds. If this outputs is used, the effect of a short button
press is delayed until the button is released. This will avoid double actions for long presses.

One button circuit needs 248 bytes of RAM.

DROID manual for blue-2 89 Table of contents at page 2

11.7 buttongroup - Connected buttons

This utility circuit combines a number of push buttons
into a group that behave as a unit. One classic operation
is to form a group of “radio buttons”. This means that at
any time just one of these buttons is on and all others are
off.

The following example uses four buttons for selecting
one of the voltages 0 V, 1V, 2V and -1V. This voltage is
then being sent to the output jack. This could be used
as an octave switch or the like. The four buttons B2.1
... B2.4 are grouped in a way that just one button is on
and the others are off. The four selectable voltages are
assigned to one button each. The value of the currently
active button is being sent to the output. The outputs
outputl ... output4 will be set to 1 if their correspond-
ing button is active and are used for controlling the LEDs
within the buttons.

[buttongroup]
buttonl = B2.1
button2 = B2.2
button3 = B2.3
buttond4 = B2.4
ledl = L2.1 # LED in button 2.1
led2 = L2.2
led3 = L2.3
led4 =L12.4
valuel = 0V
value2 = 1V
value3 = 2V
valued = -1V
output = 01

If you set maxactive to a number greater than one, more
than one button can be active at the same time. If this
is the case then the sum of the values of all active but-
tons will be sent to the output. Here is an example, where

DROID manual for blue-2

three buttons are being used for selecting a number be-
tween 0 and 7 by selecting any combination of the but-
tons ”1", IIZII‘ and ll4ll.

[buttongroup]
buttonl = B2.1
button2 = B2.2
button3 = B2.3
ledl = L2.1 # LED in button 2.1
led2 = L2.2
led3 = L2.3
valuel =1
value2 =2
value3 =4
minactive = 0 # allow all buttons to be off
maxactive = 3 # allow all buttons to be on
output = 01

Overlaying buttons

When you make more complex DROID patches, it's likely
that you might run out of buttons. In such a situation you
canoverlay buttons with multiple functions and use other
buttons to switch between these layers.

Consider the following example: We have one P2B8 con-
troller. The buttons 1 and 2 should switch between the
layers root note and scale. We do this with a simple but-
ton group (you could also use a button circuit and save
one button, but for simplicity we allow us two here):

[p2b8]

[buttongroup]
buttonl = Bl.1

90

button2 = B1.2
ledl =L1.1
led2 = L1.2

The remaining six buttons select either one of six possible
root notes or one of six possible scales (adhering to the
scheme of the minifonion circuit, see page 174). Please
note how we have added a select input at each of both
circuits to make sure that at any given time exactly one
of the two groups is selected:

[buttongroupl]

select = L1.1 # be active only when L1.1 is active

buttonl
button2
button3
button4
button5
button6 B
ledl = L1.3
led2 = L1.4
led3 = L1.5

6

7

8

Bl.
Bl.

]
w
ir)

[}
W
uir)

1}

w

=
oNOOUT AW

led4 = L1.
led5 = L1.
led6 = L1.
valuel =
value2 =
value3 =
value4 =
value5 =
value6 = 10
output = _ROOT

HONUNOG
HOH K KWW
WrFomMooNn

[buttongroup]
select = L1.2 # be active only when L1.2 is active
buttonl = B1.3
button2 = Bl1.4

Table of contents at page 2

button3 = Bl1.5 led6 = L1.8 Here you can patch _ROOT and _SCALE to some
button4 = B1.6 valuel = 1 # major minifonion, arpeggio or other circuit that works with
button5 = Bl1.7 value2 = 6 # dorian minor scales.
button6 = B1.8 value3 = 7 # natural minor
ledl = L1.3 value4 = 9 # phrygian minor Now, with the top buttons you can switch between root
led2 = L1.4 value5 = 10 # diminished scale and scale selection and with the remaining six buttons se-
led3 = L1.5 valueb = 2 # mixolydian lect either the root or the scale.
led4 = L1.6 output = _DEGREE
led5 = L1.7
Input Type Default Description
minactive 10203 1 Minimum number of active buttons. If you set this to 2, then it is guaranteed that at least 2 buttons are active. If you
set this to 0, then it is possible to switch off all buttons. The output will be set to 0.0 in that case.
maxactive 10203 1 Maximum number of active buttons. It is an error to set this to 0, since this would make this circuit useless.
buttonl ... button32 N 15t ... 32" button of the group. Any positive trigger seen here will toggle this button. And another button might go
on or off in order to make sure that the number of active buttons is withing the allowed range.
valuel ... value32 AL~ = Value that will be sent to the output if the 15t ... 32" button is active. These inputs default to 0 for valuel, 1 for
value2 and so on and 31 for value32.
select _ i The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.
selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.
preset 10203 This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 16 presets,
so this number ranges from 0 to 15.
loadpreset _f_ A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.
savepreset _f_ A trigger here saves a preset.

DROID manual for blue-2

91 Table of contents at page 2

Output

Type

Description

ledl ... led32

buttonoutputl ...
buttonoutput32

output
buttonpress

longpress

This output will be on/ 1.0, whenever the 15t .. 32Nd putton is active and off / 0.0 otherwise. Wire this to the LED in
the button. If you have wired select, these LED outputs will do nothing (not even send 0) unless this circuit is selected.

These are individual outputs for every button in the group. They output button’s value when it is active, otherwise 0.
If valueX is not defined for buttonX, the value 1 is output (not the button’s number!).

Note: in contrast to the led output, these outputs are not affected by select but always funcational.

One application of these outputs is to use a buttongroup with maxactive = Xandminactive = 0asacheap bunch
of X toggle buttons in one single circuit and still use select.

The sum of the values of all active buttons will be sent here. if no button is active, 0.0 is being output.
Emits a trigger if any button is being pressed

Emits a trigger, when any button is pressed for at least 1.5 seconds. If this jack is used, buttonpress will emit a signal if
the buttonin question is released before the 1.5 seconds, not immediately. This way you trigger either at buttonpress
or at longpress, not at both.

One buttongroup circuit needs 1364 bytes of RAM.

DROID manual for blue-2

92 Table of contents at page 2

11.8 calibrator - VCO Calibrator

This circuit allows you to precisely compensate for decal-
ibrated or otherwise imperfectly tracking VCOs - whichiis
probably a property of all existing analog VCOs to some
degree. It does this by applying one specific adaptation
value per individual octave. This way you can make even
those VCO track well over 10 octaves, that would nor-
mally only do 2 or 3.

The calibration of the error compensation is done man-
ually - by you. At first this may seem like a disadvan-
tage. In practice, however, this is much easier and more
accurate than the way some “autotune” modules do it.
Those modules have an additional input for “listening” to
a waveform output of the oscillator and measure and ad-
just the tracking at a button press.

The advantages of manual tuning are:

+ You don't need an extra waveform output of your
VCO.

+ You can calibrate sound sources with complex
wave forms, whose pitch is are hard to grab by au-
totune devices.

+ You can change the correction at any time during a
live performance without your audience noticing.

+ It’s possible to make one VCO follow the (imper-
fect) tracking of a second one, in order to create
perfect FM sounds while just one VCO needs to be
adapted.

- It’s also possible to fix the tracking of unprecise
pitch CV generators, such as sequencers, quantiz-
ers or MIDI interfaces.

The calibrator circuit happily profits from the DROID’s
highly precise, linear and low-jitter ADCs and DACs. And
using eight such circuits one DROID could fix the tuning
of up to eight VCOs.

DROID manual for blue-2

How to use

Here is a typical patch for the use of the calibrator:

[calibrator]
input =11
output = 01
nudgeup = Bl.1
nudgedown = B1.3
ledup = L1.1
leddown = L1.3

The original pitch information from the sequencer, quan-
tizer, MIDI converter or whatever comes into I1. The
adapted pitch goes to 01 and from there to the V/Oct in-
put of your VCO. Of course the pitch information could
also come from some internal circuit like the minifonion
(page 174). In that case input is connected to an internal
patch cable coming from that circuit.

Now with the two buttons B1.1 and B1.3 you can adjust
the tuning up and down at any time while playing. Each
button press just very slightly shifts the pitch up or down.
The adjustment is only done for the octave that’s cur-
rently playing. calibrator saves one calibration value
for each octave from 0 to 8 and also one for the pitches
below 0V and those above 8 V. Your tuning profile is au-
tomatically saved to the memory card.

Pressing both buttons at the same time resets the calibra-
tion of the current octave.

For a good result | suggest either using a precise tuner or
playing the voice at the same time as a reference voice
and try to minimize the audible beatings.

As second way of using the VCO calibrator is specify-

93

ing a tuning adjustment for each octave by a fixed num-
ber (or a potentiometer if you can afford). This is done
with the inputs tune0 ... tune8 and tunelowtail and
tunehightail.A value of 1.0 means an upwards tuning
of one semitone (100 cents) per octave, and -1.0 likewise
downwards.

Persistence

As always, the internal state of the calibrator circuit
is automatically saved to your SD card and loaded when
your DROID starts.

But what if you are using several calibrators, each for
a different (and differently tracking) VCO? How do you
know which of the saved calibration states is applied to
which VCO?

The answer to this is: all calibrators in your patch are
enumerated starting from 1. For each of them there is
one configuration saved to the SD card, based on that
number. So when you modify the calibration of the third
calibrator circuit in your patch, the modified configu-
ration will be saved as belonging to calibrator number 3.

So if you make sure that each VCO is always handled by
the same calibrator circuit you will always get the right
configuration.

If you for example remove the first calibrator from your
patch, the second one will become the new first one and
load its calibration state when you load the new patch. If
you don’t want that to happen, simply keep the calibra-
tor in the patch, even if you don’t need it anymore. It is
sufficient to keep just the line [calibrator] withoutany
further jack specifications.

Table of contents at page 2

Input Type Default Description

input (% oV Patch your V/Oct pitch input here.

nudgeup _f_ A trigger here (most likely a button press) will modify the tuning of the currently played note (as read by input) up-
wards by one cent (or by nudgeamount if that is used.

nudgedown I A trigger here will modify the tuning of the currently played note down.

nudgeamount AL 0.01 Changes the amount each button press detunes. A value of one would mean one semitone, so the default value of
0.01 corresponds to one cent (Wlo) of a semitone.

reset _f_ Resets all tunings to 0 - or to the values of the according tune. .. inputs if they are used.

tune0 ... tune8 ALAP 0.0 Explicit tuning of the octaves 0 through 8 - if you do not want to nudge manually. tune@ sets the tuning for the input
pitch of 0V, tunel for 1V and so on. A value of 1 means a tune adjustment of one semitone - which is 100 cent. The
maximum detuning is = 1 Octave (at a value of +12).

tunelowtail AAN 0.0 Tuning adaption for the negative voltage range. A value of 1 means an upwards tuning of one semitone per octave, -1
likewise downwards.

tunehightail AL~ 0.0 Tuning adaption for voltages > 8 V. A value of 1 means an upwards tuning of one semitone per octave, -1 likewise
downwards.

select _— The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

Output Type Description

output v The calibrated pitch goes out here.

ledup Y When nudgeup is mapped to a button (which is most likely), map this output to the according LED and it will indicate
whenever it’s currently adjusting the output pitch upwards.

leddown AN This is the LED for nudgedown, which indicates downwards adjustment.

DROID manual for blue-2

94 Table of contents at page 2

One calibrator circuit needs 304 bytes of RAM.

DROID manual for blue-2 95 Table of contents at page 2

11.9 chord - Chord generator

This circuit creates the pitch information for up to four
voices of a musical chord. This means that you can at-
tach the Volts per octave inputs of up to four synth voices
and they will play a nice musical chord. Hereby you have
the flexibility of building your chord out of any of the
seven notes of a selected scale. So you are not limited to
root, 374, 5t and 7t The algorithm is similar to that in
the Sinfonion but has an adapted mode for three voiced
chords in addition.

Minimal example

Here is the most simple (and probably useless) example:
it will play a C major 7 chord, i.e. output the respective
pitch CVs for the notes C, E, G and B at the outputs 01,
02, 03 and 04:

[chord]
outputl = 01
output2 = 02
output3 = 03
outputd4 = 04

Output 01 willbeat0V, representing a C. Or course, if you
just have three voices, don’t use output4 and you will get
a C major triad.

Selecting root and scale

Most likely you do not want to play in C major all the time
(or even never!), so you can select the root note and the
scale with the inputs root and degree. Setting root to 2
and degree to 7, for example, will select D natural minor:

DROID manual for blue-2

[chord]
outputl = 01
output2 = 02
output3 = 03
outputd4 = 04
root =2
degree =7

Both root and degree range from 0 to 11. Please refer to
the description of minifonion (see page 174) for a com-
plete list of all available scales. It has the same logic for
root and degree and is thus compatible with chord.

But why the heck is that input named degree?? Well, it’s
ajargon from the Sinfonion and does make sense there in
some contexts. Please have a look into the manual of the
Sinfonion if you are interested!

Selecting the pitch of the notes

Per default all outputs are in the first octave, i.e. in the
range 0V ... 1V. Per convention this is very low and prob-
ably sounds ugly. With the pitch input you can set the
minimum pitch of the lowest output chord note. In the
next example this is read from I1. So you could, for ex-
ample, patch a sequencer here and have the chord out-
puts play a kind of four voiced melody:

[chord]
pitch = I1
outputl = 01
output2 = 02
output3 = 03
outputd4 = 04
root =2
degree =7

96

The spread parameter controls the maximum pitch of the
highest output chord note. It is always relative to the
pitch of the lowest note plus one octave. So if spread is
1.5V (or 0.15), for example, the maximum allowed dis-
tance between the lowest and the highest chord note is
2.5 octaves. As lowest note the chord generator places
the chord note that is nearest above the pitch input. As
highest note it places the one nearest to upper bound
of the allowed range and the remaining notes are dis-
tributed in between with the most equal spacing possi-
ble.

Selecting the chord notes

What makes the Sinfonion and also the harmonic circuits
in the DROID stand apart from other modules is the flex-
ibility of note selection. So e.g. in C major, you are
not limited to playing the chord C/E/G/B. In fact you can
choose any subset from the currently selected scale.

For this there are seven inputs selectl, select3, ...
selectl13 that select the notes of the current scale and
another five inputs selectfilll ... selectfill5 that
select the notes not in the current scale. These 12 inputs
are binary inputs that expect either 0 or one 1. Each of
them selects one of the seven intervals of the scale for
being part of the chord. Here is a table of all these inputs
and the notes they would select in a C major or C minor
scale:

Table of contents at page 2

Input interval step | Cmas | Cmin
selectl root I C @
select3 3rd III E B
select5 sth v G G
select? 7th VII B Bh
selectg | 9th-2nd II D D
select1l | 11th - 4th | 1y F F
select13 | 13th-gth | y1 A Ab

One typical way to select these notes is with seven tog-
gle buttons, which is then much like the Sinfonion does
it. Assign the output of each of the seven buttons to one
of these functions:

[p2b8]
[button]
button = B1.1
led = L1.1
[button]
button = B1.2
led = L1.2
[button]
button = B1.3
led = L1.3
[button]
button = Bl1.4
led = L1.4
[button]
button = B1.5
led = L1.5
[button]
button = B1.6
led = L1.6

DROID manual for blue-2

[button]
button = B1.7
led = L1.7

[chord]
selectl = L1.1
select3 = L1.2
select5 = L1.3
select7 = L1.4
select9 = L1.5
selectll = L1.6
selectl3 = L1.7
outputl = 01
output2 = 02
output3 = 03
outputd = 04

Now you can use the buttons to change the chord notes
on the fly. Of course, however, you also can use other sig-
nals for the selection. Maybe random gates, slowly run-
ning LFOs, a sequencer, whatever you like!

But what happens, if you do not select exactly four
notes?

+ If you don’t select any note (or do not patch the
select-inputs at all), all scale notes are selected.

- If you select just one note, all four outputs will play
that same note.

- If you select two notes, outputl and output3 will
play the first note and output2 and output4 the
second one.

- If you select three notes, output4 will play the
same as outputl.

- If you select five, six or seven notes, just the first
four notes will be used.

If some of the notes are doubled and you use a large
enough spread, they will be placed at different octaves.

By the way: It’s of course no problem to just use three or

97

even just two of the outputs, if you don’t need or have a
total of four voices.

Chord inversion

The chord generator lets you nail down the chord struc-
ture to a certain inversion. If you set inversion to 1, the
root note (or, to be more precise, the first selected note)
will be placed as the lowest note. Similarly the inversions
2, 3 and 4 will make the respective other selected notes
the lowest note.

Setting inversion to 0 (which is the default) will allow
any note to be the lowest. This allows the chord to be
closest to the pitchinput.

Triggered mode

The trigger input is essentially a sample & hold for the
outputs. So as soon as you patch that input, all outputs
are frozen until the next trigger.

Chords with three voices

The chord generation circuit can also create chords
with just three output voices. Simply omit the output
output4d. When it is not connected, the “three voice
mode” is activated:

[chord]
outputl = 01
output2 = 02
output3 = 03
root =2
degree =17

Table of contents at page 2

All parameters work as expected but there are some im-
portant adaptions. This is not the same as using the four
voiced mode and just look at the first three outputs. For
example:

+ The spreading uses a simplified algorithm with just

a bottom, middle and top note.

+ If just three intervals are selected, you don’t get
a duplication of the first note on output2, as you
would otherwise.

Chords with two voices

Evenif just two outputs are connected, you can still make
use of this circuit. Now just the first two select... in-
puts are taken into account. But things like inversion and
spreading works nevertheless.

Description

Input Type Default
pitch d (% ov
spread) é‘(/f ov
inversion 10203 0
trigger _f_

DROID manual for blue-2

This sets the minimum pitch of the lowest note of the chord.

Selects the range between the lowest and highest note of the chord measured in 1V/oct, while a spread of 0 means
that all chord notes are within one octave, a spread of 1V means that the notes are spread out over two octaves and

soon.

Selects the inversion of the chord. 1 means that the root note should be the lowest note, 2 will make the second
selected note the lowest note, 3 the 3rd and 4 the 4th. The default, however, is 0 and doesn’t fix the inversion. Rather
that inversion is chosen that creates the chord closest to the input pitch.

This jack is optional. If you patch it, the Chord generator just reads a new input pitch when it receives a trigger.

98

Table of contents at page 2

Input Type Default Description

root 10203 Set the root note here. 0 means C, 1 means C4#, 2 means D and so on. If you multiply the value of an input like I1 with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0 | C
1|
2 |D
3 | Dg
4 |E
5 | F
6 | Ft
7 |G
8 | Gf
9 | A
10 | At
11 | B
12 | C

DROID manual for blue-2 99 Table of contents at page 2

Input

Type

Default

Description

degree

selectl

select3
select5
select?7
select9
selectll

selectl3

DROID manual for blue-2

o203

Set the musical scale. This is a number from 0 to 11. At 12 this repeats over again. Please refer to the introduction for
the list of scales. If you multiply an input like I1 with 120, this will internally scale to one scale per semitone and you
are compatible with the DEGREE CV input of the Sinfonion.

lyd - Lydian major scale (it has a §4)

maj - Normal major scale (ionian)

X7 - Mixolydian (dominant seven chords)

3rd/4th

sus - mixolydian with swapped

alt - Altered scale

hm® - Harmonic minor scale from the Sth

dor - Dorian minor (minor with $13)

min - Natural minor (aeolian)

hm - Harmonic minor 6 but §7)

phr - Phrygian minor scale (with9)

10

dim - Diminished scale (whole/half tone)

11

aug - Augmented scale (just whole tones)

Gateinput for selecting the root note as being an allowed interval. When you want to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. selectl...
selectl3 will be set to one.

Cate input for selecting the 3rd,

Gate input for selecting the 5th,

Gate input for selecting the
Gate input for selecting the
Gate input for selecting the 11th (which is the same as the 4th).

Gate input for selecting the 13th (which is the same as the 6th).

7th,
gth (

100

which is the same as the

2ndy,

Table of contents at page 2

Input Type Default Description

selectfilll _ Selects the alternative 9tN (i.e. the 9t that is not in the scale.

selectfill2 i Selects the alternative 39 (i.e. the 39 that is not in the scale).

selectfill3 i Selects the alternative 4th or 5t In most cases this is the diminished 5t

selectfill4 _ Selects the alternative 13tD (i.e. the 15'3 that is not in the scale).

selectfills _ Selects the alternative 7t (i.e. the 7th that is not in the scale).

tuningmode _— While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch D55 This pitch CV will be output while the tuning mode is active.

transpose D (% This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

Output Type Description

outputl ... outputd A 15t ... 4t pitch output

One chord circuit needs 332 bytes of RAM.

DROID manual for blue-2

101 Table of contents at page 2

11.10 clocktool - Clock divider / multiplier / shifter

This circuit implements various clock modifications, such
as a clock divider, a clock multiplier, a tool for changing
the length of an incoming gate signal and a clock time
shift. Here is an example of a simple clock divider that di-
vides the incoming clock by 7 (i.e. for 7 incoming clocks
one outgoing clock is being produced).

[clocktool]
clock = I1 # patch a clock here
output = 01
divide =7

This example doubles the speed of the clock by inserting
one additional clock tick right in the middle between two
incoming ones: right in the middle between

[clocktool]
clock = I1 # patch a clock here
output =01
multiply = 2

By using multiplication and division at the same time you
can create rhythms like “two over three”:

[clocktool]
clock = I1 # patch a clock here
output =01
divide =3
multiply = 2

Per default the outgoing clock has a duty cycle of 50%,
which means that it is 50% of the time high and 50% of
the time low - basically a symmetrical square wave. You
can change this with the dutycycle input, e.g. to 20%:

DROID manual for blue-2

[clocktool]
clock = I1 # patch a clock here
output =01
dutycycle = 20% # same as 0.2

The CV delay can be used to delay the clock signal - as-
sumed that the input clock is steady. A value of 1.0 is
equivalent of delaying each clock by exactly one cycle -
which is pretty useless, since it results in the same out-
put clock. But for example a value of 0.1 will delay the
clock by 10%. Here is an example:

[clocktool]
clock = I1 # patch a clock here
output =01
delay = 0.1 # same as 10%

Please note that thisis not a trigger delay, since it requires
a steady input clock. Otherwise funny and strange things
can happen. But: in exchange for that limitation it can
also shift a clock ahead. Using a small negative number
will resultin a clock that is always slightly before the orig-
inal clock:

[clocktool]
clock = I1 # patch a clock here
output = 01
delay = -0.1

Feeding a trigger sequencer (like the algoquencer, see
page 64) with a shifted clock allows you fine tuning the
exact timing of that voice. You can easily map the shift
amount to a pot for tuning that live by ear:

102

[clocktool]

clock = I1 # patch a clock here

output = _SHIFTED_CLOCK

delay =P1.1 * 0.2 - 0.1 # limit to +/- 10%
[algoquencer]

clock = _SHIFTED_CLOCK
Gate length

Per default the length of the output gate is 10 ms - inde-
pendently of the length of the input gate. You can change
the gate length either with the jack gatelength and spec-
ify a fixed number of seconds, or by using dutycycle,
which is a percentage of the output clock rate. Please
note: if your gate length exceeds the time until the next
output gate, both will be ”joined” and thus no new gate
will be emitted.

Please note if you use dutycycle: right at the start of
the clock signal or after a greater speed change of the
clock, clocktool needs a short time to learn the new
clock speed and correctly adapt the new gate length. This
might lead to two merging gates, which in turn causes a
missing gate output.

Table of contents at page 2

Input Type Default Description

clock I Patch a steady clock here for this circuit to be of any use

reset I A trigger here resets the internal counters. This is useful if you use the clock divider and want to restart the internal
counting from 0, in order to align the clock divider with some external sequencers or the like

divide _:“—'H’_ 1 Number to divide the clock through. This will be rounded to the nearest integer number. Note: if you want to use an
external CV then you need to multiply that with some useful number, since otherwise you will get a number between
0 and 1 which is not useful at all. Remember: 10 V translates to a number of 1.

multiply _:“—'HL 1 Number to multiply the clock with. Same considerations hold as for divide.

dutycycle 0(0:5)1 = Output duty cycle of the clock - which is essentially a square wave - in a range from 0.0 to 1.0 or 0% to 100%. If you
don’t patch anything here, the length of the trigger output pulses will be 10 ms (DROID’s standard trigger duration).

gatelength AAN IS8 This jack is alternative to dutycycle and will override it if it is used. It sets the length of each output pulse to a fixed
value that is independent of the incoming clock. A value of 0.5 (a CV of 5 volts) translates into a gate length of 0.5
seconds.

delay AL~ 0.0 This CV allows you to shift the input clock beat around in time. A value of 0.1 will delay each beat by 10% of a clock
cycle. A value of -0.1 is also allowed and shifts the beat 10% ahead.
For an unmodulated delay -0.1 and 0.9 is just the same, because the output clock will have the same relation to the
input clock. But if you modify the delay from 0.0 to 0.9, the next tick will be delayed by 90% of one cycle, where is a
modification from 0.0 to -0.1 will play the next tick by 10% earlier.

Output Type Description

output _ Here comes the modified clock

inputpitch AAN Experimental output that outputs a representation of the input clock’s pitch on a 1V/octave base, based on the refer-
ence of 60 BPM (1 Hz). This means that an input clock of 120 BPM will output 1V (a value of 0.1), since 120 BPM it is
one octave higher than 60 BPM. If you feed that value to the rate input of an LFO you get that running at exactly the
same speed (not in the same phase, however).

outputpitch AAN Same for the modified output clock

One clocktool circuit needs 200 bytes of RAM.
DROID manual for blue-2 103 Table of contents at page 2

11.11 compare - Compare two values

This simple utility circuit allows you to make a decision
by comparing an input value (at input) against a refer-
ence value (at compare) and output one of three values
depending on whether the input is less than, greater than
or equal to the reference.

The following simple example checks if the pot P1.1 is
left of the center (a value less than 0.5). If that is so, it
outputs 1, otherwise 0.

[compare]
input = P1.1
compare = 0.5
ifless = 1
output = 01

You can change the default output value of 0 with the in-
put else. That specifies what happens if the condition
is not met. The following example outputs -1, if P1.1is
greater or equal to 0.5.

[compare]
input = P1.1
compare = 0.5
ifless = 1
else = -1
output = 01

Equality, analog unprecision

You can also check if two values are equal. This is done
with ifequal. Check this out:

DROID manual for blue-2

[compare]
input = B1.1
compare = 1
ifequal = 4
else = 8
output = 01

Now while you hold the button B1. 1 this circuit will out-
put the value 4 and otherwise 8.

Note: equality can be tricky when it comes to values from
analog things like inputs or potentiometers. They always
undergo tiny random fluctiations. So the following ex-
ample, that should compare the current voltages of two
inputs, will never really work:

[compare]
input = I1
compare = I2
ifequal = 1 # will never happen!
output = 01 # This won't work!

If you try this out, you will probably never get both in-
puts equal. Even a single electron too much could the-
oretically make the difference. So in order to make such
comparisons possible, there is a way to allow for a slight
unprecision when doing the comparison. This is set with
the precision parameter:

[compare]
input = I1
compare = I2
precision = 0.1
ifequal = 1
output = 01

104

Now the inputs I1 and I2 are being treated as equal as
long as their difference is 0.1 (1V) at most.

Makeing a three-way switch

It is possible to check all three relations at once. Make
sure that you apply a precision if you deal with analog
values:

[compare]
input = I1
compare = I2
precision = 0.1

ifless = 0
ifequal = 1
ifgreater = 2
output = 01

Now you get 0, 1 or 2, depending on wether I1 is less,
equal or greater than I2.

Note: Better do not use just ifless and ifgreater with-
out using ifequal or else. This lets the equality unde-
fined and will output O if for any chance the two input
values are equal. Better use ifless / ifgreaterin com-
bination with else if you are not interested in the exact
equality.

Omitted inputs

It is allowed to omit any of the inputs ifless, ifequal,
ifgreater or else. Any of these is treated as 0 with one
exception: If you omit all four, ifequal defaults to 1.
This make a super basic compare circuit just check if two
values are equal:

Table of contents at page 2

input = Bl.1
compare = 0
output = 01

This will output 1 if button B1.1 as the value 0 (is not
pressed).

Dynamic output values

As often, instead of using fixed values for ifless,
ifequal, ifgreater and else you can use dynamic val-
ues from somewhere else, of course. The following ex-
ample will output a sine wave at 01 if the pot is left of the
center or else a square wave:

sine = _SINE

square = _SQUARE

[compare]

input = P1.1

compare = 0.5
ifless = _SINE
else = _SQUARE

output = 01
[lfo]
hz = 2

Input Type Default Description
input AL 0.0 A value to compare.
compare AAN 0.0 A reference value to compare the input with.
ifgreater AAN = Value to be output if input is greater than compare. If you patch nothing here, the value of the input else will be used.
ifless AL~ = Value to be output if input is less than compare. If you patch nothing here, the value of the input else will be used.
ifequal /\/\/\ = Value to be output if input is equal to compare within the precision defined by precistion. If you patch nothing here,

the value of the input else will be used.
else AAN 0.0 Specifies the output value in case non of the stated conditions are met.
precision AL~ 0.0 An optional precision to be used by ifequal
Output Type Description
output /\/\/‘ Here one of ifgreater, ifless or ifequal is output.

One compare circuit needs 104 bytes of RAM.

DROID manual for blue-2

105

Table of contents at page 2

11.12 contour - Contour generator

An enhanced version of the classic ADSR-envelope gen-
erator with the six phases predelay, attack, hold, decay,
sustain and release.

For triggering there are two alternative inputs: gate and
trigger. Use trigger if you are not interested in the
length of the gate signal. There will be no decay / sustain
phase in that case.

The minimal patch just connects gate or trigger and
the output. It creates an envelope with standard timings,
triggered at I1 and output to 01:

[contour]
gate = Il
output = 01

Assigning pots to the classic four inputs lets you use the
DROID justasanormal ADSR envelope:

[p2b8]

[p2b8]

[contour]
gate = I1
attack = Pl.1
decay = P1.2
sustain = P2.1
release = P2.2
output = 01

When you try this out, you will notice that the time range
of the attack parameter is much shorter than that of
decay and release. If fact it is just 5 of these. This
has been chosen in this way because | believe that this
makes sense from a musical point of view. Very long at-
tack times are quite unusual and | wanted to be able to

DROID manual for blue-2

directly map the four values to pots. But if you don't like
that you can - of course - make all three timing parame-
ters have the same range simply by multiplying attack by
20:

[p2b8]

[p2b8]

[contour]
gate = I1
attack = P1.1 * 20
decay = P1.2
sustain = P2.1
release = P2.2
output = 01

If you do not change the shape parameter, the duration
of the attack phase is 0.1 sec at a value of 1. The phases
decay and release have a duration of 2.0 sec at a value of
1.

The Phases

In addition to the traditional ADSR phases this circuit also
has aanoptional predelay (P) phase - which acts like a de-
lay before the envelope starts - and an optional hold (H)
phase which keeps the envelope at maximum level for a
short time right after attack and before decay.

The following diagram shows an example envelope with
all six phases. The gate starts at 0 ms and ends at 200 ms.

106

10 | —F
A
—H
2
T 51 D
N S
— R
O,

0 50 100 150 200 250 300
time(ms)

Attack, Decay and Release

The phases attack, decay, release are phases where the
level of the envelope starts at one level and then ap-
proaches another level within a certain time. In the up-
per example all these phases had a linear characteristic.
That means that the output voltage changes by a con-
stant amount per time.

DROID’s contour allows you to control the shape of
these phases in order to get them bent in either direc-
tion. For that purpose there are the inputs attackshape,
decayshape and releaseshape.

Let’s take decay as an example. During the decay phase
the envelopes voltage falls from the maximum level of
10 V (you can change this with the input level) to the
sustain level defined by the input sustain. For simplic-
ity let’s assume that you have not used these inputs, so
the maximum level is 10 V (1.0) and the sustain level is
5V (0.5). Also we assume attack, predelay and hold to
beo0.o0.

When decayshape is not patched or otherwise set to its

Table of contents at page 2

default of 0.5 then the shape of the decay curve is linear.
This means that it goes down by the same voltage each
second until it reaches 0.5.

10 | D
s
. —R
3 5
~
0,,

0 50 100 150 200 250 300
time(ms)

Now, if you set decayshape to 0.0 then curve is com-
pletely exponential

10 | D
s
. R
X 5
S
0,,
0 50 100 150 200 250 300

time(ms)

Such an envelope sounds completely different - of course
also depending on whether you feed this into a linear
VCA, exponential VCA or a VCF. For fine control you can
use any number between 0.0 and 0.5 of course. In that
case you will get a curve that is bent to a certain degree.
Assigning decayshape to a pot helps you listening to the
different sounds:

[contour]

gate =I1
decayshape = P1.1
output =01

If the shape gets a value greater than 0.5 then the curve
is bent into the opposite direction (some call this loga-
rithmic but mathematically this is not true). Here is an
example where decayshape is set to 1.0:

10 | D
s
. R
3 5
>~
O,,
0 50 100 150 200 250 300

time(ms)

DROID manual for blue-2

Input Type Default Description

gate _ = Patch a gate signal here that triggers the envelope. Gate means that the length of the signal is relevant. While the gate
is high the sustain phase holds on. As soon as gate is going low the release phase is being entered.

trigger _f_ This is an alternative method of starting the envelope. If you use trigger instead of gate, there are the following

differences:

- The duration of the trigger signal is being ignored.
+ Thereis no decay / sustain phase. Attack and hold are immediately followed by release. The inputs sustain and

decay have no impact anymore.

- The predelay and attack phases are continued until their end even when the trigger signal ends (When using
gate and the gate signal ends during predelay, the envelope does not start. When it ends during attack, decay /
sustain are being skipped and release starts at the current level of the envelope. That way short gates can result

in “quieter” envelopes).

107

Table of contents at page 2

Input Type Default Description

retrigger _ 1 If you patch @ or off here, a gate or trigger impulse will not immediately restart the envelope unless it already has
reached its release phase. The default on, which means that a trigger will immediately restart the envelope in any
case.

startfromzero _— 0 If you set this to 1 or on, a trigger or gate will reset the envelope’s current level immediately to zero. This is sometimes
called “digital mode”. In the normal analog mode the envelope resumes from where it is. This means that when a
trigger occurs right in the release phase where the level is still high, will start it’s attack not from zero but from this
hight value.

abortattack _— 0 This is an on / of f setting that decides what happens if the input gate goes off while the predelay or attack phase is
still not finished. Per default that phase will be finalized regardless of the gate state. If abortattack is on, the end of
the gate will immediately stop the attack phase and move on to hold. Note: In this case the value of the envelope will
not reach the maximum level. If the gate ends during the predelay phase, no envelope will be started at all.
Note: This setting is only functional when the gate input is being used for triggering the envelope. If you use trigger,
the attack phase is always completely executed and this setting has no influence.

loop _— 0 Thisisan on/off input that switches loop on or off. When loop is on, the envelope will immediately start again once
it has finished. It also starts without triggering. This converts contour into a kind of fancy LFO.
gate / trigger and loop can be combined. Any gate or trigger will restart the envelope just as usual - even in loop
mode.

predelay AL~ 0.0 The predelay phase inserts a delay between the incoming gate and the begin of the envelope. The length of the predelay
is 0.1 seconds per volt, so a value of 1.0 means 1 second

attack AP 0.0 Length of the attack phase, i.e. the time from the beginning of the gate until the maximum level is reached. See the
general description for information about the scaling of this input.

hold AL~ 0.0 If this is none-zero, the envelopes lingers a certain amount of time at its maximum level after the attack and before
the decay phase. The input value specifies a number of seconds. A value of 0.5 (this is 5 V) will create a hold time of
0.5 seconds.

decay AAN 0.2 Time of the decay phase

sustain 5 C 0.5 Sustain level

swell ol D1 0.0 If this jack is set to a value greater than 0.0, the level of the envelope will go up or down again during the sustain phase
until it reaches swelllevel.

swelltime AL 5.0 Time of the swell phase

swelllevel AL 1.0 Level the swell phase is approaching. Setting this to the same as sustain effectively disables swell.

DROID manual for blue-2

108 Table of contents at page 2

Input Type Default Description

release VAT 0.2 Timing of the release phase

level AAN 1.0 Maximum level and scaling of the envelope. It is basically an output attenuator of the envelope. Sudden changes in
the level will immediately have an (audible) impact on the envelope.

velocity o s 1.0 energy of the attack: The velocity is similar to the level, but is effective just during the attack phase. During that
phase that maximum voltage that is read from the velocity jack and will be used as the velocity of the envelope.
Further changes during the other phases will be ignored. This makes it ideal of using with a sequencer. For example
you can patch an accent output here and add some offset. Sudden changes in this input will not affect the shape of the
envelope.

pitch d e ov This is a one volt per octave input affecting all timings of the envelope. When you set this to 0 (the default), itis neutral.
A value of 0.1 (1 Volt) will exactly double the speed of all phases - just as one octave up doubles the frequency of an
oscillator. This jack can be used to easily implement envelopes where the length very naturally follows this pitch - just
like on a piano, glockenspiel or marimba lower notes last longer than higher ones.

taptempo _f_ Tap tempo is an alternative method of specifying a pitch information. When you patch a clock to tap tempo, all time
parameters in the envelope are relative to that clock. If the clock speeds up, the envelope gets faster and vice versa.
The reference speed is 120 BPM. This means that if you patch a 120 BPM clock here, nothing changes. Clocks faster
than 120 BPM will speed up the envelope. Clocks slower than 120 BPM will slow it down.

shape 0l0.5)1 0.5 If you use this jack, it sets the shape for all of the relevant phases, which are attack, decay, swell and release. Note:
this input is only effective for those phases where the dedicated input (like attackshape, etc.) is not being used.

attackshape 0(0:5)1 = Shape of the attack curve. If nothing is patched here, the value of shape will be used. See the general description for
how curve shapes work.

decayshape 0(0.5)1 = Shape of the curve in the decay phase. If nothing is patched here, the value of shape will be used.

swellshape 0(0.5)1 = Shape of curve during the swell phase. If nothing is patched here, the value of shape will be used.

releaseshape 0(0:5)1 = Shape of the curve in the release phase. If nothing is patched here, the value of shape will be used.

zerocrossing AAN = This is an experimental feature: If you patch the output of an oscillator here, an incoming gate or trigger signal will be

delayed until the next zero crossing of that signal. That allows you to start the envelope exactly when the audio signal
is at 0 and avoid nasty klicks, even if the attack is set to 0. It comes at a price, however. The delay between the trigger
and the first zero crossing might vary a lot from note to note and that could make your rhythm untight, especially if
the frequency of the oscillator is low.

DROID manual for blue-2

109 Table of contents at page 2

Output Type Description

output AL Main output of the envelope. Patch this to your filter, VCA or wherever you like.

negated AL The negated output is the same as the output but in negative voltage.

inverted AAL The inverted output always outputs positive voltages but is inverted relative to the level of the envelope. When the
normal output outputs OV, the inverted output outputs level and vice versa

endofpredelay I This output will emit a trigger with a length of 10 ms when the predelay phase has ended.

endofattack N This output will emit a trigger with a length of 10 ms when the attack phase has ended.

endofhold _f_ This output will emit a trigger with a length of 10 ms when the hold phase has ended.

endofdecay I This output will emit a trigger with a length of 10 ms when the decay phase has ended.

endofrelease I This output will emit a trigger with a length of 10 ms when the release phase has ended.

One contour circuit needs 424 bytes of RAM.

DROID manual for blue-2

110

Table of contents at page 2

11.13 copy - Copy asignal

This circuit is a simple utility that copies a signal from an
input to an output. Since every input generally can be at-
tenuated and offset this can be used for scaling and off-
setting a signal on its path.

The following example outputs the sine wave of the same

LFO to 01 and 02, where 02 is being inverted. This is also
an example of using an output as an input.

[1fo]
hz = 0.5 * P1.1

sine = 01
[copyl
input = 01

inverted = 02

Input Type Default Description

input AP 0.0 Connect the signal you want to copy here.

minimum AL = This sets a lower limit to the input signal. If it falls below it will be set to this value.

maximum AAN = This sets a upper limit to the input signal. If it is above it will be set to this value.

Output Type Description

output AAN The resulting signal will be sent here.

inverted AAN An inverted version of the signal will be sent here (after min and max has been applied). Inverted means, that it is

mirrored within the range of 0... 1. For example the inversion of 0.2 is 0.8, the inversion of 0.5 is 0.5 and the inversion
of 0.0is 1.0. If you need a negated version, simply multiply the input by -1.0.

If the signal is negative, the inverted signal will also be negative and is now mirrored within the range -1... 0. So the

inversion of -0.8 is -0.2 and so on.

One copy circuit needs 60 bytes of RAM.

DROID manual for blue-2

111

Table of contents at page 2

11.14 crossfader - Morph between 8 inputs

This utility circuit creates CV a controlled mix of two out
of up to eight inputs. With two inputs this acts like a clas-
sical cross fader. The following example lets you fade be-
tween the signals at I1 and I2 by turning the pot P1.1:

[crossfader]
inputl = I1
input2 = I2
fade = P1l.1
output = 01

At fully CCW (0.0) only the signal of the first input is be-
ing output, at fully CW (1.0) only that of the second one.
In the center position (0.5) you get the average of both
inputs, namely 0.5xI1 + 0.5xI2.

Using more than two inputs is possible. The fade input
then maps therange 0.0 ... 1.0 to a journey from the first
to the last input. Let’s see the following example:

[1fo]
hz =0.1
sawtooth = _FADE
[crossfader]
inputl = I1
input2 = I2
input3 = I3
inputd = I4
fade = _FADE
output =01

Now during one LFO cycle of 10 seconds the output 01
begins with the signal at I1 and then morphs to that of
I2. It reaches 100% of I2 at a fade value of % Then it
continues to I3, whichitreachesat % and finally - after 10
seconds - it ends at I4. After that it immediately jumps
back to I1, in order to begin the next cycle.

Values beyond 1.0 for fade are allowed and allow you to
morph from the last input to the first one. In the previ-
ous example that would be the range from1.0to 1.3333.
So if you scale up the sawtooth to a total range of 0.0 ...
1.3333 you will get a smooth cyclic morph between all
four inputs:

[1fo]

hz =0.1

sawtooth = _FADE
[crossfader]

inputl = I1

input2 = I2

input3 = I3

inputd = I4

fade = _FADE * 1.3333

output = 01

Input Type Default Description

inputl ... input8 AP 0.0 The input signals that you want to crossfade between. At least inputl and input2 need to be patched. Otherwise
they are treated like 0 V signals.

fade ol i 0.5 This value decides which of the two inputs should be mixed and to which degree each one should go into the mix. At
0.0 the mix consists of 100% of the first inputs, at 1.0 of 100% of the last patched input.

Output Type Description

output AL Output of the mix

One crossfader circuit needs 132 bytes of RAM.

DROID manual for blue-2

112

Table of contents at page 2

11.15 cvlooper - Clocked CV looper

This circuit is a very easy to use CV looper. It records an
incoming CV (and optionally a gate as well) on a virtual
tape loop with a resolution of one sample per ms. The
length of this tape is eight seconds. If you need a longer
loop time, you can reduce the tape speed. At a speed of
0.5 you have a maximum loop time of 16 seconds and a
resolution of one sample per 2 ms (which s still pretty de-
cent for most applications).

This looper is meant to be playable in a live situation as
easily as possible. For that purpose it does not imple-
ment the typical loop start — loop stop scheme - which
requires the musician to know beforehand that she will
start a loop. Instead the looper is always recording. The
loop length is specified in clock ticks. And as soon as the
looping is activated, the previous x clock ticks of CV in-
formation will be repeated over and over.

Here is an example for a simple looper for one CV without
a gate:

[button]
button = Bl.1
led =11.1
[cvlooper]
cvin =I1
clock = I8 # steady clock
cvout = 01
length = 16 # 16 clock ticks
loopswitch = L1.1

The button B1.1is converted into a toggle button for ac-
tivating the looping. The CV is read from I1and is sent to
01. As long as the loop switch is of f the looper is in by-
pass mode and simply copies I1to 01. At the same time
it is always recording to its internal endless tape. When

DROID manual for blue-2

the loop switch is switched on, the last 16 clock ticks of
CVinformation is looped to 01 and Il isignored.

Please note: for your convenience the exact time when
the loop switch is switched on is quantized to the nearest
clock tick - may it be in the future or past. This makes
playing exactly in time much easier.

The second example adds a gate signal - such as out-
put by a ribbon controller. The gate is running through
I2—02.

[button]
button = Bl.1
led = L1.1
[cvlooper]
cvin = I1
gatein = I2
clock = I8 # steady clock
cvout =01
gateout = 02
length = 16 # 16 clock ticks
loopswitch = L1.1

Using a gate changes the behaviour of the CV looper. The
state of gatein (not the exact voltage) is being looped as
well. The CV is recorded to the tape only while the gate is
high.

Using a gate makes two additional features possible:

1. When overlay is on and the input gate is active,
the input CV will override that on the tape and in-
stead the source signal from cvin is bypassed to
the output. The tape’s content stays untouched.
This allows you to overlay the loop CV with your
own from time to time.

113

2. On the other hand, when overdub is on and the in-
putgateisactive, theinput CV will be written to the
tape and replaces the recorded CV at those places.
And it also will be routed to the output at the same
time.

Toggle buttons would fit nicely for these two functions.

Please note: you always need a clock! The CV looper is
useless without one. If you do not want to use an exter-
nal clock, you can make use of the LFO circuit for creating
an internal clock.

What if you want to loop more than one CV? Just create
more cvlooper circuits - one for each CV. And control
them from the same set of buttons.

Changing the tape or clock speed

It is possible to change the tape speed on the fly in order
to slow down or speed up the recorded loop’s content. It
isimportant - however - to always change the tape speed
and clock speed at the same time and in the same manner.
Otherwise you will get stuttering effects. So if you dou-
ble the tapespeed you also need to double the frequency
of the clock.

Changing the length

Changing length parameter on the fly is supported and
just works. Remember: it does not set the length of the
tape loop but just the length of that part that is played
back. The recording is always done with the maximum
length. So if you increase the length while playing back
you will get access to the older parts of the CV history

Table of contents at page 2

that way. Just don’t make the length longer than the ac-
tual tape (see below).

Limitations

Memory (RAM) is a valuable resource. The CV looper
limits itself to 8000 samples in order not to waste too
much memory and leave space for other circuits as well
(the Droid master has about 100.000 bytes of memory
and 8000 samples need 16.000 bytes). But if you want
to make longer loops, you can reduce the tape speed and
thus use less samples per second.

A second limitation is that the total loop length can be
128 clock ticks at most. If you need more ticks, you can
divide the input clock down, using clocktool:

[clocktool]
clock = Gl
divide =2
output = _LOOP_CLOCK
[cvlooper]
clock = _LOOP_CLOCK
cvin =I5
tapespeed = 0.2 # max loop five x longer
cvout = 05
length = 128 # = 256 original ticks
loopswitch = _SOME_BUTTON

DROID manual for blue-2

114

Table of contents at page 2

Input Type Default Description

cvin VAT 0.0 Input CV that should be looped.

gatein _— 1 Optional input gate. If you do not patch something here, the gate is assumed to be always high.

clock _f_ Input clock. The clock is mandatory and is the base for the definition of the loop length. Also the loop switch is quan-
tized in time to the nearest clock.

reset I A trigger here resets the playback head immediately to the start of the loop, if you are in playback mode.

length 10203 16 Length of the loop in clock ticks. Example: You get a length of 16 ticks by patching the number 16 to length. If you
want to set the length by means of an external CV that would require 160 Volts. So you need to multiply your input by
some useful number in that case.

tapespeed /\/\/\ 1.0 Relative tape speed, where 1.0 is the normal speed. So a value of 0.5 slows down the speed thus increasing the effec-
tive tape length from 8 to 16 seconds while reducing the sampling rate from 1 ms to 2 ms per sample. Changing the
tape speed on the fly probably leads to interesting results.

loopswitch _— = Mandatory parameter: While the loop switch is of f the CV looper simply sends all input CV and gate to their respective
outputs. At the same time CV and gate are also recorded to the tape. When the loop switch is on, the CV and gate are
being read from the tape, instead. The input CV and gate are now ignored.

pause _— off This is a binary input. If you send a high signal here, the looper pauses. This is only works in playback mode. The
current CV value is hold the entire time. This is not the same as bypass, since in bypass mode the original CV will
routed through.

overlay _ off Overlaying changes the behaviour while looping is active. If overlay is set to on, while the input gate is active the gate
and CV will be sent directly from the inputs rather than read from the tape.

overdub _— off Overdubbing also changes the behaviour during the looping: If it is active then while the input gate is high the input
gate and CV will be written to the tape - thus changing the loop on the fly.

bypass _ off Setting bypass to on copies the input CV and gate from their inputs to their outputs while keeping the loop’s content
untouched. This disabled the looping for the while, but you can get back to it later. Note: this is different from turning
off the loop switch, because then your tape’s content would be overwritten.

Output Type Description

cvout AAN Output of the bypassed or looped CV

gateout _— Output of the bypassed or looped gate

DROID manual for blue-2

115 Table of contents at page 2

One cvlooper circuit needs 17476 bytes of RAM.

DROID manual for blue-2 116 Table of contents at page 2

11.16 dac - DA Converter with 12 bits

This circuit converts a binary representation of up to 12
bits into an output value in a given range. Consider the
following example:

[dac]
bitl = I1
bit2 = I2
bit3 = I3
output = 01

In this example three bits are being used. Three bits can
represent a number from 0 to 7. These are mapped to the
input range from 0 to 1 (or 0 V to 10 V) in the following
way:

bitl | bit2 | bit3 | bitvalue | output
0 0 0 0.000
0.143
0.286
0.429
0.571
0.714
0.857
1.000

LB R =T — I — =)

R R|lo|lo|r| kR o
HR|lolR| oRr| ok
N|o|jlu|lsalw|N|R

In other words: this circuit will convert three different
gate inputs into one analog output value. bitl has the
most influence, but3 the least.

The normal output range is 0 to 1 (i.e. 10 V) per default,
but you can change that with the parameters minimum
and maximum. For example you could have the three bits
mapped to just the range of 0.1t0 0.5:

DROID manual for blue-2

[dac]
bitl
bit2
bit3
minimum = 0.1
maximum = 0.5
output = 01

1]
-
w

v

#1
5V

Now the table looks like this:

bitl | bit2 | bit3 | bitvalue | output
0 0 0 0 0.100
0 0 1 1 0.157
0 1 0 2 0.214
0 1 1 3 0.271
1 0 0 4 0.329
1 0 1 5 0.386
1 1 0 6 0.443
1 1 1 7 0.500

If you use more of the bit-outputs you get more resolu-
tion. Forexample if you use bitl... bit8, the total range
will be divided into 256 possible output values. The max-
imum is 12 bits. Since bit 1 is the most significant bit,
adding more and more bits will not change the influence
of the already used bits.

Please also have a look at the circuit adc (see page 62,
which does the exact opposite!

117

Table of contents at page 2

Input Type Default Description

bitl ... bitl2 _ i = The 12 bitinput bits. bitlis the MSB - the most significant bit. The LSB (least significant bit) is the highest input that
you actually patch.

minimum AAN 0.0 This sets the lower bound of the output range, i.e. the value that the bit sequence 000000000000 will produce.

maximum AL~ 1.0 This sets the upper bound of the output value, i.e. the value that the bit sequence 111111111111 will produce.

Output Type Description

output AL~ Output signal.

One dac circuit needs 192 bytes of RAM.

DROID manual for blue-2 118 Table of contents at page 2

11.17 droid - General DROID controls

This circuit gives access to some general DROID config-

uration settings. It does not make sense to create more than one instance of this.

Input

Type

Default

Description

ledbrightness

maxslopel ... maxslope8

1pfilterl ... lpfilter8

m4faderspeed

m4notchpower

DROID manual for blue-2

Om1

oL

Om1

1.0

0.25

0.25

Let’s you dim all of the 24 LEDs of the master and the G8. This is mainly for those who think they are too bright. But
since this parameter can be CV-controlled, you could of course also do funny things with it. Beware: if you set this to
zero, the LEDs will be completely dark. This also includes possible error messages.

Sets a threshold for a voltage change between two samples until the internal logic of the DROID outputs assumes that
this step is intentional and should not be smoothed out. A typical case where you do not want smoothing is the pitch
output of a sequencer.

The defaultvalueis0.25. Avalue of 0.0 turns off smoothing altogether since the slightest voltage change is considered
anintentional jump.

Configures a digital low pass filter on the output in order to smooth out digital noise resulting from the DROID’s main
loop. This loop is running somewhere between 3 and 6 kHz - depending on the number of circuits you use.

Per default this filter is set to 0.25 - which means a mild filtering - thus still allowing fast and snappy envelopes and
other rapidly changing signals while filtering away most of the digital artefacts.

If you use an output for a slow envelope that is combined with an audio path in a way that you hear digital artifacts
then increase that value. This is e.g. the case if you modulate a VCA that in turn modulates a very low pitched audio
wave with very few harmonics (such as a sine or triangle wave).

The maximum value of 1.0 leads to a very strong filtering - i.e. removing all fast transients. Snappy envelopes will be
smoothed out heavily. Square wave LFOs will be converted into lower level almost sine waves.

Set the force / speed of the motor faders. Faster speeds need more electrical power and might wear off the faders faster.
Too slow speeds might lead to poor operation. This value goes from 0.0 (slowest possible speed) to 1.0 (maximum
speed). If you don’t use this parameter, some reasonable default is used that depends on the firmware of the M4
module.

Set the force feedback power of the M4 motor fader units when they operate with virtual notches. The range is from
0 (minimum notch power) to 1 (maximum notch power). Note: 0 does not turn the notches off, there is still some
minimal feedback. If you don’t use this parameter, the notch force feedback operates at some default power, which is
dependent on the M4 firmware version.

119 Table of contents at page 2

Input Type

Default

Description

calibrate _f_

Immediately enter the calibration procedure, that’s contained in the maintainance menu. Skips the menu. After cali-

bration is done, resets.

One drotid circuit needs 260 bytes of RAM.

DROID manual for blue-2

120

Table of contents at page 2

11.18 euklid - Euclidean rhythm generator

This circuit creates trigger patterns according to the well-
known Euclidean rhythms and is of course CV control-
lable. The pattern is described by three numbers:

- The number of steps in the pattern
+ The number of beats in the pattern
- An offset for shifting the beats forward

The number of beats are distributed as evenly as possible
in the pattern - but of course are all placed precisely on
clock beats. Here are a few examples of various patterns:

length: 16, beats: 4, offset: 0

HEEEENENENEREEN

length: 16, beats: 5, offset: 0

HEEEENEENE RN

length: 16, beats: 5, offset: 1

HEEEEEREEREEREN

length: 16, beats: 11, offset: 0

222 [21a] A1) 201 (219

DEERRERDEEEEN

BEERDRNDREEREN

length: 4, beats: 2, offset: 1

HEINE)

DROID manual for blue-2

Here is an example without CV control:

[euklid]
clock = Gl
reset = G2
length = 16
beats =5
offset =0
output = G3

Now let’s change that in order to make the beats control-
lable by the pot P1.1. Please note how the pot range is
being changed from the default O .. 1 to the necessary
1.. 16 by using a factor of 15 and an offset of 1:

[euklid]
clock = Gl
reset = G2
length = 16
beats =Pl.1 *15 + 1
offset =0
output = G3

By the way: Since the default for length is 16 and for
offset 0 you can drop those two lines if you like:

[euklid]
clock = Gl
reset = G2
beats =Pl.1 *x15 + 1
output = G3

121

Offbeats

The output offbeats does the exact opposite of
outputs: it triggers at those clock beats where output
does not. So atany given clock tick exactly either output
or of fbeats triggers.

Gate length

The length of the output gate is the same as that of the in-
put gate. Also the exact voltage from the input is copied
to the output while the current step is active.

Table of contents at page 2

Input Type Default Description

clock _ = Patch a clock signal here. It does not need to be steady - even if this is the most usual application. Note: this input is
classified as a gate input, since the length of the gate is being preserved when forwarded to output and offbeats.

reset _f_ A trigger here resets the pattern to the start

outputsignal AL =3 Usually on active steps euklid just lets the original input clock get through to the output. If this parameter is used, it
will be sent to the output on active steps instead. The easiest application is just setting it to 1. The output will then
become 1 the whole time while the current step is active. This is useful if you want to use euklid as modulation CV
rather than as trigger.

length 10203 16 The length of a pattern. This is interpreted as an integer number, which must be greater than 0. If it is not then 1 is
assumed. If you CV control the length, use multiplication. The maximum accepted length is 64.

beats 10203 5 The number of active beats that should be distributed amongst the length steps. If that numberis greater than length,
itis capped to that number.

offset 10203 0 rotates or shifts the pattern by that number of steps. This number can be positive or negative.

Output Type Description

output _— Output of the beats in the current pattern. The gate length is directly taken from the input clock - just as the voltage.

offbeats P Here those impulses will be output where there is no beat in the pattern.

One euklid circuit needs 116 bytes of RAM.

DROID manual for blue-2

122 Table of contents at page 2

11.19

explin - Exponential to linear converter

This circuit converts an exponential input curve into a lin-
ear output curve. Image you have an analog envelope
outputting an exponential curve like the following one:

8,
6,,
3
S 4
~
2| e
05 | ‘ | ST
0 100 200 300 400
time(ms)

The curve starts at 8 Vand reaches 0.5V at about 500 ms

later.

The following droid patch will convert this into a linear

[explin]
input =1I1
output = 02
startvalue = 8V
endvalue = 0.5V

Volts

200
time(ms)

With the values startvalue and endvalue you config-
ure how this translation is scaled. The startvalue se-

an envelope voltage then startvalue would be the start
or maximum voltage of that envelope.

A falling exponential curve will never reach 0 in theory.
So with endvalue you set a value (or voltage) in that you
consider the curve to be low enough to be inaudible. At
that voltage the linear output will exactly be zero. This
voltage can be used to control the slope of the linear out-
put curve. The following example shows how different
values of endvalue affect the output:

Volts

curve: lects the voltage where the exponential input curve and

the linear output curve should be the same. If the input is

Input Type Default Description

input AAN 0.0 Patch an exponential envelope output or a similar signal here. This value must be positive or otherwise it will be set to
0.0.

startvalue AL~ 1.0 The assumed maximum value of the input signal (the start voltage from where it decays in an exponential way.

endvalue /\/\/\ 0.01 The value at which it is assumed to be zero (at which the linear output will be set to zero. This value must be positive.
Itis forced to be >=0.001.

mix ol D4 1.0 Sets the mix between the “dry” and “wet” signal: At 0.0 the output is the same as the input. At 1.0 the output is the
linear curve. At a value in between it is some average. You are even allowed to used values > 1.0. A value of 2.0 will
overcompensate and bend the curve beyond linearity into a curve some modularists would call logarithmic.

DROID manual for blue-2

123

Table of contents at page 2

Output

Type

Description

output

Here comes the resulting linear output

One explin circuit needs 68 bytes of RAM.

DROID manual for blue-2

124

Table of contents at page 2

11.20

This circuit is very similar to motorfader (see page 199)
but controls up to 16 faders at once. It’s purpose is to
reduce the number of motorfader circuits in situations
where you control banks or arrays of parameters in a
similar way. It does not add any extra functionality to
motorfader.

That being said, it is easiest to just show the differences
to a single motorfader circuit. And these are:

- Instead of fader you set firstfader to specify
which faders you want to control. The number of
faders does not need to be set since it corresponds
to the number of output jacks you use.

faderbank - Create multiple virtual faders in M4 controller

+ Instead of output you have outputl, output2 and
so on. This determines the number of faders that
are controlled by this circuit.

- The parameters notches and ledcolor are com-
mon for all controlled faders. They are identical as
those in motorfader.

- The parameters ledvaluel, ledvalue2, ... can set
the brightness of the individual LEDs below the
faders.

+ Because of memory limitations you only have 6
presets (motorfader has 8).

Here is an example of a fader bank of the three faders 3,
4 and 5 (spreading over two M4s). We use a pot to se-

lect one of six presets (from 0 to 5). Turning the pot will
immediately switch the preset (and the faders will move
accordingly). And the CVs will be sent to outputs 01, 02
and 03:

[p2b8]

[m4]

[faderbank]
preset = P1.1 * 6
outputl = 01
output2 = 02
output3 = 03

DROID manual for blue-2

Input Type Default Description

firstfader 10203 1 First M4 fader of the virtual fader bank (starting with 1).

notches 10203 Number of artifical notches. 0 disables the notches. 1 creates a pitch bend wheel. 2 creates a binary switch with the
output values 0 and 1. Higher number create that number of notches. E.g. 8 creates eight notches and output will
output one of the value 0, 1, ... 8. The maximum allowed number is 25.

startvalue VAT If you use thisinput, the virtual faders will start with their value when you start your DROID. Also it will disable loading
the virtual fader state from the SD card.

reset _f_ A trigger to this input resets all virtual faders to the value 0.0 or to resetvalue, if that is used.

resetvalue AL~ Value the fader is reset to at a trigger at reset.

ledcolor /\/\/\ When you use this input, it will set the color of the LED below the faders, when the circuit is selected. If the LED is off,
this setting has now impact.

ledvaluel ... ledvaluel6 AAN When you use this input, it will override the brightness of the LEDs below the faders, but just when this circuit is

selected.

125

Table of contents at page 2

Input Type Default Description

select _ The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset 10203 This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 6 presets,
so this number ranges from 0 to 5.

loadpreset i A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset _f_ A trigger here saves a preset.

Output Type Description

outputl ... outputlé AAN Outputs the current value if the virtual motor faders that these outputs.

buttonl ... buttonl6 _— Outputs the current value of the touch buttons of the faders to these output which this circuit is selected.

One faderbank circuit needs 960 bytes of RAM.

DROID manual for blue-2

126

Table of contents at page 2

11.21

This circuit is a clever way of controlling a four by four
matrix of parameters, which allows you to select either a
row or a column.

As an example let’s think of a bank of four envelope gen-
erators. Each of them has the settings attack, decay, sus-
tain and release (ADSR). That nicely forms a 4x4 matrix:

)) =) @)
) €< &) ()
@)) &) @)
CISISAC

The fadermatrix has 16 outputs that map to these ma-
trix positions:

DROID manual for blue-2

fadermatrix - Matrix of up to 4x4 virtual motor faders

‘ ‘ ‘ W

Now when you design a patch for controlling these 16
parameters with 4 motor faders you basically have the
choice of selecting rows or columns! One way would be
to always select one of the envelopes to be diplayed and
edited on your faders, for example the second one:

)) &) @)
- (- 66
)) &) @)
SISISID

An alternative would be to have control over all decay

127

parameters of the four envelopes - in order to shape for
synthvoices at the same time without switching between
those:

Select

HOO®G
SRR RO

HO®O® G
OO

With faderbank you would have to decide for one of the
two options. But with fadermatrixyou can have both at
the same time.

With the rowcolumn input you can select each column
and each row as follows:

Table of contents at page 2

If you create a buttongroup with eight buttons and patch
the output to the rowcolumn input, you have access to
all four rows and columns. The nice thing about the
buttongroup is that it automatically outputs the values
from O to 7. Here is an example:

[p2b8]

[m4]

[buttongroup]
buttonl = Bl1.1
button2 = B1.3
button3 = B1.5
buttond = B1.7
button5 = B1.2
button6 = Bl.4
button7 = B1.6
button8 = B1.8
ledl = L1.1
led2 = L1.3
led3 = L1.5
led4 = L1.7
led5 = L1.2

DROID manual for blue-2

led6 = L1.4
led7 = L1.6
led8 = L1.8

output = _ROWCOLUMN

Now we add a fadermatrix. We send all 16 outputstoin-
terncal patch cables to be picked up later by four contour
circuits:

[fadermatrix]

rowcolumn = _ROWCOLUMN
outputll = _ATTACK_1
outputl2 = _DECAY_1
outputl3 = _SUSTAIN_1
outputld4 = _RELEASE_1
output2l = _ATTACK_2
output22 = _DECAY_2
output23 = _SUSTAIN_2
output24 = _RELEASE_2
output3l = _ATTACK_ 3
output32 = DECAY_3
output33 = _SUSTAIN_3
output34 = _RELEASE_3
output4l = _ATTACK 4
output42 = _DECAY_4
output43 = _SUSTAIN_4
output44 = RELEASE_4

And here is the example for the first contour (the other
three are similar):

[contour]
gate = Il
attack = _ATTACK_1
decay = _DECAY_1
sustain = _SUSTAIN_1
release = _RELEASE_1
output = 01

128

If you don’t want to waste 8 buttons for just switching,
you can also use a pot and scale it to the range of 0... 7:

rowcolumn = P1.1 * 7

And of course the rotary switch of an S10 would also be a
perfect match, since it outputs exactly the number from
Oto7.

Notches

As discussed in motorfader (see page 199), faders can
set to have artifical notches. Also in the fader matrix you
can set notches. Here the idea is that every parameter in
the same column of the matrix has the same number of
notches. Example:

notches3 = 8

This sets all four parameters in column 3 to have
eight notches. This affects the four outputs outputl3,
output23, output33 and output43 so that they get
notches when selected and also change their output be-
haviour to outputting one of the values 0, 1, 2.... 7.

As you can see the matrix always assumes that you edit
four similar things with four parameters each. Every row
of the matrix is one such thing. Every column is one pa-
rameter.

Smaller matrices

You also can create smaller matrices, for example 3x.
Simply omit the outputs outputl4, 24, 34, 44, 41, 42 and
43 in that case. Also 2x2 is possible.

Table of contents at page 2

Because we always need to be able to swap rows and Larger matrices circuits. Here you need some extra logic. At any time ex-

columns, those number always have to be identical. So actly two of the circuits must be selected. Use the select
you cannot create a 3x4 matrix, for example. If you have eight faders, you can create even larger ma- inputs in combination with rowcolumn in order to set this
trices. A 8 x8 matrix can be created by four fadermatrix up (left as an excercise) ;-)
Input Type Default Description
firstfader 10203 1 First M4 fader of the virtual fader matrix (starting with 1).
rowcolumn 10203 0 Currently selected row or column as follows:

0 | Control output11, output12, output13 and output14

1 | Control output21, output22, output23 and output24

2 | Control output31, output32, output33 and output34

3 | Control output41, output42, output43 and output44

4 | Control output11, output21, output31and output41

5 | Control output12, output22, output32 and output42

6 | Control output13, output23, output33 and output43

7 | Control output14, output24, output34 and output44

notchesl ... notches4 To203 0 Number of artifical notches in the respective column. For example notches2 controls the notches of output12,
output22, output32 and output42.

0 disables the notches

1 creates a pitch bend wheel

2 creates a binary switch

3 creates a switch with four positions

8 creates eight notches

25 | creates 25 notches (the maximum)

Enabling notches also changes the output value. When you have two or more notches, the output values become
discrete. For example with four notches the output will be 0, 1, 2 or 3.

DROID manual for blue-2 129 Table of contents at page 2

Input Type Default Description

ledvaluell ... ledvaluel4 /\/\/\ With these inputs you can address the LEDs below the virtual faders of outputll ... outputl4. As opposed to using
direction (e.g. L1.1), these inputs will only affect the LED if the according output is selected.

ledvalue2l ... ledvalue24 AAN With these inputs you can address the LEDs below the virtual faders of output21 ... output24. As opposed to using
direction (e.g. L1.2), these inputs will only affect the LED if the according output is selected.

ledvalue3l ... ledvalue34 /\/\/\ With these inputs you can address the LEDs below the virtual faders of output31 ... output34. As opposed to using
direction (e.g. L3.2), these inputs will only affect the LED if the according output is selected.

ledvalue4l ... ledvalued4 AAN With these inputs you can address the LEDs below the virtual faders of output4l ... output44. As opposed to using
direction (e.g. L4.2), these inputs will only affect the LED if the according output is selected.

ledcolorl ... ledcolor4 AL~ Sets the color of the LEDs below the faders if ledvalueXY is used. There are just four inputs since every column of
outputs has the same LED color (in order to identify them). The color works as with the R registers for the LEDs on the
master module.

select _— The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset 10203 This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 6 presets,
so this number ranges from 0 to 5.

loadpreset _f_ A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset _f_ A trigger here saves a preset.

Output Type Description

outputll ... outputls /\/\/\ Outputs for the CV values of the first row of parmeter.

output2l ... output24 AAN Outputs for the CV values of the second row of parmeter.

output3l ... output34 AAN Outputs for the CV values of the third row of parmeter.

outputd4l ... outputds ALAP Outputs for the CV values of the fourth row of parmeter.

DROID manual for blue-2

130 Table of contents at page 2

Output

Description

buttonll ...
button2l ...
button3l ...
button4l ...

buttonl4
button24
button34
button44

Give access to the state of the touch button below the faders when the respective output in the first row is selected.
Give access to the state of the touch button below the faders when the respective output in the second row is selected.
Give access to the state of the touch button below the faders when the respective output in the third row is selected.

Give access to the state of the touch button below the faders when the respective output in the fourth row is selected.

One fadermatrix circuit needs 996 bytes of RAM.

DROID manual for blue-2

131 Table of contents at page 2

11.22 firefacecontrol - Control a RME Fireface interface (experimental)

This experimental circuit allows you to control the most terface. It's also a perfect match for the M4 motor fader
import volumes and mixes of an RME Fireface audio in- units. You need an X7 in order to use this circuit.

Input Type Default Description

outputlevell ... ol)i

outputlevell6

mainoutput T0203 1

phonesoutputl, 10203

phonesoutput2

outputmixlinl ... Y

outputmixlinlé

outputmix2inl ... DY

outputmix2inl6

outputmix3inl ... o s

outputmix3inle

outputmix4inl ... Y

outputmix4inl6

outputmix5inl ... o s

outputmix5inl6

outputmixjinl ... Y

outputmixjinle

outputmix7inl ... o s

outputmix7inle

outputmix8inl ... ol Y

outputmix8inl6

outputmix9inl ... of s

outputmix9inlé

outputmix10inl ... ol)

outputmix10inl6

DROID manual for blue-2 132 Table of contents at page 2

Input Type Default Description

outputmixllinl ... Y

outputmix1llinl6

outputmix12inl ... 05\1

outputmix12inl6

outputmix13inl ... ol D4

outputmix13inl6

outputmix14inl ... ol i

outputmix14inl6

outputmix1l5inl ... ol D4

outputmix15inl6

outputmix16inl ... ol i

outputmix16inl6

postfaderl ... _—

postfaderl6

panl ... panl6 05\1

unmutel ... unmutel6 o s

update _f_

select i The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.

E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

One firefacecontrol circuit needs 4340 bytes of RAM.

DROID manual for blue-2

133 Table of contents at page 2

11.23

This circuit can keep an incoming CV within defined
bounds, but not by limiting to these bounds, but by fold-
ing itin case it exceeds these bounds.

The main application is keeping the pitch of a voice within
a certain range by octaving it up and down when neces-
sary. Octaving keeps the actual note value. Here is an
example for that application:

[fold]
input = I1
output = 01

minimum = 1.2V
maximum = 2.5V

If the input value at I1 is going below 1.2V, 1V will be
added over and over until the output voltage is at least
1.2 V. So the upper example will convert as follows:

- 0.7V—=17V
- 20V—=20V
- -43V—=17V
4.4V — 2.4V

If you apply that to a bass voice, you make sure that it
never goes to low or too high, which s helpful if that voice
is the result of a combination of sequences, random num-
bers, transpositions and other funny generative ideas.

Note: If you do not specify minimum or maximum, no fold-
ing will take place at that boundary. If you specify neither
of them, this circuit is completely useless.

DROID manual for blue-2

fold - CV folder - keep (pitch) CV within certain bounds

Anomalies

Two anomalies can happen if the parameters are a bit
“crazy”. This first one happens, when the space between
minimum and maximum is less than one foldby. Consider
the following example:

[fold]
input = I1
output = 01
foldby = 1V

minimum = 1.1V
maximum = 1.3V

Now if the input voltage is e.g. 1.0V, it will be folded up
to 2.0 V, which is then above the maximum range. But
it will stay there, since there is no way to fold it into the
range anyway.

The second anomaly is if minimum is greater than
maximum. Look:

[fold]
input = Il
output = 01
foldby = 1V

minimum = 2.5V
maximum = 1.5V

Here any voltage below 2.5 V will be folded up until it is
above that value. so 2.4 V will be folded to 3.4 V. Well,
you could also argue that because 2.4V is also above the
maximum value it should get folded down instead. While
that is true, fold behaves asymmetrical here and gives
folding up the precedence.

But why would you set such strange parameters? Well,

134

because they can be CVs of course. Try the following
patch and send the output 01 to the pitch input of a voice:

[p2b8]
[p2b8]

[lfo]
hz = 2 * P1.1
triangle = _CV

[lfo]
hz = 2 * P1.2
triangle = _MIN

[lfo]
hz = 2 * P2.1
triangle = _MAX

[lfo]
hz = 2 * P2.2
triangle = _FOLDBY

level = 2V
[fold]

input = _CV

minimum = _MIN

maximum = _MAX

foldby = _FOLDBY

output = 01
[lfo]

rate = 01 * 0.2

hz = 110

output = 02

Here all four inputs are from slowly running LFOs and
funny things happen. Play with the four pots and you will
get all sorts of very interesting random patterns.

Table of contents at page 2

Input Type Default Description

input VAT 0.0 Input CV to be folded.

foldby AAN 0.1 Amount to be added or substracted from the input CV if it is not within the allowed range. This CV must be positive.
If it is negative or zero, no folding will be done.

minimum AL~ = Lower bound of the allowed range. If unpatched, no lower bound will be applied.

maximum /\/\/\ = Upper bound of the allowed range. If unpatched, no upper bound will be applied.

Output Type Description

output AL Folded output voltage

One fold circuit needs 68 bytes of RAM.

DROID manual for blue-2

135 Table of contents at page 2

11.24

This circuit has been superseded by the new cir-
cuit button (see page 86). button can do all
fourstatebutton can do and much more. So
fourstatebutton will be removed soon.

This circuit converts one of the push buttons of your con-
trollers into a button that switches through up to four dif-
ferent states. This is very similar to togglebutton but
that supports just two states.

The LED will be off in state 1, 100% bright in state 4 and
somewhere in between in the other two states.

The use case is to have a way to manually switch through
three or four options. The following example implements
anoctave switch foraVCO. The button steps you through
the sequence0 —1—2 — 3 — Ooctaves. The pitchis be-

fourstatebutton - Button switching through 4 states (OBSOLETE)

ing read from I1and outputagainat 01 - possibly shifted
by up to 3 octaves (3 V).

[fourstatebutton]
button = Bl.1
led = L1.1
valuel = I1 + OV
value2 = I1 + 1V
value3 = Il + 2V
value4 = I1 + 3V
output = 01

Of course the values need not be fixed values. The next
examples shows you a DROID patch where the button is
used to cycle through four different wave forms of an LFO
and send that to output 01:

[1fo]
hz =2
square = _Wl
triangle = _W2
sawtooth = _W3
sine = _W4

[fourstatebutton]
button = Bl.1
led = L1.1
valuel = Wl
value2 = _W2
value3 = _W3
valued = W4
output = 01

Input Type Default Description

button i The button.

reset _f_ A positive trigger here will reset the button to the first state.

valuel ... valued AP The values that output should get when the four various states are active.

startvalue 10203 By setting this to 0, 1, 2 or 3 you set the initial state of the button when the DROID is powered up to state 1, 2, 3 or 4.
It also disabled the automatic saving of the button’s state in the DROID’s internal flash memory.

Output Type Description

output AAN Depending on the current state of the button here the value of inputl, input2, input3 or input4 will be copied.

led ol)4 The LED in the button

One fourstatebutton circuit needs 120 bytes of RAM.

DROID manual for blue-2

136

Table of contents at page 2

11.25 1fo - Low frequency oscillator (LFO)

A flexible low frequency oscillator with seven differ-
ent waveforms, phase modulation, flexible sync mech-
anisms, randomization, wave form morphing and other

interesting features.

Please note also that this LFO is not intended to be used
at audio rate. It can probably operate until roughly 1000-
1500 Hz, but will sound ugly, distorted and with many
digital artefacts - especially the waveforms with steep
edges like square, ramp and sawtooth. If that's exactly
what you intend, then maybe you will have fun anyway.

Waveforms

Here is the simplest possible patch. In this example the
frequency is specified in Hertz (cycles per seconds) and
the triangle output is routed directly to 01:

[lfo]
hz =4
triangle = 01

The resulting output looks like this:

10

Volts
ot

0 0.2 0.4 0.6 0.8 1

time(sec)

DROID manual for blue-2

This is how the sawtooth output looks like:

[1fo]

hz =4

sawtooth = 01

10
2
3 5
>

0

0 0.2 0.4 0.6 0.8 1

time(sec)

The ramp is similar but falling instead of rising:

10

Volts
at

0
0 0.2 0.4 0.6 0.8 1

tume(sec)

The waveforms sine and cosine are similar but are one
quarter cycle (90°) apart:

10

2

T 5
~

0!
0 0.2 0.4 0.6 0.8 1
time(sec)
137

paraboloid is very similar to sine, but is constructed
based on quadratic equations (which is faster):

10
3
< 5
~
0!
0 0.2 0.4 0.6 0.8 1
time(sec)
Maybe the simplest waveform is square:
10
2
T 5
o
0
0 0.2 0.4 0.6 0.8 1

time(sec)

Bipolar output, Level and Offset

Please note that the LFO outputs just positive voltage
ranges until you set bipolar = on. That extends the
waveform to negative voltages (while doubling the peak-

to-peak voltage):

[1fo]
hz =4
bipolar = on
triangle = 01

Table of contents at page 2

Volts
(@]

L
T >

-10 :

time(sec)

The inputs level and offset can be used to control the
voltage range of the outputs - which is here for your con-
venience and avoids the need for additional circuits for
doing this. The following example outputs a sine wave at
5Hzto O4thatis gently oscillating between2Vand 3.5V:

[1fol
hz
level 1.5V
offset 2V
sine = 04

mnn
(6}

Y

0 . . .
0 0.2 0.4 0.6 0.8 1

time(sec)

DROID manual for blue-2

0 02 04 06 08 1

Frequency control

The frequency of the LFO can be controlled in various
ways. In the upper examples we used the input hz. Here
you specify the frequency of the LFO directly in Hz. This
is ideal when you want to set a fixed frequency with a
discrete number, rather than a control voltage. Here is a
rectangle LFO running at 1.5 cycles per second (90 BPM):

[lfo]
hz =1.5
rectangle = 03

A more eurorack-like way is using the rate input, which
worksona 1V/octave scheme. One “octave” here means
that the frequency doubles. Here is an example for creat-
ing a triangle LFO running at 4 Hz, since 2 V doubles the
base frequency of 1Hz two times (instead of 2V you could
also write 0.2):

[1fo]
rate = 2V
bipolar = on
triangle = 01

The third way is to use tap tempo by sending a steady
clock into taptempo. The LFO than mimics the speed of
that input clock. This can even be combined with rate:
If you use both, then first taptempo is being used to set
the speed and then rate is used for altering that speed.
So sending -1V into rate will create an LFO running at
half clock speed (since -1V pitches down the LFO by one
octave).

[lfo]
taptempo = Gl # steady clock here
rate = -1V # run at half clock speed
sawtooth = 02
138

Randomization

Randomization is an experimental new feature that com-
bines random voltages with an LFO. If you turn this pa-
rameter up, then for each “hill” of the output waveform
has a different height. The parameter randomize con-
trols how strong that effect is. With 0.0 randomization
is turned off. At 1.0 it is at its strongest and the random
level of each hill is in the range 0.0 ... 1.0.

Here is an example of a randomized sine wave:

[1fo]
hz 0.5
randomize = 0.8
sine =01

The original wave if printed and the and the random-
ized wave at output 01 is magenta:

10

Volts
(@)

o 1 2 3 4 5 6
time(sec)

Please note: If you turnbipolar on, thena “hill” is consid-
ered to be something above or below the zero line. That
means that now the sine wave has twice as much hills and
the randomization works different. Here is an example
patch:

[1fo]
hz
randomize
sine
bipolar

1]
o Ul

]
= OO o
= .

Table of contents at page 2

And this is how the output looks like:

10

Volts
(e}

o 1 2 3 4 5 6
time(sec)

Note: Since not all waveform have there “hills” at the
same place and the start and end of a hill might even
be affected by skew or pulsewidth, each waveform out-
put has its own independent randomization. Therefore
cosineis not the phase shifted output of sine anymore,
if you use randomization.

Wave form selection and morphing

As an alternative to the seven indiviual waveform out-
puts there is a common output simply called output. The
waveform can be selected with the input waveform and
defaults to 0, which means square wave. So for a simple
clock you can write:

[1fol]
hz = 2
output = G1

A triangle wave is selected with the code 2:

[1fol
hz = 2

DROID manual for blue-2

output = G1
waveform = 2

Here is the complete list of available waveforms:

0 | square

1 | sawtooth
2 | triangle

3 | ramp

4 | paraboloid
5 | sine

6 | cosine

It is allowed to use non-integer values, like 0.5. This
will create a mixture between two adjacent waveforms
- while respecting the ratio. For example 2.1 will select
90% triangle and 10% ramp. That way you can smoothly
morph through the available waveforms. Here is an ex-
ample. Let’s start with waveform = 0.0, which gives a
plain square wave:

[1fo]
hz = 4
output = 01

waveform = 0.0

And this is what it looks like:

10
2
S 57
~
0
0 1 .2 3 4
time(sec)
139

At 1.0 we get a saw tooth:

[1fo]
hz = 4
output = 01

waveform = 1.0

10

Volts
ot

time(sec)

And in between - at 0.5 - we get some mixture:

[1fo]
hz = 4
output = 01

waveform = 0.5

10

Volts
ot

time(sec)

Table of contents at page 2

Input Type Default Description

rate VAT 0.0 Frequency control: The default frequency of the LFO is 1 Hz (one cycle per second or 60 BPM if you like). Each volt
doubles the frequency. Soaninput of 1V (a number of 0.1) speeds up the LFO to 2 Hz (120 BPM), 2V (0.2) create 4 Hz
(240 BPM) and so on. On the other hand negative voltages reduce the speed, so -1V (-0.1) will give 0.5 Hz (30 BPM)
and so on.

taptempo I Feed a steady clock here and the LFO will run at the speed of that clock - albeit optionally modified by rate.

hz AAN 1.0 Set the frequency in Hz directly by setting a number here. Note: you cannot use hz at that same time as taptempo.
But both can be combined with rate.

level AL~ 1.0 The maximum positive output level of the LFO. The default of 1.0 means a swing between 0V and 10 V - unless you
enable bipolar, in which case it moves from -10 Vto 10 V.

randomize ol)4 0.0 Randomization is an experimental new feature that combines random voltages with an LFO. If you turn this parameter
up, then for each hill of the LFO’s waveform output a new random attenuation is being chosen and multiplied with the
current level. The result is an output, where each cycle of the waveform has a different level.

offset AL 0.0 The output of the LFO is shifted by that voltage right before the output. This is the same as adding or mixing a fixed
voltage to the output. Not very fancy, but practical if you want to output a modulation voltage within a certain range.

bipolar _ i 0 If this switch is set to on, then the LFO will output a full swing from -level to +level. When set to of f it will swing
between 0V and +level.

phase ol D4 0.0 Shift the LFOs phase by this value. A value of 0.0 leaves the LFO run in its normal phase. 0.5 will shift bei 180°. And
1.0 will shift by a complete phase of 360°, which is the same as 0.0.

pulsewidth 0(0:5)1 0.5 This sets the pulse width of the square LFO and only affects the output square. It ranges from 0.0 to 1.0. Please note
that a pulse width of exactly 0.0 or 1.0 will make the output stick to the respective lower or upper level.

skew 0(0:5)1 0.5 Modifies the symmetry of the triangle output by shifting the “peak” of the triangle left and right. The default of 0.5
creates a symmetric waveform. Smaller values speed up the rising part of the triangle and create more and more a
ramp like waveform until a skew of 0.0 creates an exact ramp - just the same as the ramp output. A skew of 1.0 create
a sawtooth waveform.

sync _f_ A positive trigger edge at this input will reset the LFO. It will force to restart the waveform at its “beginning”. By using
the input syncphase you can change that behaviour.

syncphase ol D4 0.0 This input changes the behaviour of the sync input. | changes the phase the waveform restarts at when it receives a

DROID manual for blue-2

sync trigger. E.g. by setting this to 0.5 a sync trigger will restart the waveform right at its middle. Thisis aninteresting
feature that cannot be found in analog LFOs since it would be very hard to build in actual circuits.

140 Table of contents at page 2

Input Type Default Description
waveform /\/\/\ 0.0 If you use output - rather than the individual waveform outputs like square, sawand so on - this input selects the Wave
form. Aninteger number from 0 to 6 selects one of the seven available waveforms. Any number in between selects a
mixture of the two neighboring waveforms. That way you can smoothly morph through all the available waveforms.
The codes for the waveforms are:
0 | square
1 | sawtooth
2 | triangle
3 | ramp
4 | paraboloid
5 | sine
6 | cosine
Output Type Description
output AL~ Main output of the LFO.
square /\/\/\ A square waveform - modified by pulsewidth.
sawtooth AAN Outputs a sawtooth waveform - i.e. arising ramp
triangle AAN Outputs a triangle waveform - modified by skew.
ramp AL~ Outputs a falling ramp - like a sawtooth that is mirrored. Note: if the LFO is set to bipolar then this is the negation of
sawtooth. If it is set to unipolar then this is not the case. The waveform will be positive then!
paraboloid AAN An experimental waveform that looks very similar to a sine wave but is derived from a triangle by computing the square
of each waypoint’s distance to level.
sine AL~ A sine waveform.
cosine AL A sine waveform shifted by 90°. This output is for your convenience and avoids needing two LFO circuits in cases

where you want to make quadrature applications. Please note that 180° and 270° can easily be achieved by negating
the outputs sine and cosine at a later stage.

DROID manual for blue-2

141 Table of contents at page 2

One 1fo circuit needs 384 bytes of RAM.

DROID manual for blue-2 142 Table of contents at page 2

11.26 logic - Logic operations utility

Utility circuit for logic operations on gate signals. It can
do operations like AND, OR, NAND, NOR, etc.

Basic operation

In this example we do an and operation. 01 will output 1
(on) if all of I1, I2 and I3 see on (voltage above 1V):

[logic]
inputl = I1
input2 = I2
input3 = I3
and = 01

Here is how to do a logic negate of a signal:

[logic]
input =11
negated = 01

If you do not like the 1V threshold, you can change it:

[logic]
input = I1
negated = 01
threshold = 5V

Doing logic without this circuit

Please note, that many times when you think you need
the logic circuit you can do the same much simpler. Here
isan example, where you use a toggle button to switch on

DROID manual for blue-2

a clock, which is sent to output 01. The idea is to make
an AND combination of the clock signal and the button
state:

[button]
button = Bl.1
led = L1.1
[lfo]
hz =2
square = _LFO
[logic]
inputl = L1.1
input2 = _LFO
and =01

While this works pretty well, hereis a solution that makes
use of the fact, that the multiplication of two gate signals
is in fact a kind of AND combination, since A x B is just
1, if Aand B are 1and 0 otherwise:

[button]
button = B1.1
led = L1.1
[1fo]
hz =2
square = _LFO
[copy]
input = _LFO * L1.1
output = 01

You even can avoid the Copy-circuit if you make use of
the level input of the LFO, since setting the level to 0
disables it:

143

[button]
button
led

[1fo]
hz
square
level

Bl.1
L1.1

_LFO
L1.1

Table of contents at page 2

Another nice solution is to make use of offvalue and
onvalue of the button circuit. offvalue is O per default,
so we just need to define onvalue:

[1fol]
hz =2
square = _LFO
[button]
button = Bl.1
led =L1.1
onvalue = _LFO

If you need to combine two gatesin order to create acom-
mon gate pattern, you can use addition - which is very
similar to a logic OR combination. The following exam-
ple creates two overlayed euclidean rhythms:

[euklid]
length = 16
beats =3
output = _E1
[euklid]
length = 13
beats = 2
output = _E2
[copy]
input = _E1 + E2
output = 01

Note: When both _Eland _E2 are 1at the same time, the
sum is 2, of course. This does not matter, since the out-
put voltage is capped at 10 V (1. 0) anyway.

DROID manual for blue-2

144

Table of contents at page 2

Input Type Default Description

inputl ... input8 _ = 1t . gth input. Note: this input is declared as a _ gate input, but in fact you can use it as a CV input in combi-
nation with various or random values set for the threshold.

threshold AAN 0.1 Input values at, or above this threshold value, are considered high or on. The default is 0.1 which corresponds to an
input voltage of 1V. You can get interesting results when both the inputs are variable CVs (like from LFOs) and this
threshold is being modulated as well.

lowvalue AAN 0.0 Output value that is output for logic low, false or off.

highvalue AAN 1.0 Output value that is output for a logic high, true or on.

countvalue AL~ 0.1 Value added to the count output for each input with a high level

Output Type Description

and /\/\/‘ A logic AND operation on all patched inputs: This output is set to highvalue if all inputs are high (i.e. at least
threshold), else lowvalue

or /\/\/‘ Alogic OR operation on all patched inputs: This output is set to highvalue if at least one of the inputs is high

xor AAN Exclusive OR: This is high, if the number of high inputs is odd! This means that any change in one of the inputs will also
change the output.

nand AL~ Like AND but the outcome is negated.

nor AAN Like OR but the outcome is negated.

negated AAN Logical negate of inputl (which can abbreviated as input). Note: The inputs input2 ... input7 are ignored here.
Another note: If you use inputl anyway, negated always outputs exactly the same as nand and nor. It's just more
convenient to write and easier to understand. Hence a dedicated output for a logic negate.

count 10203 Adds countvalue to this output for each input that is high.

countlow AAN Adds countvalue to this output for each input that is low.

One logic circuit needs 192 bytes of RAM.

DROID manual for blue-2

145 Table of contents at page 2

11.27 math - Math utility circuit

This circuit provides mathematic operations. Some of
these use inputl and input2 - such as sum or product.
Other ones just use inputl (which can be abbreviated as
input) - such as negation or reciprocal.

Example for computing the quotient %:

inputl = 1I1 root =01
input2 = I2
quotient = 01

Note: As long as you do not send a value directly to an
output like 01, the range of the value is not limited by this
circuit. You can generate almost arbitrary small or large
positive and negative numbers. When you send a value

Example for computing the square root of I1:

[math] to an output, it will be truncated into the range -1... +1
[math] input = I1 (which corresonds to -10 V... +10 V).
Input Type Default Description

5

inputl, input2

The two inputs

DROID manual for blue-2

Output Type Description
sum AL~ inputl + input2
difference AL~ inputl — input2
product AAN inputl x input2
quotient /\/\/\ inputl / input2. If input2 is zero, a very large number will be returned, while the correct sign is being kept. This is
mathematically not correct but more useful than any other possible result.
modulo /\/\/\ inputl modulo input2. This needs some explanation: With this operation you can “fold” the value from inputlinto
the range 0 ... input2. For example if input2 is 1V, the output will convert 1.234V t0 0.234V, -2.1V to 0.9 V and
0.5V to 0.5 V. If input2 is zero or negative, the output will be zero.
power AAN inputl to the power of input2. Please note that the power has several cases where it is not defined when either the
base or the exponent is zero or less than zero. In order to be as useful for your music making as possible the math circuit
behaves in the following way:
+ If inputl < 0, input2 is rounded to the nearest integer.
+ If inputl = 0 and input2 < 0, a very large number is output.
average AL~ The average of inputl and input2

146 Table of contents at page 2

Output

Type

Description

maximum
minimum
negation
reciprocal
amount

sine

cosine

square

root

logarithm

round
floor

ceil

$ 353353335

$53

The maximum of inputl and input2

The minimum of inputl and input2

—1inputl

1/ inputl. If inputlis zero, a very large number is being output, while the sign is being kept.
The absolute value of inputl (i.e. —inputlif inputl < 0, else inputl)

The sine of inputlinaway, theinput range of 0.0 ... 1.0 goes exactly through one wave cycle. Or more mathematically
expressed: sin(2m x inputl).

The cosine of inputl in a way, the input range of 0.0 ... 1.0 goes exactly through one wave cycle. Or more mathemat-
ically expressed: cos(2m X inputl).

input1?

v/inputl. Please note that you cannot compute the square root of a negative number. In order to output something
useful anyway, the result will be —/—1inputl, if inputl < 0.

The natural logarithm of inputl: In {ypyt1- Thelogarithmis only defined for positive numbers. mathcircuitbehaves
like this:

- If inputl = 0, a negative very large number is output.
+ If input2 < 0, —In _jppyt1 is output.

The integer number nearest to inputl
The largest integer number that is not greater than inputl

The smallest integer number that is not less than inputl

One math circuit needs 120 bytes of RAM.

DROID manual for blue-2

147 Table of contents at page 2

11.28 matrixmixer - Matrix mixer for CVs

This circuit is a 4x4 matrix mixer with four inputs and
four outputs that is operated by push buttons. Each of
the 16 matrix nodes has a toggle button for adding or re-
moving one specific input to or from one specific output.
The mixing is always done with unity gain. This means
that each output is the sum of all inputs that are enabled
on its path.

The following picture shows a matrix with the four inputs
I1.. I4 and the fouroutputs 0l ..04. Asyou can see the
button 23 mixes input 2 to output 3.

If you have not pushed any buttons yet, the mixer enables
four buttons in a diagonal so that inputs Il is connected
to output 01 and so on:

I1

®

I2

®

I3

®

I4

O

@)

®

)

O
()

As an alternative operation, instead of summing the en-

DROID manual for blue-2

abled signals you can compute the maximum signal. This
is useful when combining envelope signals - e.g. from dif-
ferent rhythmic patterns. Adding envelope signals would
either make them “too loud” or even distort them.

The current state of the sixteen buttons is saved in the
DROID’s internal flash memory.

Of course it is possible to use a smaller part of the matrix,
e.g. just 3x2, simply by not patching the according in-
puts, outputs and buttons. Here is an example of a 3x2
mixer:

148

[matrixmixer]
inputl
input2
input3
outputl
output2
buttonll
buttonl2
button2l
button22
button3l
button32
ledll
ledl2
led21
led22
led31l
led32

I1
I2
I3
01
02

Bl1.
Bl.
B2.
Bl1.
Bl.
B2.
L1.
L1.
L2.
L1.
L1.
L2.

WhrWKFEFNRFRWAWERENER

This matrix looks like this:

Table of contents at page 2

Mixers with more inputs / outputs create a mixer with 8 inputs and 4 outputs by sending the If you want to create a mixer with more than 4 outputs
four outputs of one matrix mixer into the four auxiliary then simply use several mixers and feed the same inputs
The four auxiliary inputs auxinl .. auxin4 can be used to inputs of a second one. to all of them.
create matrix mixers with more than four inputs. You can
Input Type Default Description
inputl ... input4 AL 0.0 The up to four CV inputs that you want to mix
auxinl ... auxin4 AP These auxiliary inputs will be mixed directly into the four outputs outputl.. output4 and are used for cascading several
matrix mixers into one with more than four inputs.
mixmax Y 0.0 If thisis 0.0, normal mixing is done (the enabled inputs CVs will be added). Atavalue of 1.0 instead each outputsis the
maximum of the enabled inputs. Any number in between will create a weighted average between these two values.
startvalue 10203 IS8 If you use this input, persisting the state on the SD card is disabled. Rather the matrix starts with a standard configu-
ration of which buttons are active. This configuration is set by the value of startvalue:
0 | All buttons are cleared.
1 | The buttons on the diagonal are active.
2 | All buttons are set.
When set to 1, inputlis sent to outputl, input2 to output2 and so on.
If you don’t use this jack, the matrix starts for the very first time with the buttons of the diagonal being active and
saves the status to the SD card from then on.
reset N A trigger here resets the matrix to its initial state, which can be configured with startvatlue.
buttonll ... buttonl4 i These four buttons decide, to which of the four outputs inputl is being mixed.
button2l ... button24 _ These four buttons decide, to which of the four outputs input2 is being mixed.
button3l ... button34 _ i These four buttons decide, to which of the four outputs input3 is being mixed.
button4l ... button44 _ T These four buttons decide, to which of the four outputs input4 is being mixed.
select _— The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will

DROID manual for blue-2

process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

149 Table of contents at page 2

Input Type Default Description

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset 10203 This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 16 presets,
so this number ranges from 0 to 15.

loadpreset I A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset _f_ A trigger here saves a preset.

Output Type Description

outputl ... output4 AAN The four outputs

ledll ... ledl4 o s The LEDs in the buttons buttonll..button14

led21 ... led24 Y The LEDs in the buttons button2l ..button24

led3l ... led34 ol i The LEDs in the buttons button31 ..button34

led4l ... led44 ol The LEDs in the buttons button4l ..button44

One matrixmixer circuit needs 596 bytes of RAM.

DROID manual for blue-2

150

Table of contents at page 2

11.29 midifileplayer - MIDI file player

This circuit can read MIDI files from your Micro SD card
and “play” them by creating respective CVs for gate,
pitch, velocity, pitch bend and other outputs, which you
can then route to synth voices in your modular - or do
other crazy stuff with that information.

MIDI files are organized in tracks. Each circuit of this type
can play just one track at a time. If you want to play more
tracks, use more midifileplayer circuitsin parallel.

Just as MIDI streams, MIDI files contain channel informa-
tion for each note and each controller event. These chan-
nels are currently completely ignored. If you think you
can convince me that this is bad and that you have a use-
ful interpretation of the channels within the scope of the
MIDI file player, please let me know.

Some limitations of the current implementation are:

+ Just one track can be played at a time.

+ The maximum length of a track is 6000 bytes.
Longer tracks cannot be loaded. Sorry. But this
is quite long and is enough for approximately 1500
note events. Note: The size of the total file can be
as large as you like.

+ The channel information is ignored.

- Some meta events such as program change, all
notes off, etc. are not yet recognized. Many of
them just make sense in MIDI streams, not in files,
anyway.

Features of the current implementation:

- Up to eight voices in parallel with flexible voice al-
location algorithms

- Support for velocity, pitch bend, mod wheel, and
global volume

+ You canoutput the original MIDI clock from the file.

DROID manual for blue-2

+ You can adjust the tempo continuously.
+ You can use external clocking (ignoring the tempo
of the file).

Getting started

Here is the simplest possible example: Copy your MIDI
file to the SD card and name it midil.mid. And here is
the patch that plays the first track with a single voice:

[midifileplayer]
pitch = 01
gate = 02

Now patch 01 to the 1V/Oct of a synth voice and 02 to its
gate. This voice should then play the notes from the first
track of the file.

The playback starts immediately when the DROID starts.
Per default the track is looped. You can restart the play-
back with the reset input. And the other way round:
you get a trigger at endoftrack when the playback of the
track has finished.

Selecting file and track

You can have more than one MIDI file on your SD card.
The MIDI files on the card must be named midil.mid,
midi2.mid, and so on. Gaps are allowed. You can have
up to 9999 MIDI files that way. The last one would have
the name mid19999.mid. Don’t use leading zeroes! The
file midi0001.mid cannot be played!

151

You can then select one of these files with the file pa-
rameter, so e.g. file = 17 would play midil7.mid. If
you omit that, midil.mid will be played. If no such file is
present on the card, nothing will be played.

A MIDI file can contain several tracks. The track pa-
rameter specifies the number of the track in the file you
want to play. Hereby only the non-empty tracks will be
counted. This is important since many MIDI files have
tracks that just contain meta information and no note
events.

If you omit the track number, the first non-empty track
will be played. If your track number is out of range, the
last track in the file will be selected.

The parameters file and track are - of course - CV con-
trollable. So you can switch between files and tracks by
means of buttons, switches, external CV, you name it.
Whenever the file or track changes, DROID loads the se-
lected track from the SD card into its memory. This is
also the case when the DROID starts. Also a track change
restarts playback.

Note: loading a track from the SD card might take a cou-
ple of milliseconds. During that time DROID won’t run
asusual. All inputs will be ignored and all outputs freeze.
So switching at a high rate might lead to unexpected re-
sults. If you need to have a playback started in perfect
timing, use the reset input as an exact trigger. If you do
not want to use a trigger but rather a play/stop gate, you
can use the speed input for that. Setting the speed to 0
stops playback and 1 starts it immediately.

Table of contents at page 2

Polyphonic tracks

MIDI streams and files consist of note on and note off
events. So there is no length parameter in a note. It just
contains the note number (in semitones) and a velocity.
If the track contains situations where a new note starts
while another one is still on, the track is polyphonic, as
you need more than one synth voice to play correctly.

The MIDI file player allows you to define up to eight voices
for playing notes. Each voice consists of a pitchX and
a gateX output (and an optional velocityX output).
By patching these outputs the player knows how many
voices are available.

If the number of simultaneous notes exceeds the number
of attached voices, some notes have to be cut off or com-
pletely omitted. You can flexibly change the behaviour
in such a situation. See the description of the parameter
dropnotes for details.

Here is an example for playing with up to three voices:

[midifileplayer]
file = 2
track = 1
pitchl = 01
pitch2 = 02
pitch3 = 03
gatel = G1
gate2 = G2
gate3 = G3

Speed and Clocking

A MIDI file contains absolute timing information of when
to exactly play which note. For that purpose every note
event in the file has a relative time stamp, measured in

DROID manual for blue-2

ticks. The player honors this information and plays the
tracks exactly in their original speed... unless... you
change it of course.

To do so you have two options. The first one is the speed
parameter. At1.0you get the original playing speed. 0.5
will play at half the speed and 2.0 at the double speed.
This can be mapped to a pot, of course (here | chose a
range from 0 to 2):

[midifileplayer]
pitch = 01
gate = 02

speed = P1.1 * 2

Turning the pot totally CCW will completely freeze the
playback.

If you need the internal clock of the MIDI playerin order to
synchronize with the rest of your patch, you can get two
clocks running at different resolutions at the two outputs
clockout and midiclock. See their descriptions below
for details.

The second option is clocking the player externally. In
that case the tempo information from the MIDI file is ig-
nored. External clocking allows you to synchronize the
MIDI playback with the rest of your patch, which may
contain additional sequencers and stuff. Patch your ex-
ternal clockinto the clockinput. Each clock will then play

a 16t note’s time equivalent of content:

[midifileplayer]
pitch = 01
gate = 02
clock = G1

Note: this does not mean that the notes are quantized to
16t notes. You still have the complete resolution.

152

Other controls and parameters

MIDI files may contain information about pitch bend, a
global volume (CC 7), the mod wheel (CC 1) and velocity
(per note). These are all available as CV outputs. See the
table of outputs for details. Most other CCs are currently
not available since they are very rarely used in MIDI files.
Future versions of the MIDI file player might give access
to these.

Error handling

When working with files, errors can happen. The MIDI file
might be missing, corrupted, whatever. In order to make
life easier for you, the MIDI file player can show you an
error status at the output error. Write the error to anR
register that is free, that will make one of the LEDs lit up
and show an error color.

The following patch shows the errors at the LED of input
1:

[midifileplayer]
pitch = 01
gate = 02

error = R1

Please see the table of outputs below for the various er-
rors and their color codes.

Table of contents at page 2

Input Type Default Description

file 10203 1 Number of the MIDI file to play. 7 will select midi7.mid.

track 10203 1 Number of the track in the file to play, starting at 1. Empty tracks do not count. Any number smaller than 1 will be
interpreted as one. If the number is too big, the last track in the file is played.

clock o Patch an external clock here and the MIDI file will be played according to that clock. In order to be modular-friendly,
this is not a MIDI clock but one counting the sixteenth, which is typically the step resolution of analog sequencers.
This clock is then internally multiplied in order to create the necessary resolution. Note: The input speed has no effect
when using an external clock.

reset _f_ A trigger here sets the play back position to the start.

loop —4 1 When loop mode is active (set to 1), the track will start over again immediately when it has reached its end. This is the
default. Otherwise playback stops at the end of the track.

end 10203 = If you set this value, it defines the playing end of the track. This is set in quarters as counted from the start. Setting
the end beyond the end of the track will insert some pause.

speed AL~ 1.0 Change the relative speed of the playback with this setting. At 1 the speed is unchanged. 1.5 makes the speed 50%
faster, 0.5 plays at half speed. At 0 the playing is completely frozen. Note: speed is being ignored when using the
input clock.

channel 10203 Only execute / play commands from a certain MIDI channel. There are 16 MIDI channels. It ranges from 1 to 16.

tuningmode i If set to 1, all pitch outputs will go to the CV selected for tuningpitch (which defaults to 2 V), and all gate outputs will
play gates at 120 BPM. This helps getting all attached voices tuned when working with many voices.

tuningpitch) é%; This pitch CV will be output while the tuning mode is active.

transpose D é‘ft Transposes all output pitches by this value by adding the value. So in order to transpose one octave down, set this

input to -1V or -0.1. Changes in the transposition are immediately reflected, even for currently already active notes.

holdvelocity — If thisis set to 1, the velocity output for a voice will not be affected by note off events. It's just altered at the beginning
of new notes. The velocity is kept after the note ends. This way during the release phase of an envelope triggered by
the gate, the original velocity still lasts on. In most cases the note off velocity is set to 0, which would immediately cut
off the release phase when the velocity is patched into a VCA.

pitchbendrange d % Sets the value to the desired maximum that pitchbend should output, and likewise it's negative counterpart at its

minimum value. At the middle position it always outputs 0. This defaults to % V, which corresponds to one whole
tone. Note: setting this to a negative value is allowed and will invert pitch bend.

bendpitch N When set to 1 (which is the default), the pitch bend will directly be applied to all output pitches. Alternatively you can
set it to 0 and use the output pitchbend, for using it elsewhere.

DROID manual for blue-2 153 Table of contents at page 2

Input Type Default Description

roundrobin —4 Normally when looking for a free output for playing the next note, this circuit will start from outputlinits search. This
way, if there are not more notes than outputs at any time, the notes played first will always be played at the lowest
numbered outputs. This leads to a deterministic behaviour when it comes to playing things like chords. The same
voice will always be used for the first note in the stream of MIDI events.

When you switch roundrobin to 1, this changes. Now the outputs are scanned in a round-robin fashion, like in a
rotating switch. That way every output has the same chance to get a new note. Here it can even make sense to define
multiple voices even if the track is monophonic. When you use envelopes with longer release times, you can transform
such a melody into chords with simultaneous notes.

Note: When all outputs are currently used by a note, roundrobin has no influence. Here voiceallocation selects
which of the notes will be dropped.

voiceallocation 10203 When the MIDI stream, at any given time, needs to play more notes than you have voices assigned, normally the
“oldest” notes would be cancelled. This behaviour can be configured here by setting voiceallocation to one of the
following values:

0 | The oldest note will be cancelled (default)

1 | The new note will not be played and simply be omitted

2 | The lowest note will be cancelled

3 | The highest note will be cancelled

notegap AL~ When your MIDI devices plays a note so “long” that it lasts exactly until the next note begins - or if due to a lack of
used pitch outputs one currently played note has to be replaced with a new one, the gate output will have no time to
go low for a sufficient time between the two notes. In effect it won’t trigger any envelope for the new note but will
play “legato”.

If you don't like this, you can use notegap. This input specifies a number of milliseconds that the gate will be forced
down before the new note begins. This has the drawback of introducing some latency, of course! So | suggest that you
start with notegap = 1 and then check out if your envelope is fast enough to trigger. If not, increase the value.

If you are using DROID’s own contour circuit or trigger something else internally in your patch, you can use notegap
= 0.1. Thatis sufficient and introduces barely any latency. A value of 0.0 keeps the default of the legato mode.

Note: the notegap parameter does not affect the trigger outputs.

ccnumberl ... ccnumber4 10203 You can listen to up to four CCs (control changes). For example if you are interested in the current value of CC#17, set
ccnumberl = 17 and use the output ccl for getting the value of CC 17.

DROID manual for blue-2 154 Table of contents at page 2

Input Type Default Description
lowestnote 10203 With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting Lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.
highestnote 10203 Sets an upper limit to the note being played, similar to Llowestnote. The “Notegates” are not being affected by this
bound.
notel ... notel6 10203 Selects up to 16 individual notes for which you can get a dedicated gate signal. Per default these values are set to
0 for notel (meaning C-2), 1 for note2 (meaning C§-2) and so on. For each of these notes you get a corresponding
gate output (see notegatel, notegate2, etc.). These gates are high as long as the selected notes are being hold.
One application is to use just one midifileplayer or midiin circuit for sequencing up to 16 drum voices. Another
application is to use a MIDI keyboard or controller as a button expander - just like a P2B8 or B32.
Output Type Description
clockout I Outputs a steady clock of 1 tick per 16t note.
midiclock I Outputs a steady MIDI clock, i.e. 24 ticks per quarter note of the tune. This is 6 times faster than clock.
endoftrack _f_ Outputs a trigger when the end of the track is reached.
error /\/\/‘ This output will be set to a value other than zero in case of an error while loading and parsing the MIDI file. This is
intended for wiring it to one of the R registers. Here different errors will be displayed as different colors. Here is the
list of all possible values of error:
0 black - Everything is fine.
-1 white - The SD card or MIDI file is missing.
1 magenta - The file is corrupted, garbled or no MIDI file.
0.75 | orange - The file does not contain any non-empty track.
0.25 | cyan - the track is too long (max 6000 bytes are allowed).
pitchl ... pitch8 (% Pitch outputs. Since MIDI tracks can be polyphonic - i.e. play several notes at the same time - you can assign up to
eight outputs here. The notes will be distributed to the defined outputs according to the settings roundrobin and
voiceallocation.
velocityl ... velocity8 ol D1 For each voice there is an optional velocity output, which translates the MIDI velocity into values from 0 to 1.

DROID manual for blue-2

155 Table of contents at page 2

Output Type Description

pressurel ... pressure8 wll) MIDI provides two different messages for sending “after-touch” information, i.e. information about how strong a
key is pressed down after the initial hit. Some keyboards just have one pressure sensor in total and send the current
maximum pressure information of all keys in one message (“channel pressure”). Others have one pressure sensor per
key and send “polyphonic key pressure” messages. This circuit maps both to a pressure output per note that is being
played. So if your keyboard (or sequencer or DAW or whatever) sends polyphonic key pressure events and you use
multiple pitchX outputs, wire the individual pressureX outputs to wherever you like. Otherwise you can simply use
pressurel for all notes (which can be abbreviated with pressure), since it is the same for all note outputs anyway.
pressure outputs a value from 0 to 1.

gatel ... gate8 N Gate outputs for the up to eight simultaneous note outputs.

triggerl ... triggers8 I Trigger outputs for the up to eight simultaneous note outputs. The difference to the gate outputs is, that these just
send a short trigger of 5 ms at the start of the note. This can be interesting in situations where the notes have no gaps
in between so that gate will never go low.

ccl ... cca ol D4 Outputs the current value of the four CC number that are defined with the inputs ccnumberl ... ccnumber4. CCs have
arange from 0 to 127, but this is converted in the range 0.0 .. 1.0 here, in order to make it easier to use that as a CV.
If you need the raw number, multiply the output with 127. Note: as long as no CC message with the selected number
happened, this output will be set to 0.

notegatel ... notegatel6 N Outputs a high gate whenever the corresponding note (which is selected by notel through notel6) is currently being
played.

pitchbend /\/\/‘ Outputs the current pitch bend value as a bipolar voltage. The range can be set with pitchbendrange.

programchange I Sends a trigger whenever a MIDI program change message arrives. Just before sending the trigger sets program to the

new program number (something from 0 to 127). Note: This trigger is also being output when the program change
messages sends the same program number as previously, i.e. if there is no actual change.

program 10203 The number of the last program change. This starts at 0.

bank 10203 Outputs the number of the currently selected bank - from 0 to 16384. MIDI defines the MSB of the bank to be changed
with CC#0 and the LSB with CC#32. That means if you just use CC#0, you will only be able to select the banks 0, 128,
256, and so on. As long as no bank select CC has been received, bank will output 0.

modwheel ol 1 Output the current state of the mod wheel level - within the range from 0.0 to 1.0. The mod wheel is changed by MIDI
control change 1.

volume ol)i Outputs the current global volume as set by MIDI control change 7.

portamento _— This output gives you access to the current state of the “portamento pedal” (MIDI CC 65). You can use it to enable an

external slew circuit for creating portamento effects.

DROID manual for blue-2 156 Table of contents at page 2

Output Type Description

soft _ This output gives you access to the current state of the “soft pedal” (MIDI CC 67). It is 1 while the pedal is hold and 0
otherwise.

One midifileplayer circuit needs 6984 bytes of RAM.

DROID manual for blue-2 157 Table of contents at page 2

11.30 midiin - MIDI to CV converter

This circuit converts incoming MIDI data into CV, gate
and trigger signals. It needs the X7 expander in order to
work (see page 39 for general information about the X7).

There are various useful applications of this circuit, some
of which are:

- Attaching an external keyboard to your modular.

- Using an external hardware sequencer for playing
melodies and beats in your modular.

+ Use an external MIDI controller to influence your
DROID patch.

- Use your phone or tablet as a MIDI controller to in-
fluence your patch (via USB).

+ Connect two DROIDs (both with X7) and exchange
real time data.

The X7 MIDI implementation is very comprehensive and
gives you convenient access to most of the MIDI features.
Please refer to the table of inputs and outputs for details.
Here are just some very basic examples:

Basic operation

The basic operation is quite simple. Per default midiin
listens on the 3.5 mm TRS jack of the X7. The follow-
ing example controls one synth voice by converting MIDI
note on/ note off messages into CV / gate signals:

[midiin]
pitch = 01
gate = 02

It's really as simple as that! Connect your MIDI key-
board or sequencer with the X7 MIDI input, wire 01 to the

DROID manual for blue-2

1V/Oct input of a synth voice and 02 to its gate input and
enjoy your music!

When you add usb = 1you canget a MIDI stream via the
USB-C port on the X7 instead of the TRS jack.

Polyphonic patches

Do you have more than one synth voice to control? Then
you can play several notes at the same time by using up
toeight pitch and gate outputs. Hereis an example with
three voices, which uses a G8 expander for the gates:

[midiin]
pitchl = 01
pitch2 = 02
pitch3 = 03
gatel = G1
gate2 = G2
gate3 = G3

Here the parameters roundrobin and voiceallocation
are interesting. roundrobin influences which of the
three outputs should be used for the next note, in situa-
tions where more than one is free. voiceallocation, in
contrast, controls what should happen if the MIDI stream
wants to play more simultaneous notes than you have
setup in midiin. The default is to cancel the oldest cur-
rently playing note, but you can change that behaviourin
various ways.

158

Sequencing drums and triggers

When you use a MIDI sequencer for triggering drums, of-
ten each drum voice (bass drum, snare drum, etc.) is
triggered by a certain note, for example C-2 for the bass
drum, C§-2 for the snare drum and so on. In this case it
is more convenient to use the notegate outputs. Check
the following example:

[midiin]
notel = 24
note2 = 25

notegatel = 01
notegate2 = 02

Now whenever note 24 is played by the sequencer,
notegatel will trigger. The note numbers range from 0
to 127, with 0 being the lowest note and 127 the high-
est. The MIDI standard specifies that note O is usually C-2
(two octaves below CO). So note 24 would be CO and note
25 CH0.

Another application of note gates is to use keys on a MIDI
keyboard or touch pads of a MIDI controller as buttons in
your DROID patch! In fact the button circuit can be wired
to such note gates. It’s just that you don’t have a corre-
sponding LED. But you can use the DBROID’s own LEDs for
that.

The following example uses the note 24 in order to toggle
a (virtual) button and use the first input LED of the mas-
ter as LED for the button:

[midiin]
notel = 24
notegatel = _NOTE24

Table of contents at page 2

[button]
button = _NOTE24
led = R1
output = _SOMETHING # ...

Please note: midiout has similar notel ... note8 inputs.
But there the pitches are specified in 1V/Oct. So don’t mix
them up!

Start, Stop and Clock

MIDI sequencers usually send a steady MIDI clock at 24
PPQ, which means 24 pulses per quarter note, which in
turn means 6 pulses per 16th note, which is the typical
clock speed for modular systems. But also 48 PPQ and
96 PPQ are possible.

You get easy access to the clock by various clock outputs
running at different speeds. The jack labelled just clock
outputs the 16t note clock. The following example just
sends that clock to the O1 output:

[midiin]
clock = 01

Hereby it is assumed that the MIDI clock is running at
24 PPQ. If its running faster, simply use one of the other
clock outputs, which divides down the clock. Or use
clocktool (see page 102) for dividing yourself.

Also the START and STOP messages of MIDI sequencers
are accessible, either as two separate triggers, orasarun-
ning state. For example you can use the start output as
areset signal for some DROID circuit:

DROID manual for blue-2

[midiin]
clock = _CLOCK
start = _RESET
[sequencer]

clock = _CLOCK
reset = _RESET

Getting CCs

MIDI does not only transport note events but also con-
trollers. Most of these are continuous values, much like
CVs. midiin gives you access to the current value of a
couple of standard controllers like volume and modwheel
with dedicated outputs. And in addition up to four cus-
tom CCs can be output. All such controllers are converted
into values from0to 1 (or 0V to 10 Vif you output them
directly):

[midiin]
volume = 01
modwheel = 02
ccnumberl = 10 # get update from CC#10
ccl = 03 # send current CC value to 03

Using multiple midiins

You are not restricted to onemidiin circuit but can use up
to 32 of these in your patch. There are different reasons
why multiple ones can be useful, e.g.:

+ You want to control different voices from different
MIDI channels
- You want to fetch more than four CCs.

159

Allmidiin circuits will get their own copy of the MIDI data
stream and can do their own things with it. You might
want to use channel = ... inorder to just get only the
events of a specific MIDI channel.

Pedals

The MIDI standard defines five different types of food
pedals. The state of these - up or down - is transmitted
by means of five different control changes (CCs). midiin
automatically interpretes them corresponding to theirin-
tended meaning as follows:

+ Damper pedal (CC 64): While down, notes still
linger on, even if they end. Internally, the “note
off” event of all notes will be delayed until the pedal
is up. This pedal is sometimes also called “sustain
pedal”, since it makes notes sustain.

+ Portamento pedal (CC 65): Sets the portamento
output to 1 while down. You can use that output
forenabling a slew limiter with the circuit slew (see
page 227).

+ Sostenuto pedal (CC 66): Sostenuto is the smarter
version of sustain. Such a pedal is found as the
middle of three pedals on grand pianos. When it
goes down, all notes that are currently played are
sustained as long as the pedal is held. But new
notes, that start during that period, at not sus-
tained. That’s the difference. The midiin circuit
automatically makes CC 66 behave in exactly that
way. That, of course, just makes sense in a poly-
phonic patch, where you have enough voice that
can play the sustained notes.

- Soft pedal (CC 67): Sets the soft output to 1 while
held.

+ Legato pedal (CC 68): While down, ties conse-
qutive notes together by keeping gate at 1 be-
tween notes.

Table of contents at page 2

Input Type Default Description

usbh _ 0 Selects the physical port to receive MIDI data. The defaultisusb = 0, which selects the TRS (3.5mm stereo jack) port
of the X7. Setusb = 1 for receiving data from the USB-C port.

channel 10203 Select the MIDI channel to listen on. Default is to listen on all channels - and basically ignore the channel number.
There are 16 channels, numbered from 1 to 16.

systemreset I A trigger here resets the whole MIDI state of this circuit. It does the same as a MIDI RESET message: It stops all playing
note, resets the controllers, the states of the pedals and so on.

channel 10203 Only execute / play commands from a certain MIDI channel. There are 16 MIDI channels. It ranges from 1 to 16.

tuningmode _ If set to 1, all pitch outputs will go to the CV selected for tuningpitch (which defaults to 2 V), and all gate outputs will
play gates at 120 BPM. This helps getting all attached voices tuned when working with many voices.

tuningpitch d L This pitch CV will be output while the tuning mode is active.

transpose D é‘ff Transposes all output pitches by this value by adding the value. So in order to transpose one octave down, set this
input to -1V or -0.1. Changes in the transposition are immediately reflected, even for currently already active notes.

holdvelocity _ If thisis set to 1, the velocity output for a voice will not be affected by note off events. It's just altered at the beginning
of new notes. The velocity is kept after the note ends. This way during the release phase of an envelope triggered by
the gate, the original velocity still lasts on. In most cases the note off velocity is set to 0, which would immediately cut
off the release phase when the velocity is patched into a VCA.

pitchbendrange d % Sets the value to the desired maximum that pitchbend should output, and likewise it’s negative counterpart at its
minimum value. At the middle position it always outputs 0. This defaults to % V, which corresponds to one whole
tone. Note: setting this to a negative value is allowed and will invert pitch bend.

bendpitch _— When set to 1 (which is the default), the pitch bend will directly be applied to all output pitches. Alternatively you can

DROID manual for blue-2

set it to 0 and use the output pitchbend, for using it elsewhere.

160 Table of contents at page 2

Input Type Default Description

roundrobin —4 Normally when looking for a free output for playing the next note, this circuit will start from outputlinits search. This
way, if there are not more notes than outputs at any time, the notes played first will always be played at the lowest
numbered outputs. This leads to a deterministic behaviour when it comes to playing things like chords. The same
voice will always be used for the first note in the stream of MIDI events.

When you switch roundrobin to 1, this changes. Now the outputs are scanned in a round-robin fashion, like in a
rotating switch. That way every output has the same chance to get a new note. Here it can even make sense to define
multiple voices even if the track is monophonic. When you use envelopes with longer release times, you can transform
such a melody into chords with simultaneous notes.

Note: When all outputs are currently used by a note, roundrobin has no influence. Here voiceallocation selects
which of the notes will be dropped.

voiceallocation 10203 When the MIDI stream, at any given time, needs to play more notes than you have voices assigned, normally the
“oldest” notes would be cancelled. This behaviour can be configured here by setting voiceallocation to one of the
following values:

0 | The oldest note will be cancelled (default)

1 | The new note will not be played and simply be omitted

2 | The lowest note will be cancelled

3 | The highest note will be cancelled

notegap AL~ When your MIDI devices plays a note so “long” that it lasts exactly until the next note begins - or if due to a lack of
used pitch outputs one currently played note has to be replaced with a new one, the gate output will have no time to
go low for a sufficient time between the two notes. In effect it won’t trigger any envelope for the new note but will
play “legato”.

If you don't like this, you can use notegap. This input specifies a number of milliseconds that the gate will be forced
down before the new note begins. This has the drawback of introducing some latency, of course! So | suggest that you
start with notegap = 1 and then check out if your envelope is fast enough to trigger. If not, increase the value.

If you are using DROID’s own contour circuit or trigger something else internally in your patch, you can use notegap
= 0.1. Thatis sufficient and introduces barely any latency. A value of 0.0 keeps the default of the legato mode.

Note: the notegap parameter does not affect the trigger outputs.

ccnumberl ... ccnumber4 10203 You can listen to up to four CCs (control changes). For example if you are interested in the current value of CC#17, set
ccnumberl = 17 and use the output ccl for getting the value of CC 17.

DROID manual for blue-2 161 Table of contents at page 2

Input Type Default Description

lowestnote 10203 With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting Lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.

highestnote 10203 Sets an upper limit to the note being played, similar to Llowestnote. The “Notegates” are not being affected by this
bound.

notel ... notelé6 10203 Selects up to 16 individual notes for which you can get a dedicated gate signal. Per default these values are set to
0 for notel (meaning C-2), 1 for note2 (meaning C§-2) and so on. For each of these notes you get a corresponding
gate output (see notegatel, notegate2, etc.). These gates are high as long as the selected notes are being hold.
One application is to use just one midifileplayer or midiin circuit for sequencing up to 16 drum voices. Another
application is to use a MIDI keyboard or controller as a button expander - just like a P2B8 or B32.

Output Type Description

clock I If the MIDI sender sends a MIDI clock, you get a 16th note clock output here. This is the same as the clock16 jack and
just a convenient abbreviation.

clocks I Gets an 8th clock here (like clock divided by 2)

clock8t _f_ Getsa 8th triplets clock here. This is faster than clock8 but slower than clock.

clock16 I The same as clock: a clock running at 16t notes.

clock4 I A clock at the speed of quarter notes.

midiclock I Here you get the original MIDI clock. This is 6 times faster than clock and 24 times faster than clock4. This is because
the MIDI clock is specified to run at 24 PPQ, i.e. 24 pulses per quarter note.

start I This jack sends a trigger when a MIDI START message arrives.

continue I This jack sends a trigger when a MIDI CONTINUE message arrives.

stop _f_ This jack sends a trigger when a MIDI STOP message arrives.

running _— This jack remembers the current running state according to previous START and STOP messages.

active _§ i If the sending device supports active sensing, thisoutputishighaslongasadevice is connected. Otherwise its high
if at least one MIDI message has been received.

pitchl ... pitch8 D é‘f,‘ Pitch outputs. Since MIDI tracks can be polyphonic - i.e. play several notes at the same time - you can assign up to

DROID manual for blue-2

eight outputs here. The notes will be distributed to the defined outputs according to the settings roundrobin and
voiceallocation.

162 Table of contents at page 2

Output

Type

Description

velocityl ... velocity8

pressurel ... pressure8

gatel ... gate8
triggerl ... trigger8

ccl ... cc4

notegatel ... notegatel6

pitchbend

programchange

program

bank

modwheel

volume

DROID manual for blue-2

Om1
Om1

o203

T1e203

Om1

oL)

For each voice there is an optional velocity output, which translates the MIDI velocity into values from 0 to 1.

MIDI provides two different messages for sending “after-touch” information, i.e. information about how strong a
key is pressed down after the initial hit. Some keyboards just have one pressure sensor in total and send the current
maximum pressure information of all keys in one message (“channel pressure”). Others have one pressure sensor per
key and send “polyphonic key pressure” messages. This circuit maps both to a pressure output per note that is being
played. So if your keyboard (or sequencer or DAW or whatever) sends polyphonic key pressure events and you use
multiple pitchX outputs, wire the individual pressureX outputs to wherever you like. Otherwise you can simply use
pressurel for all notes (which can be abbreviated with pressure), since it is the same for all note outputs anyway.
pressure outputs a value from 0 to 1.

Gate outputs for the up to eight simultaneous note outputs.

Trigger outputs for the up to eight simultaneous note outputs. The difference to the gate outputs is, that these just
send a short trigger of 5 ms at the start of the note. This can be interesting in situations where the notes have no gaps
in between so that gate will never go low.

Outputs the current value of the four CC number that are defined with the inputs ccnumberl ... ccnumber4. CCs have
arange from 0 to 127, but this is converted in the range 0.0 .. 1.0 here, in order to make it easier to use that as a CV.
If you need the raw number, multiply the output with 127. Note: as long as no CC message with the selected number
happened, this output will be set to 0.

Outputs a high gate whenever the corresponding note (which is selected by notel through notel6) is currently being
played.

Outputs the current pitch bend value as a bipolar voltage. The range can be set with pitchbendrange.

Sends a trigger whenever a MIDI program change message arrives. Just before sending the trigger sets programto the
new program number (something from 0 to 127). Note: This trigger is also being output when the program change
messages sends the same program number as previously, i.e. if there is no actual change.

The number of the last program change. This starts at 0.

Outputs the number of the currently selected bank - from 0 to 16384. MIDI defines the MSB of the bank to be changed
with CC#0 and the LSB with CC#32. That means if you just use CC#0, you will only be able to select the banks 0, 128,
256, and so on. As long as no bank select CC has been received, bank will output 0.

Output the current state of the mod wheel level - within the range from 0.0 to 1.0. The mod wheel is changed by MIDI
control change 1.

Outputs the current global volume as set by MIDI control change 7.

163 Table of contents at page 2

Output Type Description

portamento 4 This output gives you access to the current state of the “portamento pedal” (MIDI CC 65). You can use it to enable an
external slew circuit for creating portamento effects.

soft i This output gives you access to the current state of the “soft pedal” (MIDI CC 67). It is 1 while the pedal is hold and 0
otherwise.

One midiin circuit needs 1104 bytes of RAM.

DROID manual for blue-2 164 Table of contents at page 2

11.31 midiout - CV to MIDI converter

This circuit allows you to “play” notes via MIDI on an ex-
ternal hardware or software synth. You also can send all
sorts of other MIDI events. You need the X7 expander for
that to work (see page 39).

The MIDIlimplementation of midiout is very comprehen-
sive. Please look at the table of input jacks for all fea-
tures. Here | just want to show some basic examples to
get you started quickly. Fun fact: This is the only cir-
cuit that does not have any outputs, because all output
is done via MIDI!

Basic operation

Easy things should be easy and complex things should be
possible. Sowe start with the easy things. Here is a patch
that converts a CV/ gate input from I1/I2into a stream
of MIDI notes and sends them out via the 3.5 mm TRS jack
on MIDI channel 1:

[midiout]
pitch = I1
gate = I2

Every time the gate input at I2 goes from off to on, the
current pitch (1V/Oct) is read from I1. Then one MIDI
“note on” event is being created. The “velocity” of that
note is set to the default value of 1.0, which is the max-
imum (every MIDI note event has a velocity, which is
meant to reflect the speed at which the key of the key-
board has been pressed).

You can specify any velocity you like with the jack
velocity. Let’s randomize that. Since the velocity jack
is just read just at the note starts, we don’t need a sample
and hold here:

DROID manual for blue-2

[random]
minimum = 0.5 # minimum allowed velocity
maximum = 1.0 # maximum allowed velocity
output = _VELOCITY

[midiout]
pitch = I1
gate = I2

velocity = _VELOCITY

Note: the range of the velocity goes from 0.0 to 1.0 - just
as all other parameters in midiout do. Internally MIDI
uses the integer numbers 0 to 127.

Polyphonic patches

One great motivation for doing CV to MIDI at all is
playing polyphonic music on hardware synths, because
polyphony in Eurorack is quite costly and very time and
space consuming. One midiout circuit can play up to
eight notes at the same time and if that’s not enough, add
a second midiout circuit. For each simultaneous note
add one pair of pitch and gate jacks:

[midiout]
pitchl = I1
pitch2 = I2
pitch3 = I3
gatel = I5
gate2 = I6
gate3 = 17

If you work with velocity, each voice has its own velocity
input:

165

[midiout]

pitchl = I1
pitch2 = I2
pitch3 = I3
gatel = I5
gate2 = I6
gate3 = I7
velocityl = 0.6
velocity2 = 0.8
velocity3 = 1.0

CC and other controllers

There are several continuous values that you can change
over time. The following example lets you control the
MIDI CC number 17 via input I3 (at a range from 0 V to
10 V) and the volume and modulation wheel with two
pots:

[midiout]
pitch = I1
gate = I2
ccnumberl = 17
ccl = I3
volume = P1.1
modwheel = P1.2

Note gates

Note gates are a convenient way to directly trigger cer-
tain notes. Here you select up to eight notes and get one
dedicated trigger for each. You select the note number
with notel, note2, etc. These are MIDI note numbers

Table of contents at page 2

from 0 to 127, where 0 is usually a C-2 (and 24 a C0).
Whenyou send atriggerinto the corresponding notegate
input, that note will be played.

[midiout]
notel = 24
note2 = 25

notegatel = I1
notegate2 = I2

This is sometimes convenient when triggering drum
voices.

Creating a MIDI clock

If you want to simulate a MIDI sequencer, you need to
provide a MIDI clock. This can be injected into the output
either by sending a modular clock that is running on 16th
notes into clock, or a raw MIDI clock into midiclock.

Example: You want your clock to run at 120 BPM. BPM
means beats per minute. And a beat is ment to be a quar-
ter note. 120 quarter notes a minute means two quarter
notes a second and that means eight 16t notes a second,
hence our clock needs to run at 8 Hz.

[lfo]
hz = 8 # 120 BPM
square = _CLOCK

[midiout]
clock = _CLOCK

Note: The input jack clock receives 16t clocks. The ac-
tual MIDI clock is derived from that by multiplying it by 6.
This means that the circuit interpolates the clock by mea-
suring its speed and introducing five artifical clocks ticks

DROID manual for blue-2

inbetween the original ticks. While this works reasonably
well for a steady clock, changes in clocks speed cannot be
picked up very fast.

So if you work with a clock that can change the speed,
better use the jackmidiclockinstead and directly supply
the MIDI clock (at a six times higher speed). Here is the
same example but now we directly create the MIDI clock:

[lfo]
hz = 48 # 120 BPM MIDI clock
square = _MIDICLOCK

[midiout]
midiclock = _MIDICLOCK

Start, Stop, Reset

MIDI sequencers also output “start” and “stop” messages.
You can send them either via triggers into start and stop
or use the input running for both. When running goes
high, a “start” message is sent, when it goes low a “stop”
message.

Pitch tracking

Pitch tracking is an advanced feature that works in mono-
phonic setups. Here midiout watches the input pitch
all the time and adapts the pitch of the currently played
note via MID pitchbend eventsin order to reflect the pitch
changes. See the documentation of the pitchtracking
jack for details.

166

Pitch stabilization

MIDI output appears simple to implement, butisn’t when
you look at the details. One tricky problem is that many
modules that output pitch information are not very pre-
ciseintiming. Sequencers often need a couple of millisec-
onds for the pitch CV to reach its final value and stabilize
after the gate is being output.

The following diagram shows a gate signal going high
(blue) and a pitch signal with a small ramp reaching its
final destination shortly afterwards (red):

10
2
S 5
=~
—— Pitch
0 —— Gate |

0 10 20 30 40 50 60
time(ms)

I've seen a very similar situation indeed when | attached
an oscilloscope to the output of a very famous Eurorack
sequencer.

Now when you would issue “note on” right at the begin-
ning of the gate, you would obviously output the wrong
pitch. What you need to do is to first wait for some time.
You need to delay the note event until the pitch is stable.
Of course this introduces some undesirable latency, so it
is crucial to keep that as short as possible.

The midiout circuit has two methods for doing
this. The first one is enabled per default and called
pitchstabilization. Here, as soon as the gate goes
high, it watches how pitch evolves over time. And it

Table of contents at page 2

delays the “note on” as long as the pitch is still mov-
ing. When it has stabilized - i.e. on the same level for
at least some very short time - the note event is issued
immediately. This keeps the latency at a minimum.

If that does not work out well for you, you can deactivate
this algorithm. One reason could be that your pitch never
stabilizes, since it is some ever evolving random data:

[midiout]
pitch = I1
gate = I2

pitchstabilization = 0

The second method is introducing a fixed delay of the
gate signal with the input triggerdelay. Using that pa-
rameter automatically disables pitch stabilization:

[midiout]
pitch = I1
gate = I2

triggerdelay = 3.5 # delay gate by 3.5 ms

Now the gate is delayed exactly 3.5 ms every time. You
need to try out various useful values yourself. The best

value depends on your sequencer (or whatever other
source you are using).

You can also activate both methods at once. This makes
sense in situations, where the pitch is stable for a very
short time after the gate but afterwards begins to move,
like in the following diagram:

10 +
2
S 5
N
—— Pitch
0 —— Gate |

0 10 20 30 40 50 60
time(ms)

As you can see, now after the gate comes high the
pitch lingers on for 2 ms at its old value until the ramp
starts. Here set the triggerdelay to 2 and explicitly set
pitchstabilization = 1:

[midiout]
pitch = I1
gate = I2

triggerdelay = 2
pitchstabilization = 1

Sending notes by number

If you are familiar with MIDI, you sometimes might want
to send a certain note number rather than a pitch. MIDI
knows notes from 0 (C-2) to 127. To do this, divide your
number by 120 before sending it to pitch.

[midiout]
pitch = _SOMENUMBER / 120
gate = _SOMEGATE

Why not 127? Because the pitch input counts notes by

semitones. And one semitone in modular is % V, which
in Droid means %0. Dividing by 127 will be slightly off

and send wrong note numbers.

DROID manual for blue-2

167

Input Type Default Description

channel 10203 1 Selects the MIDI channel to send the events on. Default is to send on channel 1. There are 16 channels. Make sure that
the receiving device listens to this (or to all) channels.

usb _ 0 Ifusb = 0, selects the TRS (3.5mm stereo jack) port of the X7 to send on. This is the default. Setusb = 1 for sending
the MIDI data via the USB-C port.

pitchl ... pitch8 é%/t oV Pitch of the notes to be played in modular style (1 V/octave). The range is from -2 V (MIDI note 0, usually C-2) to
8.583 V (MIDI note 127, usually G9). You can use up to eight pitch inputs for playing up to eight notes in parallel.
pitchl can be abbreviated with just pitch.

gatel ... gate8 _ A positive edge into the gate jacks trigger note on messages (starts the note at the pitch set by the corresponding
pitchinput). A negative edge ends the currently played note.

Table of contents at page 2

Input

Type

Default

Description

velocityl ... velocity8

noteoffvelocityl ...
noteoffvelocity8

pressurel ... pressure8

channelpressure

pitchstabilization

triggerdelay

lowestnote

highestnote

notegatel ... notegatel6

notel ... notel6

DROID manual for blue-2

Om1

Om1

Om1

oL)

Te2e3

Te2e3

Te203

1.0

0.0

127

The velocities for the up to eight notes. The velocity value is just picked up at the start of the note (at the positive edge
of the corresponding gate inputs. It ranges from 0.0 to 1.0. A value of 0.0 is practically the same as “note off”. The
default velocity is 1.0.

MIDI also sends a velocity at the end of a note. The idea is to model the speed with which a key is being released. This
is rarely used. If you don’t use these jacks, the velocity for “note off” events is the same as that for “note on” events.

Sends key pressure events for individually played notes via the MIDI event “polyphonic key pressure” (this is not a CC!).
These values are not processed at the time of note on/off events but all the time and can also change while a note is
already being played. This corresponds to “aftertouch” key pressure on keyboards that have a pressure sensor per key.

If nothing is patched here, no pressure events are sent.

Whenever this CV changes, sends a MIDI channel pressure event, also known as “aftertouch”. This corresponds to
keyboards that just have one global pressure sensor and not one per key.

If nothing is patched here, no channel pressure events are sent.

Enables or disables pitch stabilization. It is on per default and can be disabled by setting this jack to 0. Pitch stabiliza-
tion fixes timing issues where the input pitch needs some time for reaching the target pitch after a gate.

Introduces a delay between in the incoming gate signal (just the positive edge) and the “note on” event. This can tackle
the problem when your pitch input (sequencer etc.) needs some time after the gate in order to reach and stabilize the
target pitch. The delay is specified in milliseconds, so a typical useful value would be 5 (5 ms). This is an alternative to
the automatic pitchstabilization. Note: triggerdelay disables pitchstabilization, as long as that is not set
to 1 explicitly. If both are used at the same time, the triggerdelay happens before the pitch stabilization. Soitis a
minimum delay.

With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting Lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.

Sets an upper limit to the note being played, similar to Lowestnote. Note gates are not being affected by this bound.

You can define up to 16 notes that can be directly controlled with a dedicated gate. This is convenient for playing drum
sounds directly from triggers and also for using DROID controllers as MIDI controllers. A trigger or gate to notegatel
will directly play the note whose pitch is set by notel.

MIDI notes to played via notegate. The range is from 0 to 127. Per default the notes are set to the MIDI notes 0, 1, 2
... 15,

168 Table of contents at page 2

Input Type Default Description

notegatevelocityl ... ol)4 1.0 Here you can set the velocities use by the notegates. In order to keep it simple, this velocity is used for note on and

notegatevelocityl6 note off events (nobody cares about the note off velocity anyway). If you do not use these jacks, the note gates will
always use the maximum velocity.

modwheel ol D4 0.0 Sets the current value of the modulation wheel. Any change here sends a midi CC#1 with a new value for the modu-
lation wheel. The input range is 0.0 ... 1.0 and will be converted into the MIDI range of 0 ... 127. Note: in future we
might support CC#33, which is the LSB value of CC#1 and increases the resolution from 128 to 16384 different values,
at the cost - however - of two additional bytes being sent.

volume Y 1.0 Sets the volume of the target device. Thisis done by sending the MIDI CC#7 (VOLUME MSB) and MIDI CC#39 (VOLUME
LSB). Using these two CCs enables a 14 bit high resolution 16384 levels (not just 127). Some devices to not react to
CC#39 and simply ignore the LSB (least significant byte). The volume CV ranges from 0.0 (silent) to 1.0 (the default).

pitchbend AAN 0.0 Bends the pitches of all currently played notes up and down by a range that is configured or elsewhere defined by the
device that plays our stuff. The range of this CVis -1.0... 1.0 for covering the maximum pitch bend range. Most times
that range is two semitones up and down. This CV does not behave in a 1V/oct way!

pitchtracking 10203 0 Pitch tracking is an advanced feature that allows you to track continuous changes in the incoming pitch CV while the

DROID manual for blue-2

note is already playing. It does this by listening to the input CV and converting any change into a MIDI “pitch bend”
change.

This feature has two limitations: First, there is just one global pitch bend value per channel, not one per note. So this
feature only works in a monophonic situation. Only the value of pitchl is being tracked. When you play more than
one note per channel, funny things might probably happen. Also The maximum range is limited by the pitch bend
range of your target device. That is usually preset to 2 semitones up and down. If you canincrease it, please also adapt
pitchbandrange so this circuit knows about it.

Pitch tracking has two levels: pitchbandrange = 1 will alter the pitch of the current note within the maximum range
of pitch bend and will clip any further changes. pitchbendrange = 2, incontrast, plays anew noteif the current range
is exceeded. Depending on your sound settings this “dent” might be audible or not.

0 | pitch tracking is off

1 | justuse MIDI pitch bend

2 | use new note on larger changes

Note: When you use pitch tracking at the same time as pitchbend, both pitch alterations will add up.

169 Table of contents at page 2

Input Type Default Description

pitchbendrange 5= %V Defines the range of the effect of pitch bend at the target device ona 1V/oct base. Note: You cannot change that actual

range here. You just can make sure that this circuit has the correct assumption of that range.

If your target device has a configuration for extending the range, and you have set that for example to 1 octave, set
pitchbendrange to 1V. This allows pitchtracking to correctly adapt in-note pitch changes. Note: This has no effect
on the pitchbend CV.

ccnumberl ... ccnumber8 10203 0 Specifies up to eight different CC numbers that can be continuously updated via the corresponding ccl through cc8
inputs. The value needs to be an integer number from 0 to 127.

ccl ... cc8 ol s = The current value of the CCs that are specified with ccnumberl through ccnumber8. The range is always from 0.0 to
1.0 (which is mapped to the number 0 to 127 on the MIDI wire).

If you don’t patch anything here, no CC events will be sent, of course.

cctriggerl ... cctrigger8 _f_ Usually midiout will send out a new CC event every time the input value of a CC has changed (with some rate limit in
order to to flood the MIDI stream).

When you use these inputs, an alternative method is enabled. Now CC events are created whenever a trigger arrives
here. No more updates will be sent automatically.

This is useful for target devices that use CCs just as messages, i.e. as one time events and not for updating a continous
value.

delayinitialccs AL 1.0 When the Droid starts it needs a short time until the X7 is operating and your PC / DAW is able to receive the MIDI
events via USB. Initial CC updates during that short time period might get lost and you are missing the correct CC
states (which are updated later only on changes).

In order to avoid that, the Droid wait a short time after starting before it sends the first CC events. That delay can be
tuned here. Itis a time in seconds.

bank 10203 = Selects the current “bank”. Some MIDI devices have more than 128 programs (i.e., patches, instruments, preset, etc).
A MIDI Program Change message supports switching between only 128 programs. So, “Bank Select” (sometimes also
called bank switch) is sometimes used to allow switching between groups of 128 programs. Bank select uses the MIDI
CCs #0 (MSB) and #32 (LSB) together to form a number of 16384 different banks. The input value thus ranges from
1to 16384. Most devices, however, restrict themselves to just 128 banks and just use the MSB (CC#0). If that is the
case, you need to set bank to 128 for bank 2, 256 for bank 3 and so on. This can be done by simply multiplying the
actual bank number with 128.

program 10203 = Select the current “program”. This is a number from 1 to 128.

programchange I A trigger here will send out a “program change” MIDI message even if the value of bank or program has not changed.

DROID manual for blue-2 170 Table of contents at page 2

Input Type Default Description

start I If you send a trigger here, the MIDI message START will be emitted. Don’t use this jack if you also use running. Note:
START/STOP messages are not bound to a specific channel.

stop _f_ If you send a trigger here, the MIDI message STOP will be emitted. Don’t use this jack if you also use running. Note:
START/STOP messages are not bound to a specific channel.

running _ This is an alternative to the jacks start and stop. It combines both into one “running” state. When this gate input
goes high, a START message is sent, when it goes low a STOP message. So you can work with a state rather than with
state changes. Note: START/STOP messages are not bound to a specific channel.

systemreset _f_ A trigger here will send the MIDI real-time message “RESET”, that is supposed to bring the device into some start state.

allnotesoff I A trigger here will send the MIDI CC#123 “ALL NOTES OFF”, which is essentially the same as releasing all currently held
keys.

allsoundoff I A trigger here will send the MIDI CC#120 “ALL SOUND OFF”, which is supposed to make the device silent as soon as
possible.

damper _ 0 This gate input simulates a hold or damper pedal. This is done via the CC#64. If the gate goes to high, a value of 127 is
being sent, when it goes back to low, a value of 0. When the damper pedal is pressed, the device is supposed to hold all
currently played notes and not react to any subsequent “NOTE OFF” of those notes as long as the pedal is held. When
the pedal is released, all notes that had been held be the pedal should be released.

portamento _ T 0 Controls the portamento pedal. The receiver is meant to activate some kind of glide effect as long as this gate is high.

sostenuto i 0 This enables the sustain pedal. This is similar to but not exactly the same as the damper pedal as it just holds notes
that are pressed while the pedal goes down.

soft _— 0 Controls the soft pedal. The receiving synth voice is meant to play notes softer while this pedal is hold down.

legato _— 0 Controls the legato pedal, which ties subsequent notes together.

clock I If you feed a steady clock here, a MIDI clock signal will be derived from this and sent through the output wire. The MIDI
beat clock or simply MIDI clock is defined to send pulses at 24 PPQN: 24 pulses per quarter note. One quarter note has
four 16ths, so the MIDI clock is running at 6 pulses per 16th note, and in the modular environment it is very common
to work with 16th pulses as a master clock. So this clock jack is meant to retrieve a modular master clock, multiplies
this by 6 and creates a MIDI clock from it.

midiclock I This is an alternative to clock: don’t use both at the same time. Here you can directly send the MIDI clock in 24 PPQN.

DROID manual for blue-2

171 Table of contents at page 2

Input Type

Default

Description

activesensing -

updaterate AL~

select

selectat 10203

1

50.0

This is a switch that disables or enabled active sensing. This is a MIDI feature where a MIDI sender emits one mes-
sage of the type “active sensing” every 300 ms. The receiver can use this in order to detect if we are still connected
and active and also immediately reset (und turn all sound off) if these messages stop. Active sensing is enabled per
default. You can disable it here by setting activesensing = 0.

Specifies the maximum rate at which continuous controllers like the CCs, volume, pitchbend and channelpressure
are updated. This limitation is necessary in order not to flood the MIDI interface with too many updates because of
just minimal changes. This rate is specified in update per second and the default is 50. A zero or negative value will
completely stop all updates.

Note: depending on how many events are happening on your channel, fewer updates might be possible. MIDI over a
classical cable is limited to 3125 bytes per second. Events typically need 1, 2 or 3 bytes each.

The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

One midiout circuit needs 2180 bytes of RAM.

DROID manual for blue-2

172 Table of contents at page 2

11.32 midithrough - MIDIrouting through X7

Use this circuit for forwarding MIDI data from an input to
an output. Here is an example:

[midithrough]
fromusb = 1 # TRUE, hence USB port for input
tousb = 0 # FALSE, hence TRS jack for output

This will forward MIDI events from the USB port to
the TRS output. Note: All midiin (see page 158) and
midiout (see page 165) circuits still work, so the out-
put stream on the TRS jack will both contain the origi-
nal events from MIDI-USB and the events you create with

Notes:

- As of now, Sysex messages are not forwarded.
Sorry for that. If that’s becoming important we
might add this feature.

+ If you forward from USB to TRS make sure that you
do not send more than 3125 bytes per second. TRS
cannot output faster. It’s limited by the MIDI stan-
dard. If you send MIDI data faster, some events will

your midiout circuits. get lost.
Input Type Default Description
fromusb _ 0 Set this to 0 if you want to receive data from the TRS/DIN jack and 1 if you want to receive via USB.
tousb _— 0 Set this to 0 if you want to send data to the TRS/DIN jack and 1 if you want to send via USB.

One midithrough circuit needs 224 bytes of RAM.

DROID manual for blue-2

173

Table of contents at page 2

11.33 minifonion - Musical quantizer

This circuit is a very musical quantizer that gently moves
any input CV (pitch information ona 1V/oct base) into se-
lected notes of a musical scale. Typically the input CV is
coming from a random source, LFO, melody generator or
sequencer.

In fact the Minifonion is very similar to each of the the
three quantizer channels in the Audiophile Circuit League
Sinfonion - just without the user interface and more flexi-
ble. It has Sinfonion compatible CVs for the root note and
the scale selection so it can easily be combined with it as
long as you control the Sinfonion via CV and stick to the
first mode. But of course you do not need a Sinfonion in
order to use this circuit!

If you want to mimick a Sinfonion with the DROID you
might also be interested in the circuits arpeggio (see
page 75) and chord (see page 96).

Here is the simplest possible application - a quantization
of some (random) input pitch at I1 to the seven notes of
a Clydian major scale.

[minifonion]
input = Il
output = 02

Now let’s change the root note to D (2 semitones above
C) and the scale to natural minor, so that we now quan-
tize to a D minor scale:

[minifonion]
input = 1I1
output = 02
root =2
degree = 7

DROID manual for blue-2

And here is the table of all 12 scales of the Minifonion.
These are exactly the same scales as those in the first
mode (called Chords) of the Sinfonion:

degree | Abbr. | Scale
0| lyd Lydian major scale (it has a #4)
1 | maj Normal major scale (ionian)
2| X7 Mixolydian (dominant seven chords)
3 | sus mixolydian with 3rdy4th swapped
4 | alt Altered scale
5 | hm? Harmonic minor scale from the 5tN
6 | dor Dorian minor (minor with $13)
7 | min Natural minor (aeolian)
8 | hm Harmonic minor (6 but §7)
9 | phr Phrygian minor scale (with}9)
10 | dim Diminished scale (whole/half tone)
11 | aug Augmented scale (just whole tones)

If you are a Sinfonion user, please note that the inputs
root and degree of the Minifonion are not based on semi-
tones like the Sinfonion, but simply expect whole num-
bers like 0, 1, 2 and so on (which corresponds to the CVs
0V, 10V, 20V, etc.). So if you want those CV inputs to be
compatible, you have to multiply the values with the fac-
tor of 120 before sending them to the Minifonion:

[minifonion]
input = I1
output = 02

174

root
degree

I2 * 120 # base on semitones
I3 * 120 # base on semitones

Table of contents at page 2

Input Type Default Description

input v ov Patch the unquantized input voltage here

trigger _f_ This jack is optional. If you patch it, the Minifonion will work in triggered mode. Here the output pitch is always frozen
until the next trigger happens.

bypass i of f If you set this gate input to 1 then quantization is bypassed and the input voltage is directly copied to the output.

noteshift 10203 0 Shifts the output note after the quantization by this number of scale notes up or down (if negative). So the output note
still is part of the scale but may be a note that is none of the selected ones. noteshift is applied when quantization
takes places, so it also is sensible to the trigger input.

selectnoteshift To203 0 Shifts the output note after the quantization by this number of selected scale notes up or down (if negative). If you use
noteshift at the same time, first selectnoteshift is applied, then noteshift. selectnoteshift is applied when
quantization takes places, so it also is sensible to the trigger input.

root 10203 Set the root note here. @ means C, 1 means C#4, 2 means D and so on. If you multiply the value of an input like I1 with

120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0o | C
1 | CH
2 |D
3 | Df
4 |E
5 | F
6 | Ft
7 |G
8 | Gf
9 | A
10 | Af
11 | B
12 | C

DROID manual for blue-2 175 Table of contents at page 2

Input Type Default Description
degree 10203 Set the musical scale. This is a number from 0 to 11. At 12 this repeats over again. Please refer to the introduction for
the list of scales. If you multiply an input like I1 with 120, this will internally scale to one scale per semitone and you
are compatible with the DEGREE CV input of the Sinfonion.
0 lyd - Lydian major scale (it has a §4)
1 maj - Normal major scale (ionian)
2 | X" - Mixolydian (dominant seven chords)
3 sus - mixolydian with 3rdy4th swapped
4 | alt - Altered scale
5 hm® - Harmonic minor scale from the 5th
6 | dor - Dorian minor (minor with $13)
7 | min - Natural minor (aeolian)
8 hm - Harmonic minor b6 but #7)
9 phr - Phrygian minor scale (with}9)
10 | dim - Diminished scale (whole/half tone)
11 | aug - Augmented scale (just whole tones)
selectl _ Gate input for selecting the root note as being an allowed interval. When you want to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.
Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. selectl...
selectl3 will be set to one.
select3 i Gate input for selecting the 379
select5 i Gate input for selecting the sth,
select? _ Gate input for selecting the 7th,
select9 _ Cate input for selecting the 9th (which is the same as the 2N9).
selectll i Cate input for selecting the 110 (which is the same as the 4th).
selectl3 i Gate input for selecting the 13th (which is the same as the 6th).

DROID manual for blue-2

176

Table of contents at page 2

Input Type Default Description

selectfilll _ Selects the alternative 9tN (i.e. the 9t that is not in the scale.

selectfill2 _ i Selects the alternative 39 (i.e. the 39 that is not in the scale).

selectfill3 i Selects the alternative 4th or 5t In most cases this is the diminished 5t

selectfill4 _ Selects the alternative 13tD (i.e. the 15'3 that is not in the scale).

selectfills _ Selects the alternative 7th (i.e. the 7th that is not in the scale).

tuningmode _— While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch d % This pitch CV will be output while the tuning mode is active.

transpose D (% This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

Output Type Description

output é%/t Here comes your quantized output voltage

notechange _f_ Whenever the quantization changes to a new note a trigger with the duration 10 msis output here. No trigger is output

in bypass mode.

One minifonion circuit needs 316 bytes of RAM.

DROID manual for blue-2

177 Table of contents at page 2

11.34 mixer - CV mixer

The main task of this circuit is simply adding up to eight
inputs. Furthermore it can do simple operations like min-
imum, maximum and average. Please note that since ev-
ery input can always be offset and attenuated, it’s like a
mixer with a CV controlled level and CV controlled offset
per input channel.

Minimal example, mixing together two inputs:

inputl = I1
input2 = I2
output = 01

Since every input can add an offset, mixing four inputs
can be done with two lines if you like:

output = 01

Please note that an unpatched input is (sometimes) not
the same as an input where 0.0 is being sent. The dif-
ference arises if you use minimum, maximum and average,
since these just consider the patched inputs.

If eight inputs are not enough then you can simply create

_ [mixil:;uﬂ =11 + I2 a mesh by mixing together the outputs of several submix-
[mixer] input2 = I3 + 14 ers.

Input Type Default Description

inputl ... input8 AL 0.0 15t .. 8th mixing input

Output Type Description

output AL~ Sum of all patched inputs

maximum AAN Maximum of all patched inputs of this circuit. This can e.g. be used for mixing together the envelopes from several
sequencer tracks without making them “louder” or distorting them when two sequencers play a note at the same time.

minimum AAL Minimum of all patched inputs of this circuit.

average AL~ Average of all patched inputs of this circuit.

One mixer circuit needs 128 bytes of RAM.

DROID manual for blue-2

178

Table of contents at page 2

11.35 motoquencer - Motor fader sequencer

This circuit allows you to build simple but also very com-
plex performance sequencers based on motorized faders.
It supports up to 32 steps and up to eight M4 controllers
with up to 32 faders. The list of features is long and di-
verse and aims at supporting creative live performances.

You probably will fail to map all existing inputs to con-
trols, so better don’t try and rather experiment with just
a fraction of those at a time.

Basic minimal example

Despite all the features, this sequencer is easy to get
started with. Here is the smallest possible example. You
always need a clock input. Here | get it from input I1.
You need to have at least one M4 unit attached to your
DROID (and declared with [m4] in your patch). The mo-
tor sequencer automatically configures all your available
faders (up to 32) for the sequencer (you can change that
with firstfader and numfaders):

[m4]

[motoquencer]
clock = I1
cv = 01
gate = 02

As soon as your clock starts, you get a sequence with one
step per available fader (which is four if you have just one
[m4] declared). The faders select notes from a C lydian
scale in two octaves. You will feel 15 notches. They cor-
respond to the 15 notes in this range. The touch buttons
below the faders switch on/off the gates.

DROID manual for blue-2

The pitch is output at 01 and the gate at 02. Well -
this wouldn’t have needed expensive motor faders, but it
works and shows a minimal application of motoquencer.

Switching pages

Your sequence can have more steps than you have faders.
This is done by switching pages. In the following exam-
ple we assume that you have just one M4 but want a se-
quencer with 16 steps. Use the page input in order to set
the current page (group of 4 steps) that you want to see
and edit with your faders. These pages have the num-
bers 0, 1, 2 and 3. That number can nicely be output by
a buttongroup (see page 90) on a P2B8. Here is a fully
functional example of a 16 step sequencer with just four
faders:

[p2b8]
[m4]

[buttongroup]
buttonl = Bl1.1
button2 = B1.2

button3 = Bl1.3
buttond4 = Bl.4
ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

output = _PAGE
[lfo]

hz = 20 * P1.1

square = _CLOCK

[motoquencer]
clock = _CLOCK

179

page = _PAGE
numsteps = 16
cv = 01

gate = 05

Repeats, Ratchets and Randomize

In the upper examples we just had two parameters per
step of the sequence: The pitch / CV and the gate. There
are some more. Altogether every step has the following
eight parameters:

0 | pitch/CV

1 | randomize CV

2 | gate propability

3 | repeats (up to 16)
4 | gate pattern

5 | ratchets (up to 8)
6 | gate

7 | skip

Each of these parameters has a number from 0 to 7 and
you can set the input fadermode to one of these in order
to switch the faders to control that parameter. Here are
some details about the various parameters:

Pitch / CV is the output pitch of each step. With the in-
puts cvbase and cvrange you can define a voltage range
for those CVs. Per default, the CV is quantized to a mu-
sical scale, but you can change that with quantize (see
below).

Table of contents at page 2

Randomize CV is a number from 0 (fader at the bottom)
to 7 (fader at the top). 0 means randomization is off.
The other 7 steps will increasingly modify the step’s CV
by adding a different random offset each time the step is
played. At position 7 (the maximum), the offset is up to
cvrange, so if your CV is at maximum, this could double
up your CV range.

Gate propability also has 8 settings. Here the maximum
(fader at top position) is the default and means: this step
is always played, if the gate is on. The other seven set-
tings will reduce the propability of this step being played.
The lowest setting still leaves a small chance. Turn off the
gate to silence a step completely.

But this propability is not simply a random chance. It has
several very musical settings as you can see from the fol-
lowing table. Here you see the eight fader positions and
their meaning - 8 being the top position and 1the bottom
position:

Pos. Meaning

8 (top) | played always 100%
7 random chance of 50% 50%
6 played every even turn 50%
5 played every odd turn 50%
4 random chance of 25% 25%
3 played every 4th vy 25%
2 random chance of 12% 12%
1 played if last random was positive -

The LEDs below the faders indicate the current setting
with different color and blink codes:

- Gates that are played always are blue with a con-

DROID manual for blue-2

stant light.

- Random gates for 50%, 25% and 12% are in the
same blue but blink in various speeds.

- Gates of setting 1 (conditional random) are blink-
ing fast.

- Gatesdependingonthe turn (3, 5and 6) arein cyan
color and light steadily in the bars (turns) where
they are on and blink in the other bars.

The position 6 and 5 are very musical and can transform
a pattern of length 8 into an effective melody of 16 steps.
A step in position 6 is just played every second run of the
whole sequence. Position 5 is just the same but starts
with the first run and will then be played on run 3, 5, and
soon.

Position 4 is similar, but these steps will just be played
every fourth sequence run, so you can use it for playing
things like a pickup or break or the like. These “run coun-
ters” are reset by the reset input.

The bottom position of 1 is an addition for the true ran-
dom positions 7, 4 and 2: A step in position 1 is played,
whenever the most recent random decision of positions
7, 4 and 2 was positive. It allows you to create groups of
notes that are either played completely or not at all: Set
the first step of these to a random propability of 50, 25 or
12%. And the remaining notes to position 1. Now when-
ever fate decides that the first note is being played, so will
all remaining ones. These steps do not need to be subse-
quent. You can have wholes.

Repeats changes the number of clock cycles one step will
last. It is a number from 1 (fader at the bottom) to 16
(fader at the top). This setting changes the total duration
of one sequence cycle. If you set repeats to 2 for one of
16 steps, your sequence will last 17 clock cycles.

The Gate pattern decides how gates are played when re-
peats is 2 or larger. There are four gate patterns, which

180

you can feel in the fader. In the first setting (fader down)
just the first repetition of the step is “played” (i.e. a gate
signal sent). Setting 2 will play one gate per repetition.
Setting 3 plays one long gate. And setting 4 is like 3 but
lets the gate open when the step ends. This ties this step
to the next one. And this setting also has an effect when
repeats is just 1.

Ratches can be set from 1 (normal) to 8. It divides the
clock cycle of the step into equal time intervals in which
the stepis repeated. If you set ratchets to 2, for example,
you will get two notes played at double time. Ratchets do
not change the duration of the sequence.

The remaining two settings are usually set with the touch
buttons, but you can also use the faders.

Gate decides wether the step is “played”. If it is played,
its CV will be sent to the cv output and the gate signal is
set to high for half a clock cycle (you can change all this,
no worries).

Steps with Skip enabled will be skipped. This shortens
the duration of the sequence. Note: if all steps are set to
skip, the sequencer repeats playing the most recent step
over and over.

So let’s now make an example where we use a button
group for setting fadermode:

[p2b8]

[m4]

[buttongroupl]
buttonl = Bl1.1
button2 = Bl1.2
button3 = B1.3
buttond4 = Bl.4
button5 = B1.5
button6 = B1.6
button7 = B1.7

Table of contents at page 2

button8 = B1.8
ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
led5 = L1.5
led6 = L1.6
led7 = L1.7
led8 = L1.8

output = _FADERMODE

[lfo]
hz = 20 * P1.1
square = _CLOCK

[motoquencer]
clock = _CLOCK
fadermode = _FADERMODE
cv = 01
gate = 05

Button mode

Very similar to the faders, also the touch buttons have
modes. These can be switched with buttonmode and here
are the possible settings:

0 | gates

1 | start/end

2 | gate pattern

3 | skip

Three of these settings you already know from the
fadermode. When the buttons are set to gate pattern,
you cycle through the four steps each time you touch the
button (and the LED cycles through four colors).

Fun fact: You can set fadermode = 6 and buttonmode =

DROID manual for blue-2

0. That way, both the button and the fader control the
gates. Try this out and touch the buttons: the fader will
move automatically.

The mode “start / end” cannot be set with the faders.
They set a sub range of the sequence to be played. Here
is what it means:

Start and end

Usually your sequence is played from the first to the
last step. But you can change this by setting a start
step and an end step. This can either be done manually
(with buttonmode = 1orwiththeinputs startstepand
endstep.

In buttonmode = 1, the start step has a green LED and
the end step a red one. Both start and end can be at the
same step (creating a one step sequence). The LED will
then blink between red and green.

Touching a button changes the end step. You can set the
start step by first setting an end step and holding that
button and then - with a second finger - press another
step. That will be the start step.

If the start step is after the end step, the play order is re-
versed.

Quantization, root and scale

Per default, the CVs are quantized to the notes of a lydian
C major scale, as is the default for many other circuits, as
well. This means that the faders have one artifical notch
for each scale note. You can feel the notes. This makes
it easy to change the note in exact steps without any dis-

play.

181

As with many other pitch-aware circuits, like for example
minifonion (see page 174) or chords (see page ??), you
can use root and degree for changing the scale. See in
the table of inputs below for the different possible scales.
Note: root has no effect on the lower CV boundary. It’s
just for the selection of the allowed notes. Use cvbase for
setting that.

Furthermore, there are the inputs selectl, selects3, ...
You can use them to further restrict the possible notes -
or even add notes that are not contained in the scale. Re-
fer to the minifonion (see page 174) circuit for a broader
discussion of these inputs.

Note: If you have set a melody with the faders and reduce
the number of allowed notes afterwards, the faders will
possibly move to new positions. But as long as you don’t
touch them, they will internally “remember” their original
note. If you later re-add the missing notes, the faders will
move back and your original melody is restored.

With the input quantize you can switch off the musi-
cal mode. quantize = 0 disables quantiziation and the
faders create a continous CV (the internal resolution is
127 steps, just like in a MIDI CC). And quantize = 1 will
quantize to semitones (ﬁ V steps).

Note: The maximum number of notches of a fader is
25. That nicely matches the 25 possible semitones of
two octaves. If you increase that range, the notches are
switched off.

Direction, ping pong, movement patterns

The Motoquencer has quite a bunch of interesting fea-
tures for changing the order in which steps are being
played. Some of them, like the playing direction or “ping
pong”, are the usual suspects and common among se-
quencers. The “playing patterns” and “forms” go beyond

Table of contents at page 2

this and create interesting creative possibilities.

direction defaults to 0, which means “forwards”. Set
this to 1 (e.g. with a toggle button) to run the sequence
backwards.

direction = 1 # backwards

pingpong is another switch. Setting it to 1 enables “ping
pong mode”. Here the direction switches back and forth.
Dependingondirection, the sequence starts at the start
step or the end step, moves towards the other end and
then turns around in order to come back. Note: Since
the steps at the turning points are played just once, a se-
quence of 8 steps in ping pong mode has a duration of 14,
not 16.

pingpong = 1 # enable ping pong

pattern changes the way how the sequencer steps
through the sequence. Pattern 1 for example goes al-
ways two steps forwards (according to direction and
pingpong) and then one step backwards. Assuming
direction = 0andpingpong = 0, the step order would
be1,2,3,2,34,3,45,4,5,6and soon. The available
patterns are much the same as in the arpeggio (see page
75) circuit with the addition of pattern 6, which goes for-
wards in small random steps.

pattern = 3 # set pattern 3

Forms like AAAB

Already confused? Then you probably won't like the
“Forms” feature! Here we create longer sequences by first

DROID manual for blue-2

dividing the stepsinto two (or three parts), and then play-
ing these parts in certain orders.

The most useful form (except the trivial 0) is probably 1,
whichis AAAB. Here the steps are divided into a first half,
whichiis called A, and a second half, which is called B. The
A part is always played thrice and then once the B part.
Assuming you have 8 steps (and all the other fancy stuff
is off), the step orderwouldbe 1, 2, 3,4, 1, 2, 3, 4, 1, 2,
3,4,56,7,8.

The patterns with the three parts A, B, and C divide the
steps into three equal sized parts. You better make sure
that you have 6 or 12 or 24 steps in that case, or else
your parts won't have equal size (which on the other hand
could be funny anyway).

The forms can be combined with direction, pingpong
and pattern. Here stepping modifications are always ap-
plied within each individual part.

The forms can also be combined with the start and end
point. Here just the steps between start and end are di-
vided into parts.

Autoreset

In contrast to the all the upper modifications of the step
order, autoreset is super simple. It resets the whole
sequence (including parts) to the very beginning after a
specified number of clock ticks.

There are two typical applications: First, if you want to
make sure that the pattern repeats in some regular way
despite crazy modifications, setautoreset = 16 andthe
sequence will restart exactly very 16t clock tick. If it is
longer, it will be truncated. If it is shorter, it first repeats,
but then the repetition is truncated.

182

On the other hand you can make a regular sequence ir-
regular, if you sete.g. autoreset = 7inasequence with
usually 16 steps, thus forcing polymetric shifts with other
parallel rhythms.

When you use the special gate “propabilities” odd and
even in combination with autoreset, please note that af-
ter a reset the odd / even count always starts with odd.

The Metric Saver

The Metric Saver™ is a very musical feature that allows
you to go bonkers with all start, end, direction, ping pong,
pattern, form, repeats, autoreset and skips without loos-
ing the sync to the rest of your music.

If The Metric Saver™ is turned on (which is the default),
the motoquencer automatically keeps track of the origi-
nal incoming clock count. As soon as - after a polymet-
ric journey - you come back to “normal”, it jumps to the
step that would have been the current one without those
alterations.

An example: You set autoreset to 7 in order to create
polymetric tension. Later you set it back to 0. Now the
sequence immediately jumps to the step where it would
have been without autoreset (this requires that none of
the other step changing features are in use). You snap
back to your original groove and are in sync again with
the rest of your modular “band”.

Note: The Metric Saver™ is only activated when really
all modifications to the normal step order are turned off.
Thatalsoincludes steps where “repeats” or “skip” is used,
since they also introduce time shifts.

Table of contents at page 2

| Feel Lucky

The Motoquencer has a quite complex system of one time
randomization, which is called | Feel Lucky™. While set-
ting random CVs or gate propabilities is quite common
amongst sequencers, here we talk of something differ-
ent. By sending a trigger to a certain input, some of your
steps are randomly modified - and stay that way. If your
faders currently show these steps, you will immediately
see them moving around. And they stay there, so that
you can manually modify the random decision if you like.
Those triggers are most times sent by buttons, but also
slowly running LFOs or using the startofsequence as a
trigger are fine.

Let’s make a simplified example:

[motoquencer]
. usual stuff goes here ...
luckychance = P1.1
luckyamount = P1.2
luckycvs = B1.1 # press to reroll CVs

All lucky operations honor the luckychance input. This
sets the relative number of steps that is affected by the
randomization. Setting it to 1 will affect all steps. At 0,
no step is affected. At 0.5 exactly half of the steps is af-
fected, randomly chosen from all steps between start and
end.

A trigger to luckycvs sets a new random CV value for
each affected step. And with the pot luckyamount you
control the maximum CV that’s possible here.

You can use this mechanismalso to reset things. A trigger
at luckycvs whith Luckyamount = 0 and luckychance
= 1 will bring all steps back to the CV set by cvbase.

Please have a look at the table of inputs for all the other
lucky. .. triggers and ... feel lucky!

DROID manual for blue-2

Multiple tracks

Each motoquencer circuit has just one CV and one gate
output. In many cases it is desirable to have several CVs
and maybe also additional gate outputs as part of a se-
quence. Also you probably want more sequencers using
the same faders, of course.

This is done by adding more instances of motoquencer to
your patch. The easiest way is to use the select input
of each of these, in order to make sure that at every time
exactly one motoquencer is selected and gets access to
the motor faders. You really shouldn’t try selecting more
than one at the same time, or your faders will get crazy!

Here is an example with the two buttons B1.7 and B1.8
selecting one of two sequencers:

[p2b8]
[m4]

[buttongroup]
buttonl =
button2 =
ledl = L1.
led2 = L1.

B1.7
B1.8
7
8

[lfo]
hz = 20 * P1.1
square = _CLOCK

[motoquencer]
clock = _CLOCK
select = L1.7
cv = 01
gate = 05

[motoquencer]
clock = _CLOCK
select = L1.8
cv = 02

183

gate = 06

This simple patch s a fully functional two-track four-step
sequencer. And as long as you don’t run out of RAM, you
can add as many tracks as you like.

One thing you have to have in mind: These sequencers
can easily go out of sync. Just play around with the start
or end step or skip or repeats. While that can be interest-
ing, sometimes it is not desirable. Maybe you just want
every step to have additional CV or gate values.

This can be done by linking two or more instances of
motoquencer togethery. To do that, add the following
line to the first instance:

linkwithnext = 1

At the next motoquencer in the patch, don’t wire clock
or reset or anything else that deals with stepping or di-
rection or faders. Just connect the outputs. The linked
sequencer is remote controlled.

Some inputs still apply for the linked sequencer. One ex-
ample is cvbase and cvrange. Any parameter that has
an influance on which step is played when, however, is
ignored. That task is done by the main sequencer.

Here is a complete example that adds one additional CV
and one gate to a sequencer. Note: The fader modes 10
and 16 give you access to the modes 0 and 6 of the linked
sequencer. Simply add 10 for each sequencerin the chain.

[p2b8]

[m4]

[buttongroupl]
buttonl = Bl1.1
button2 = B1.2

Table of contents at page 2

button3 = B1.3
buttond = Bl1.4
button5 = B1.5
button6 = B1.6
button7 = B1.7
button8 = B1.8
ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
led5 = L1.5
led6 = L1.6
led7 = L1.7
led8 = L1.8

output = _FADERMODE
value7 = 10 # CV of sequencer 2
value8 16 # gate of sequencer 2

[lfo]
hz = 20 * P1.1
square = _CLOCK

[motoquencer]
clock = _CLOCK
fadermode = _FADERMODE
linktonext = 1
cv = 01
gate = 05

[motoquencer]
cv = 02
gate = 06

If you need more than two CVs, you can create even
longer chains, for example:

[motoquencer]
clock = _CLOCK
fadermode = _FADERMODE
linktonext = 1
cv = 01

DROID manual for blue-2

gate = 05

[motoquencer]
linktonext = 1
cv = 02
gate = 06

[motoquencer]
cv = 03
gate = 07

Simply add a linktonext at every instance except the
last. And add 10 to fadermode for every sequencer. For
example fadermode = 25 selects fader mode 5 on the
third sequencer in the chain.

Here are some details, what linking exactly means for the
linked sequencer:

+ The linked sequencer does not react to clock,
reset, startstep, endstep, form, direction,
pingpong, pattern, autoreset, shiftsteps or
any other potential means of influencing the play
order of the steps. Instead the current step number
of the linked sequencer will always be the same as
the step number of the main sequencer.

+ If you use shiftsteps, luckyshuffle or
luckyreverse on the main sequencer, the exact
same rearrangement of steps will happen at the
linked sequencers.

- If the main sequencer plays repeats, so does the
linked one. The “repeats” setting of the linked se-
quencer’s steps are ignored.

- If the main sequencer skips a step, so does the
linked one. The “skip” property of steps in the
linked sequencer are ignored, as well.

+ Ratches still work independently, since they don’t
change the step sequence.

+ Also the gate pattern of the linked sequencer will
be applied.

184

+ In the linked sequencer, holdcv has one additional
value: 2. If you set it to 2, the CV output of the
linked sequencer is synchronized to the gate of
the linked sequencer, not to that of the main se-
quencer.

- Don't use select, fadermode and buttonmode on
the linked sequencer. They are ignored. In-
stead, for accessing the parameters of the steps
of the linked sequencer, add 10 to fadermode or
buttonmode. So while fadermode = 1 sets the
fader to the CV randomization of the main se-
quencer, so does fadermode = 11 for the linked
sequencer.

The following parameters are still valid for the linked se-
quencer:

- cvbase, cvrange and quantize

- gatelength

- holdcv (with the extra value 2)

+ luckychance, luckyamount and all of the other
lucky... paramters, with the exception of
luckyskips, luckyrepeats, luckyshuffle and
luckyreverse.

Recording with a keyboard

You canuse a keyboard torecord sequences into your mo-
toquencer. More precisely, you can attach a CV / gate in-
put for that purpose. That might very well come from a
keyboard attached to the X7, via the circuit midiin (see
page 158). But any other source is possible, as well.

The first step is attaching your recording source to
keyboardcv and keyboardgate. Here is an example:

[midiin]
cv = _CV

Table of contents at page 2

gate = _GATE

[motoquencer]
keyboardcv = _CV
keyboardgate = _GATE

After doing this, you should already be able to play with
your keyboard directly to the voice that’s attached to
the motoquencer. While a key is pressed (keyboardgate
is high), the keyboardcv has precedence over the se-
quence. But you can change that with the setting
keyboardmode.

To record your keyboard into a sequence, you need to
connect recordmode, maybe to a button (see page 86).
While recording is active and the keyboard gate is high,
the current sequencer step will be replaced with your key-
baord note. Otherwise the steps are untouched. That
way you play more and more notes into the sequence.

In order to get rid of existing notes, either clear the se-
quence before recording (using the clear trigger), or
make use of the input recordsilence. Setting that to 1
will silence all steps when no key is pressed.

You also can route recordsilence to one key on your
keyboard using the notegate outputs of midiin. That
way you can actively “erase” notes by pressing that key.

While recording key presses the motoquencer tries to be
tolerant with respect to your timing. So keys pressed

slightly before or after the current clock tick are just fine.

Note: The sequencer can just record into its grid of
steps and quantized notes. So it’s not a free style MIDI
recorder. You cannot record notes that are faster than
your input clock. If you have enabled quantiziation, you
can just play notes from the current scale. So it needs
some time to get familiar with this way of recording. Nev-
ertheless it's a great tool for rapid composition. Espe-
cially because it’s easy to modify your melodies with the
faders after you have recorded them.

Copy & paste

The copy & paste feature allows you to copy a part of your
sequence from one page to another or from one preset to
another. To do this, map the inputs copy and paste to
two buttons (you don’t need toggle buttons here, so no
button circuit is needed).

A trigger to copy copies the current sequence into an in-
ternal clipboard. And paste copies the clipboard into the
current sequence.

Use copymode to determine whether just the current page
or the complete sequence shall be copied.

There are also two alternative triggers for pasting.
pastefaders just pastes the faders of the currently se-
lected mode. pastebuttons is likewise for the buttons.

With that you can for example just copy the gate propa-
bilites from one page to another while leaving the rest of
the parameters as they are.

If you have linked sequencers, those will automatically be
handled as well. Don’t connect the copy and paste trig-
gers there.

LED colors

Depending on the buttonmode, the LEDs below the faders
have different colors. Here is an overview over all possi-
ble colors:

color meaning buttonmode
white currently played step always

blue enabled gate 0

green start step 1

red end step 1

cyan gate on the first repetition 2

pink gate on each repetition 2

orange | hold gate over duration 2

yellow | tie the gate to the next step | 2

violet skip 3

DROID manual for blue-2

Input Type Default Description
firstfader 10203 1 First M4 fader of the sequencer (starting with 1). If you omit this, it starts at the first fader of your first M4.
numfaders 10203 Number of faders to use for your sequencer. The typical numbers are 4, 8, 16 and 32. 32 is the maximum (eight M4

units). If you omit this, all of your M4 faders will be used.

185

Table of contents at page 2

Input

Type

Default

Description

numsteps

page

clock

reset

run

DROID manual for blue-2

10203

o203

Number of steps your sequence consists of (at maximum). The number of steps can be greater than the number of
faders. In that case use page for paging your faders so that you can edit all of the steps. Having the number of steps
less than the faders, makes no sense - it’s just a waste of faders. The maximum number of steps is 32.

If you don’t set this parameter, the number of steps will be set to the number of faders.

Note: changing this setting dynamically can provoke various surprising behaviours. For example the number of pages
(see parameter page) might be reduced. Or the end marker is forcibly moved around. If you want to change the length
of the sequence via CV, better use endstep or autoreset.

Another note: Setting numsteps will not restrict the number of faders. If you set numsteps = 4 but have eight faders
available, the circuit will use all these, even if faders 5, 6, 7 and 8 will be useless. You need to set numfaders = 4 in
this situation.

Use this parameter, if you have less faders than steps. The first page is 0, not 1. For example if you have 4 faders but
16 steps, you can select between the four “pages” of four faders each, by settings bar to 0, 1, 2 or 3. The output of a
buttongroup (see page 90) with one button per page is a good match for this parameter.

Patch an input clock here. If you want to use ratcheting, that clock needs to be stable and regular, because the se-
quencer needs to interpolate the clock and create evenly distributed new beats within two clock ticks. If you don’t use
ratching, you can use any rhythm you like here - may it be shuffled, euklidean, the output from another sequencer or
whatever you like. Each clock tick will advance the sequence to the next step (or to the next repition of the current
step).

A trigger here resets the sequencer to its start step. The next clock tick (or a tick that is roughly at the same time as
the reset) will play step 1. Note: If there is a reset without a clock tick at the same time, the sequencer will go to “step
0”, which is a special state where it waits for the clock to advance to the first step. Without that fancy logic, a reset
plus clock would skip step 1 and start with step 2.

If you set thisinput to 0, the sequencer willignore all incoming clock ticks. It stops. The default of 1is normal operation,
where it runs. This input is a better way to temporarily stop the sequencer than to stop the clock. The reason: for
computing the gate length and ratchets a steady input clock is needed. If you stop the clock, the next gate length
and ratches right after the next start will have the wrong duration since at least two clock ticks are neccessary for
computing its speed.

Note: This input is not a replacement for mute, since a muted sequencer leaves the clock running and advances steps.
It just mutes the gate output.

186 Table of contents at page 2

Input Type Default Description
composemode i Enabling “compose mode” makes it easier to find the right note in a step, when creating more complex melodies. When
composemode is set to 1, the sequencer stops clocking. Instead - every time you change the CV of a step, itimmediately
jumps to that step, outputs the changed CV and opens the gate for a short time, so you can listen to the changed note.
mute _ T If you set this to 1, the gate output of the sequencer is muted (will always be 0). Any changes of the CV output still
happen.
cvbase AAN 0.0 Lowest CV voltage the sequencer will output
cvrange AAN 0.2 CV range of the faders. So the resulting CV lies somewhere between cvbase and cvbase + cvrange.
quantize 10203 2 Switches on quantization in two levels. At 0, the faders run freely and output a continous CV.
At 1, the output is quantized to semitones, which is %V steps. Also the faders will get artifical notches - one for each
semitone. That is, unless your range is too large. The maximum number of notches is 25, so if your range exceeds two
octaves (0.2), the notches are turned off.
At 2, the output is quantized to the scale that root and degree define. Furthermore the individual scale notes can be
switched on or off with the parameters selectl, select3 and so on. Note: the root input does not select the lowest
note of the CV range. That is still set with cvbase. It is just used for selecting the scale.
0 | noquantization
1 | quantize to semitones (1/12V steps)
2 | quantize to the scale set by root and degree
cvnotches 10203 0 Usually the CVs of the steps are ment to be note pitches (when quantize is 1 or 2), or just free CVs (quantize = 0).

DROID manual for blue-2

There is an alternative mode, however, that allows you to assign integer values like 0, 1, 2 and so on to each step.

To do this set cvnotches to a value of 2 or greater. This defines the number of discrete values (and hence notches)
for each step and put CVs of the sequence into notched mode. 1 makes no sense, of course, since in this “pitch bend
mode” the faders would always return to the neutral position.

In notched mode the cv output does not output a pitch but a notch number starting from 0. cvbase, cvrange and
quantize are ignored.

The maximum number of notches is 127, but the haptic force feedback of the motor faders is disabled starting at 26.

187 Table of contents at page 2

Input Type Default Description

shiftsteps 10203 0 Shifts all your steps by that number to the left (negative numbers shift to the right). So if shiftsteps is 1, right after
areset, the sequencer will not play step 1, but step 2. The shifting wraps around at the end of your sequence, so if you
have 24 steps and shift is 1, the sequencer will play step 1instead of step 24.

Note: Other things like startstep, endstep, playmode, from and autoreset take place after shifting.

startstep 10203 1 Sets the first step to be used. This means that after a reset or when the sequencer comes to the end of the sequence,
it will begin at this step.

There is also a way for settings start and end with buttons (see below at buttonmode). If you use the interactive mode,
the startstep and endstep settings will be overridden. The are reactived if you clear everything.

Note: startstep and endstep take place after applying shiftsteps.

endstep 10203 Sets the last of the steps to be played. The default is to play all steps. After playing the end step, the sequencer moves
on to the start step at the next clock tick.

If startstep is equal to endstep, the sequence just consists of one single step.

Settings startstep larger then endstep is allowed and reverses the playing order.

DROID manual for blue-2 188 Table of contents at page 2

Input Type Default Description

form 10203 0 This is an advanced feature that allows you to slice your steps into two or three parts and create musical song forms
like AAAB or ABAC. Each of the parts A, B or C are then played according to the playmode.

The form AAAB, for example, creates a 32 step form from just 16 steps, by playing the first 8 steps three times and
then the second 8 steps once.

The following forms are available:

0 | A (forms are basically deactivated)
1 | AAAB
2 | AABB
3 | ABAC
4 | AAABAAAC
5| AB
6 | AAB
Notes:

- The splitting of the steps into parts takes place after accounting for startstep and endstep.

- Forms with A, B and C split the pattern into three parts. These parts can only be of equal size if the number of
steps is dividable by 3, of course.

+ The pattern AB is really not the same as A, e.g when direction is set 1 (reverse). In that case each of the parts
is played backwards, but the parts themselves move forwards on your steps.

direction i 0 Sets the general direction in which the sequencer moves through the steps. @ means forwards and 1 means backwards.

pingpong o 0 If set to 1, the sequencer will change the direction every time it reaches the start or end of the sequence.

DROID manual for blue-2 189 Table of contents at page 2

Input Type Default Description
pattern 10203 0 Selects one of a list of movement patterns. That way, the sequence steps are not played in linear order but in a more
sophisticated movement. Available pattern are:
0 | go step by step to the sequence (normal) —
1 | two steps forward, one step backward — =
2 | double step forward, one step backward =
3 | double step forward, double step backward, single step forward =& —
4 | double step forward, single step forward, double step backward, single step forward | = — < —
5 | random single step forward or backward ~
6 | go forward by a small random number of steps — X ?
7 | random jump to any allowed (other) note i
autoreset 10203 0 If set to non-zero, automatically issues a reset (just like a trigger to reset) every N clock ticks.
metricsaver i 1 The Metric Saver - helps you to reliably come back to your original metric and time after playing around with all sorts

DROID manual for blue-2

of parameters that change the played number of steps in the sequence. These are: startstep, endstep (also when
changed interactively), form, direction, pingpong, pattern, autoreset and repeats and skips of individual steps.
Therefore it counts the actual number of clock cycles since the last external reset (or system start). And when all of
these features are deactivated, it snaps back the clock to the position it would have been by now if you never had
played around with all the funny stuff.

That way, during a live performance, you can safely play around with all this polymetric and otherwise time disrupting
stuff and as soon as you clean up your mess - voila: you are back on track and in sync with the rest of the “band”.

The metric saver is turned on by default. But you can disable it by setting the parameter to 0.

190 Table of contents at page 2

DROID manual for blue-2

Input Type Default Description
fadermode 10203 0 Switches the current meaning of the motor faders. You probably want to connect the output of a buttongroup (see
page 90) here. Here are the possible modes:
0 | pitch/CV
1 | randomize CV
2 | gate propability
3 | repeats (up to 16)
4 | gate pattern
5 | ratchets (up to 8)
6 | gate
7 | skip
buttonmode 10203 0 Switches the current meaning of the touch buttons below the faders. You probably want to connect the output of a
buttongroup (see page 90) here. Here are the possible modes:
0 | gates
1 | start/end
2 | gate pattern
3 | skip
holdcv P 1 This setting determines wether the CV output changes every time the sequencer moves to the next step or just when

that step is active (a gate is being played). The latter is the default. But if you set this to 0, the CV values of steps
without gates will also influence the output CV.

Note: regardless of this setting, the CV will never change inbetween. Any change of the CV faders, the cvbase and
cvrange and so on will only take effect when the next step is played. This also ensures that repeats or ratchets are
always in the same pitch.

191 Table of contents at page 2

Input Type Default Description

clear I A trigger here clears all settings, all step values, start / end - everything that you have set with the faders or touch
buttons. Any external settings, like shiftsteps, cannot be reset that way, of course, since the motoquencer does not
manage those settings.

If you connect a button here, you might use the longpress output of a button (see page 86) circuit, just for safety.

defaultgate N 1 Here you set to which state (on / off) the gates should be set on a trigger to clear.

clearstartend I A trigger here clears the manual settings of the start and end step. So the sequence will be played in its full length
(again) .

gatelength AAN 0.5 The gate length in input clock cycles. A value of 0.5 thus means half a clock cycle. A steady input clock is needed

for this to work. Please note that if the gate length is >= 1.0, two succeeding notes will get a steady gate, which
essentially means legato.

If you don’t use a steady clock, set this parameter to 0. This will output a minimal gate length of about 10 ms (basically
just a trigger).

keyboardmode 10203 1 This input sets how a keyboard, that is hooked to keyboardcv, and keyboardgate should be used for directly playing
notes. You cansetitto 0, 1 or 2.

0 | ignore the keyboard inputs

1 | keyboard and sequencer play together, keyboard has precedence

2 | mute sequencer, just play keyboard

keyboardcv) 5% The pitch input of a keyboard. This is used for playing along with the keyboardmode or recording with recordmode.

keyboardgate . The gateinput of a keyboard. A positive gate enabled play along (see keyboardmode) and also recording, if recordmode
is set accordingly.

recordmode 10203 0 Use this input to record melodies played with a keyboard (namely keyboardcv and keyboardgate) into the sequencer.
There are three possible settings:

0 | don'trecord

1 | record, notes longer than one step will automatically tie steps via the gate pattern

2 | record, don't tie notes. Ignore the length of the input note

DROID manual for blue-2 192 Table of contents at page 2

Input Type Default Description

recordsilence _ 0 When this input is set to 1 while recording, silence will be recorded while keyboardgate is off. Otherwise you can just
add notes to the sequence.

copy _f_ A trigger here copies the complete sequence (if copymode = 0) or just the current page of the sequence (if copymode
= 1) toaninternal clipboard. The clipboard is not part of any preset and is also not saved to the SD card. It can be used
later for pasting it’s data to another preset or another page of a sequence.

copymode 10203 1 Determines wether copy and paste works with the complete sequence or just with the current page (that part of the
sequence that is currently shown on the faders.

0 | copy and paste works on the sequence as a whole

1 | copy and paste just works on the current page

paste I Atrigger here copies the steps from the clipboard either to the complete sequence (copymode = 0) orjust to the current
page (copymode = 1).

pastefaders I This is like paste, but just the values of the faders of the current fadermode are copied.

pastebuttons i This is like paste, but just the values of the faders of the current buttonmode are copied. Note: the button mode “start

/ end” is not supported by copy and paste.

linktonext N 0 This settings allows you to create motoquencer tracks that have more than one CV or gate output for each step. If you
set this to 1, the next motoquencer circuit in your patch will by synchronized to this one. This means that it always
plays the same step number - including all fancy operating like shiftsteps, startstep, endstep, form, patternand
autoreset. All those inputs and also clock and reset are ignored by the next motoquencer.

The same holds for the “repeats” and “skip” setting of the steps.

fadermode and buttonmode are extended to the next motoquencers by adding 10 for each motoquencer to follow. So
fadermode = 10 will show the CV of next motoquencer in the faders. fadermode = 11 the CV randomization of the
next motoquencer. fadermode = 20 show the CV of the third linked motoquencer and so on.

Don’t set fadermode or buttonmode on the linked motoquencers. They will be ignored there.
luckychance Y 1.0 Sets tha chance for a step to be affected by the next “lucky” operation (see triggers below).

luckyamount ol D1 1.0 Sets the amount of change that a “lucky” operation does to a step. The meaning depends on the operation. See the
parameters below.

luckyfaders I Moves the currently selected faders (according to fadermode) to new random positions. luckyamount sets the maxi-
mum value of the fader, where 1 allows the maximum.

DROID manual for blue-2 193 Table of contents at page 2

Input Type Default Description

luckybuttons I Randomly toggles the currently selected buttons (according to buttonmode). luckyamount only has an effect when
the gate patterns are selected, since here, four different values are possible. luckamount restricts them if it is lower
than 1.

luckycvs _f_ Replaces the affected steps’ CVs with a new random CVs. The lowest possible CV is cvbase. If Lluckyamount is 1, the
highest possible CV is cvbase + cvrange, otherwise it is cvbase + Luckyamount x cvrange.

luckycvdrift I Modifies the affected steps’ CV randomly up or down. They will stay in the CV range set by cvbase and cvrange.
luckyamount controls the amount of change.

luckyspread _f_ First computes the average CV of all steps. Then changes the CV values of the affected steps such that their distance
to the average increases or decreases. If Luckyamount is greater than 0.5, the distance is increased. Otherwise it is
decreased.

luckyinvert _f_ Inverts the CVs of the affected steps within the allowed CV range. luckyamount has no influence.

luckyrandomizecv _f_ Sets the “randomize CV” values of the affected steps to random values (yes, this is double randomization). The
luckyamount sets the maximum randomization value that will be set.

luckygates I Sets the gates of the affected steps randomly to on or off. The chance for on is determined by luckyamount. So with
luckyamount = 0you clear all gates and with luckyamount = 1you set all gates.

luckyskips _f_ Sets the “skip this step” setting of the affected steps randomly to skip or normal. The chance for skip is determined by
luckyamount.

luckyties I Sets the “tie this step to the next” setting of the affected steps randomly to tie or normal. This is the same as setting
the gate pattern to the upper most position. The chance for tie is determined by luckyamount.

luckygatepattern _f_ Randomizes the gate pattern of the selected steps (there are four different values: once, all, hold and tie). Use
luckyamount to reduce that set.

luckygateprob _f_ Sets the “randomize gate” values of the affected steps to random values (yes, this is double randomization). The
luckyamount sets the minimum randomization value that will be set (yes, this isinverted). So with luckyamount = 1
you disable randomization and make the gates play always. With luckymount = 0 you set the gate propability to the
lowest possible value (still not 0).

luckyrepeats N Randomly sets the number of repeats of the affected steps to something between 1 and 16 (the maximum). The
luckyamount determines the maximum repetition number, where 1 stands for a maximum of 16 repetitions.

luckyratchets I Randomly sets the number of ratches of the affected steps to something between 1 and 8 (the maximum). The

DROID manual for blue-2

luckyamount determines the maximum ratchet number, where 1 stands for a maximum of 8 ratchets.

194 Table of contents at page 2

Input Type Default Description

luckyshuffle i Randomly swaps all affected affected steps (their playing order) together will all their attributes. Luckyamount has no
influence.

luckyreverse _f_ Reverses the playin gorder of the affected steps. Luckyamount has not influence.

root 10203 Set the root note here. @ means C, 1 means C#§, 2 means D and so on. If you multiply the value of an input like I1 with

DROID manual for blue-2

120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then

you are compatible with the ROOT CV input of the Sinfonion.

0o | C
1|
2 | D
3 | Dy
4 |E
5 | F
6 | Fi
7 |G
8 | Gi
9 | A
10 | Af
11 (| B
12 | C

195

Table of contents at page 2

Input

Type

Default

Description

degree

selectl

select3
select5
select?7
select9
selectll

selectl3

DROID manual for blue-2

o203

Set the musical scale. This is a number from 0 to 11. At 12 this repeats over again. Please refer to the introduction for
the list of scales. If you multiply an input like I1 with 120, this will internally scale to one scale per semitone and you
are compatible with the DEGREE CV input of the Sinfonion.

lyd - Lydian major scale (it has a §4)

maj - Normal major scale (ionian)

X7 - Mixolydian (dominant seven chords)

3rd/4th

sus - mixolydian with swapped

alt - Altered scale

hm® - Harmonic minor scale from the Sth

dor - Dorian minor (minor with $13)

min - Natural minor (aeolian)

hm - Harmonic minor 6 but §7)

phr - Phrygian minor scale (with9)

10

dim - Diminished scale (whole/half tone)

11

aug - Augmented scale (just whole tones)

Gateinput for selecting the root note as being an allowed interval. When you want to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. selectl...
selectl3 will be set to one.

Cate input for selecting the 3rd,

Gate input for selecting the 5th,

Gate input for selecting the
Gate input for selecting the
Gate input for selecting the 11th (which is the same as the 4th).

Gate input for selecting the 13th (which is the same as the 6th).

7th,
gth (

196

which is the same as the

2ndy,

Table of contents at page 2

Input Type Default Description

selectfilll i Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 i Selects the alternative 3™ (i.e. the 3 that is not in the scale).

selectfill3 _— Selects the alternative 4th or 5t In most cases this is the diminished 5t

selectfill4 _ Selects the alternative 13tD (i.e. the 15'3 that is not in the scale).

selectfills i Selects the alternative 7th (i.e. the 7th that is not in the scale).

tuningmode _— While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch D55 This pitch CV will be output while the tuning mode is active.

transpose D (% This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

select i = The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 = This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset 10203 This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 4 presets,
so this number ranges from 0 to 3.

loadpreset I A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset I A trigger here saves a preset.

Output Type Description

cv AL The CV output (or pitch output, if you use quantize).

gate _ i The gate output.

startofsequence I Outputs a trigger whenever the sequencer starts playing from the beginning. This can be used for synchronizing with

DROID manual for blue-2

other sequencers. An external reset will also cause this output to trigger.

197 Table of contents at page 2

Output Type Description

startofpart I Outputs a trigger whenever a form part starts again. This is only interesting when you use form.

startstepout 10203 Outputs the current start step. This is useful in case it has been interactively set with the buttons and you need that
information for another circuit.

endstepout 10203 Outputs the current end step. This is useful in case it has been interactively set with the buttons and you need that
information for another circuit.

currentstep 10203 Outputs the number of the step that is currently being played (starting from 0).

currentpage 10203 Outputs the number of the fader page that is currently played, i.e. the value you would have to feed into page in order
to see the currently being played step.

One motoquencer circuit needs 1964 bytes of RAM.

DROID manual for blue-2 198 Table of contents at page 2

11.36

Thecircuit provides the most basic access to motor faders
and supports switching between presets, overlayed func-
tions and force feedback.

For the basics about these ideas and the M4 in general,
please read the introduction to the M4 on page 49.

Presets

Let’s start with presets and make a simple example with
one P2B8 and one M4 controller. First we need to declare
both in our patch:

[p2b8]
[m4]

Let’s use the first fader as a simple CV source to be output
on 01. And four buttons should select four different pre-
sets of that fader. Those are grouped into a button with
the circuit buttongroup (see page 90):

[buttongroup]
buttonl = Bl.1
button2
button3
buttond
ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
output = _PRESET

nonon
W W w
[]
A WN

This circuit will switch between the values 0, 1, 2 and 3
and output that number to the intercal cable _PRESET.
Now let’s add the fader definition:

DROID manual for blue-2

motorfader - Create virtual fader in M4 controller

[motorfader]
fader = 1
preset = _PRESET
output = 01

That's really all. fader = 1 selects the first motor fader
inyour setup. All faders are simply enumerated, so fader
= 7 would select the third fader on the second M4.

The output 01 now always outputs the current setting of
the fader. TherangeisOV ... 10V - just like with pots of
the controllers.

Hitting the buttons will switch to one of the four presets
and move the fader to the position corresponding to cur-
rent value of that preset.

Faders with multiple functions

The second way to use the motor fadersis to assign multi-
ple functions to one fader and then switch between those
functions. The crucial difference to the presetsis, that for
every function there is a dedicated output.

Let’s now change our example so that we use one fader
controlling four CV sources, but without any presets for
the while. The start is the same (just we renamed the in-
ternal cable to _FUNCTION:

[buttongroup]
buttonl = Bl1.1
button2 = Bl1.2
button3 = B1.3
buttond = Bl.4
ledl = L1.1
led2 = L1.2

199

led3 = L1.3
led4 = L1.4
output = _FUNCTION

No we need a separate motorfader circuit for each func-
tion. And instead of choosing a preset, we need to select
each circuit when the active button selects its function:

[motorfader]
fader = 1
select =
selectat
output =

[motorfader]
fader = 1
select =
selectat
output =

_FUNCTION
=1
02
[motorfader]
fader = 1
select

selectat
output =

[motorfader]
fader = 1
select =
selectat
output =

As you can see: each fader has a selectat input match-
ing one of the buttons of the buttongroup. And each
fader also sends its output to one of the main outputs of
the master.

There is one possible simplification: Instead of using

Table of contents at page 2

_FUNCTION and selectat, we also could use the LED out-
puts of the button group directly:

[buttongroup]
buttonl = Bl1.1
button2 = B1.2
button3 = B1.3
buttond = Bl1.4

ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
[motorfader]
fader = 1
select = L1.1
output = 01
[motorfader]
fader = 1
select = L1.2
output = 02
[motorfader]
fader = 1
select = L1.3
output = 03
[motorfader]
fader = 1
select = L1.4
output = 04
Notches

Maybe the coolest feature of the M4 is the haptic feed-
back. The M4 uses its motors in order to give you force
feedback. This is done in various forms.

DROID manual for blue-2

Ill

The most useful form is to use artifical “notches” or
“dents”. Try that out be setting notches toa number, e.g.
8:

notches = 8

This changes the behaviour of the fader in two ways:

1. The output value is now a discrete whole number
fromoupto7.

2. When you move the fader you feel eight artificial
dents. That's really hard to explain. Try it out!

The maximum number of notches is 25.

These notches are super helpful especially in live perfor-
mances. You instantly feel where your are. You don't
need any visual feedback. You can very reliably set a
value without looking.

There are also two other variants of force feed back:

Binary switch

If you set notches = 2, you turn the fader into a binary
switch. The output will be 0 if the fader is in the bottom
position and 1 on the top. Just move the fader away from
its position and it willimmediately snap to the other side.

Pitch bend wheel

Setting notches = 1 will convert the fader into a kind of
pitch bend wheel. It always wants to stay in the middle,
where it outputs a value of 0. 5. If you move it away from
the center position, it creates a force back to the center
thatis the greater the nearer you are to the top or bottom.
As soon as you release it, it snaps back to the middle.

200

Modifying one value with two virtual faders

The sharing of virtual faders is a bit more tricky to explain
and you probably won’t need it. It means that you use
two motorfader circuits for controlling the same output
value. Why would you do this?

| have added that feature when building a motor fader
based MIDI control for my audio interface. | have one
mode where every of eight faders controls the main vol-
ume of one of eight voices.

And then | have a “drill down” for each voice, where the
first fader is the main volume, the second fader the head
phone, the third the volume of an aux channel and so on.

So now I can control the volume of voice 3 either with the
third fader in the “global” volume control or with the first
fader the drill down of voice 3. This leads to an output
collision since two circuits would try to modify the same
output, evenif always just one of the two motor fader cir-
cuits is selected.

The solution to this problem is the sharewithnext in-
put. Put the two motorfader circuits next to each other
into your patch. Put a sharewithnext = 1into the first
one. Don’t use the output there. Now both virtual
faders will control the output that is defined in the sec-
ond motorfader circuit:

[motorfader]
fader = 1
select = _GLOBAL
sharewithnext = 1

[motorfader]
fader = 3
select = _DRILLDOWN_3
output = _VOLUME_3

Table of contents at page 2

Note: if you are using notches, make sure that both ‘ motorfader circuits have the same number of notches! ‘

Input Type Default Description

fader 10203 1 The number of the motor fader to use, starting with 1 for the first fader in the first M4. 5 selects the first fader in the
second M4 and so on.

startvalue AAN If you use this input, the virtual fader will start with this value when you start your DROID, as opposed to restoring the
previous value from the SD card.

reset i A trigger to this input reset the virtual faders to the value 0.0 or to resetvalue, if that is used.

resetvalue AL 0.0 Value the fader is reset to at a trigger at reset.

notches 10203 0 Number of artifical notches. 0 disables the notches. 1 creates a pitch bend wheel. 2 creates a binary switch with the
output values 0 and 1. Higher number create that number of notches. E.g. 8 creates eight notches and output will
output one of the value 0, 1, ... 8. The maximum allowed number is 25.

ledvalue AL When you use this input, it will override the brightness of the LED below the fader, but just when this circuit is selected.

ledcolor /\/\/‘ When you use this input, it will set the color of the LED below the fader, when the circuit is selected. If the LED is off,
this setting has now impact.

sharewithnext i 0 If set to 1, the output output will not be used but the circuit shares it’s output with the next motorfader circuit.

select _ i The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset 10203 This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 8 presets,
so this number ranges from 0 to 7.

loadpreset I A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset _f_ A trigger here saves a preset.

DROID manual for blue-2

201 Table of contents at page 2

Output

Type

Description

output

Output the current value if the virtual motor fader (don’t use this if you are using sharewithnext).

One motorfader circuit needs 236 bytes of RAM.

DROID manual for blue-2

202

Table of contents at page 2

11.37 notchedpot - Helper circuit for pots (OBSOLETE)

This circuit has been superseded by the new circuit pot notch input. Here is an example: For a second use case there is the output bipolar. That
(see page 212). converts a normal pot into one with range from -1.0 to
[notchedpot] 1.0. This example also shows how to disable the notch, if
pot can do all notchedpot can do and much more. So notc : po you do not need it here:
notchedpot will be removed soon. po = PL.1
notch = 15%
This little circuit simulates a potentiometer with a notch output = ACTIVITY [notchedpot]
i _ ot = P1l.1
a.t Fhe center.. I.t helps you exac.tlysele.zctlng the center po [algoquencer] ‘r:otch o
sition by defining a range that is considered to be the cen- activity = ACTIVITY bipol - 1 4 -10v 10V to 01
ter. Thisrangeis called “notch” and defaults to 10% of the - tpotar = 01 # Send -10V ... +10V to 0
available range. You can set the size of the notch via the
Input Type Default Description
pot DY Wire your pot here, e.g. P1.1
notch AL\ 0.1 Optionally set the notch size, if you do not like the default of 0.1. The maximum allowed value is 0.5. Greater values

will be reduced to that.

Output Type Description

output Y Your pot output comes here. It still goes from 0.0to 1.0.

bipolar /\/\/\ Optional output with a range from -1.0 to 1.0, where the center notch is at 0.0.

absbhipolar AAN A variation of bipolar that always outputs a positive value, i.e. the pot willgo 1...0.5... 0... 0.5... 1

lefthalf AAN This output allows you to split the pot into two hemispheres. Here you get 1.0 ... 0.0 while the pot is in the left half.
In the middle and right of it you always get 0.

righthalf /\/\/\ This is the same but for the right half. It outputs 0 while the pot s in the left half and 0.0 ... 1.0 from the middle to the
fully right position.

lefthalfinv AAN This outputs 1.0 - Lefthalf, i.e. the valuerange 0.0... 1.0... 1.0 when the pot moves left — mid — right.

righthalfinv AL~ This outputs 1.0 - righthalf, i.e. the value range 1.0... 1.0... 0.0 when the pot moves left — mid — right.

One notchedpot circuit needs 68 bytes of RAM.

DROID manual for blue-2

203 Table of contents at page 2

11.38 notebuttons - Note Selection Buttons

This simple utility combines 12 buttons, just like radio
buttons, into a selector for a note such as C, C4, D, D}
andsoon. Itissimilar to buttongroup, but much simpler.
And it allows 12 buttons. The output is either a number
from 0 to 11 - or alternatively on a % V per semitone
base. The latter one is ideal for sending it to external se-
quencers or quantizers as they often adopt that scheme.

The following example uses all eight buttons of the first
controller plus the first column of the second controller
for selecting the twelve notes. It sends the currently se-
lected note to 07 ina 1V per octave scheme:

[notebuttons]
buttonl = Bl.1
button2 = Bl.2
button3 = B2.1
buttond = Bl.3
button5 = Bl.4
button6 = B2.3
button7 = Bl.5
button8 = Bl1.6
button9 = B2.5
buttonl0 = B1.7
buttonll = B1.8
buttonl2 = B2.7
ledl =11.1
led2 = L1.2
led3 =12.1
led4 = L1.3
led5 =L1.4
led6 = L2.3
led?7 = L1.5
led8 = L1.6
led9 = L2.5
ledl10 =1L1.7
ledll = L1.8
ledl2 = L2.7
semitone = 07

DROID manual for blue-2

204

Table of contents at page 2

Input Type Default Description

buttonl ... buttonl2 I Wire 12 buttons to these 12 inputs.

clock _f_ When you use this jack, all button presses are quantized in time to the next clock pulse arriving here. That makes it
easier to switch the note exactly in time.

select — The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

Output Type Description

ledl ... ledl2 _ Wire the LEDs in the buttons to these 12 outputs.

output 10203 Here you get a number from 0 to 11, according to the currently selected button.

semitone v Here you get the same as output, but divided by 120. When you patch this output to a CV output of the DROID, like

01, it will output the note as a semitone ona 1V per octave scheme.

One notebuttons circuit needs 320 bytes of RAM.

DROID manual for blue-2 205 Table of contents at page 2

11.39

This small utility allows you to modify a value up and
down in fixed steps using two buttons. This value can be
persistent so it survives a power cycle.

Here is an example for a simple CV source that outputs a
value between -2V and 2 V:

[nudge]
minimum = =2V
maximum = 2V
amount = 1V
buttonup = Bl.1
buttondown = B1.3
ledup = L1.1
leddown =1L1.3
output = 01

Note: If you press both buttons at the same time, the
value will be reset to its start value.

You can extend this into an octave switch by using the in-
put offset, which will be added to the output:

[nudge]

minimum = -2V
maximum = 2V
amount = 1V
buttonup = Bl.1
buttondown = B1.3
ledup = L1.1
leddown =1L1.3
output = 01
offset = Il

If you now feed some VV/Oct source, such as the pitch out-
put of a sequencer, to I1, it will be shifted up and down
for up to two octaves.

DROID manual for blue-2

nudge - Modify a value in steps using two buttons

Another application might be to fine tune an oscilla-
tor. Here you set the nudge steps (set by amount) a
lot smaller. Also it is allowed to leave out minimum and
maximum and thus make the possible range unrestricted.
Note: 1V / 1200 means essentially a step size of ——

1200
of an octave, which is —= of a semitone, which is also

100
known as one cent:
[nudgel
amount =1V / 1200
buttonup = Bl.1
buttondown = B1.3
ledup =L1.1
leddown =11.3
output =01
offset = I1

A third application could be a button for selecting a cer-
tain input number for - let’s say - an euclidean rhythm
pattern:

[nudge]
amount = 1
buttonup = B1.1
ledup = L1.1
minimum = 3
maximum = 7

wrap = 1
output = _BEATS
[euklid]

clock = G1

length = 16

beats = _BEATS
output = G3

206

Note: Here only one button is wired. In addition wrap is
set to 1, which means that after reaching the maximum
value, the next value will be the minimum value. Here
each press of the button B1.1 forwards the number of
beats in the matter3—+4 —5—6 —7— 3andsoon...

Understanding the LEDs

By nudging the value below the center value the buttonup
LED will be off and the brightness of the buttondown LED
will gradually increase indicating how much the value is
set below this center value. It remains maximally bright
at the minimum.

Vice versa by nudging the value above the center value
the buttondown LED will be off and the brightness of
the buttonup LED will gradually increase indicating how
much the value is set above this center value. It remains
maximally bright at the maximum.

And if the value is exactly in the middle between maximum
and minimum, both LEDs are maximally bright. Here you
have to have in mind that this must be exactly in the
middle. Of course, this only works if the distance be-
tween maximum and minimum is an exact odd number of
amounts.

Table of contents at page 2

Input Type Default Description

buttonup I Button for nudging the value up by one step

buttondown I Button for nudging the value down by one step

amount AAN 0.1 Amount to modify the value by on each press. This must be a value > 0

startvalue AL~ 0.0 The value this circuit starts with or is being reset to if you use the reset input.

minimum AAN = The minimum possible value. If you do not wire this, the value can go down infinitely.

max imum AAN IS8 the maximum possible value. If you do not wire this, the value can go up infinitely.

wrap _— 0 Set this to 1 in order to have the value wrap around if the minimum or the maximum has been exceeded. Note: wrap
does only work if you set minimum and maximum.

offset AL 0.0 This value is being added to the output.

reset _f_ A trigger here will reset the value to its start value

persist _ i 1 Set this to 0 if you do not like the current value to be saved and reloaded from flash after a restart of your modular
system. The default is 1, which means that the current value will automatically saved.

select _ i The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

Output Type Description

ledup _:“—'H’_ Wire this to the LED in the button for nuding up. It will indicate the current value.

leddown _:“—'H:_ Wire this to the LED in the button for nuding down. It will indicate the current value.

output AL The output of the current value plus value if offset.

One nudge circuit needs 192 bytes of RAM.

DROID manual for blue-2

207 Table of contents at page 2

11.40 octave - Multi-VCO octave animator

This circuit is used to control the pitches of three oscilla-
tors by octave or even fifths. Italso allows a linear detune
in order to make the common sound of the VCOs sound
fatter.

Here is an example for a setup where the octave spread-
ing and the detune is controlled with two pots:

[octave]
input = I1
outputl = 01
output2 = 02
output3 = 03
spread = Pl.1
detune = P1.2

Patch the 1V / octave inputs of three VCOs at 01, 02 and
03. Tune all VCOs at exactly the same pitch. Patch the
pitch output from your sequencer, quantizer or whatever
to I1.

Now with the pot P1.1 turned fully left nothing changes.
All' VCOs will get exactly the same pitch. As you turn up
the pot the pitches of the VCOs 2 and 3 will start to get oc-
taved up more and more until VCO 2 is two octaves above
VCO 1and VCO 3 is four octaves above VCO 1.

If youadd fifths = onthenintermediate steps shift the
pitch by perfect fifths.

Note: The output outputl wasimplemented just for sake
of completeness. It passes through the input to outputl,
since the pitch of VCO 1 is never detuned nor pitched up.
If you are running low in outputs then some use a passive
multiple or stacked cable and connect VCO 1 externally
the pitch and thus save one output.

DROID manual for blue-2

Detune

In the example, if you turn P1.2, VCO 2 will be detuned
up and VCO 3 down. A very slight turn will get get you
the nice fat classical detune sound. The speciality here
is: the detune is linear. This means that the detune is al-
ways done by the same number of Hertz - regardless of
the current pitch. This is done by automatically adapting
the detune voltage to be less in higher pitches and greater
in lower pitches. The result is a beating independent of
pitch.

Animation

Since everythingin DROIDis CV'able sois spread. A nice
application is to use a sequencer or clocked random gen-
erator for animating the octaving. Here is an example:

[random]
trigger = I1
output = _RANDOM
[octave]
input =I1

outputl = 01
output2 = 02
output3 = 03
spread _RANDOM * P1.1

Now P1.1 controls the depth of random octave anima-
tion.

208

Table of contents at page 2

Input Type Default Description

input 5= ov The general pitch information ona 1V / octave base to be used for the three VCOs.

spread _:“~'H’_ 0 The amount of octave spread between outputl and output3. At a value of 1.0 the spread is four octaves.

detune ol 1 0.0 The amount of linear detune of VCO 2 and 3. Thisis notona 1V /octave base but corresponds to an absolute frequency
difference in Hertz. The exact frequency difference cannot be set here, since that depends on how you have tuned your
VCOs. But the rule is the following: If input is a 0 V and detune is 1.0, the detune is by four semitones. And for an
input of 1V (one octave higher) it is just two semitones, because that results in the same frequency difference. For
2V (two octaves up) it ist just one semitone and for 3 V half a semitone (and so on). Best thing is to simply try out and
listen!

fifths _ i off Set this to 1 or on if you want to include perfect fifths as intermediate steps.

Output Type Description

outputl ... output3 v Outputs for the 1V / octave of the three VCOs. outputl is an exact copy of input so you could omit that and rather

patch VCO 1 to the original pitch CV.

One octave circuit needs 76 bytes of RAM.

DROID manual for blue-2

209 Table of contents at page 2

11.41 polytool - Change number of voices in polyphonic setups

The polytool is an intelligent “transformer” that can map melodies with N parallel notes to synth voices with M par- allel voices.
Input Type Default Description
pitchinputl ... ? The pitches of up to 16 input voices.
pitchinputlé6
gateinputl ... _ The gates of up to 16 input voices.
gateinputlé6
roundrobin _— 0 Normally when looking for a free output for playing the next note, this circuit will start from pitchoutputl in its

search. This way;, if there are not more notes than outputs at any time, the notes played first will always be played at
the lowest numbered outputs. This leads to a deterministic behaviour when it comes to playing things like chords. The
same voice will always be used for the first note in the stream of MIDI events.

When you switch roundrobin to 1, this changes. Now the outputs are scanned in a round-robin fashion, like in a
rotating switch. That way every output has the same chance to get a new note. Here it can even make sense to define
multiple voices even if the track is monophonic. When you use envelopes with longer release times, you can transform
such a melody into chords with simultaneous notes.

Note: When all outputs are currently used by a note, roundrobin has no influence. Here voiceallocation selects
which of the notes will be dropped.

voiceallocation 10203 0 When from the pitch inputs, at any given time, more voice are active than you have outputs assigned, normally the
“oldest” notes would be cancelled. This behaviour can be configured here by setting voiceallocation to one of the
following values:

0 | The oldest note will be cancelled (default)

1 | The new note will not be played and simply be omitted

2 | The lowest note will be cancelled

3 | The highest note will be cancelled

DROID manual for blue-2 210 Table of contents at page 2

Output Type Description

pitchoutputl ... ? The pitches of up to 16 output voices.
pitchoutputl6

gateoutputl ... _— The gates of up to 16 output voices.
gateoutputl6

One polytool circuit needs 708 bytes of RAM.

DROID manual for blue-2 211 Table of contents at page 2

11.42 pot - Helper circuit for pots

This circuit adds plenty of functionality to the controller
pots in one circuit. It helps with various tasks. It re-
places the former circuits notchedpot and switchedpot
and these are also the main applications of pot: the sim-
ulation a precise center dent (notch) and the sharing of
one pot for several different functions.

Convert a knob to bipolar output voltage

Let’s start with some simple features. There are a cou-
ple of useful outputs, all of which you could do externally
by use of some math. The following example converts a
pot (which is ranging from 0 to 1) to a bipolar pot rang-
ing from -1to +1 (or -10 V to +10 V if you send it to an
output):

[pot]
pot = P1l.1
bipolar = 01 # Send -10V ... +10V to 01

Have a look into the table of jacks below about further
useful things like splitting the pot’s way in two halfs.

Center notch

pot cansimulate a potentiometer with a notch at the cen-
ter. It helps to exactly select the center position by defin-
ing a”range of tolerance” thatis considered to be the cen-
ter. This range is called “notch” and is given in a per-
centage of the available range. | suggest using 10% so
you don’t loose to much pot resolution, but it’s still easy
enough to hit the center reliably. Here is an example:

DROID manual for blue-2

[pot]
pot = P1.1
notch = 10%
output = _ACTIVITY
[algoquencer]

activity = _ACTIVITY

Slope

Sometimes you want a bit more resolution at the smaller
values of the pot range. Maybe the pot controls a time
from 0.0 to 1.0 seconds. And in the low range, say about
0.1 seconds, you need finer control.

You can change the slope of the pot in a way that either
smallvalues orvalues near 1.0 are “streched out”. The de-
fault is slope = 1.0. Look at the following diagram for
the impact of different slope values:

1

—— 0.5

—1.0
L 0.75 |
S
|
3 0.5 1 '
2
g 0.25

0 ‘ ‘ ‘ ‘
0 20 40 60 80 100

pot movement(%)

As slope value of 0.0 does not make sense, because the
pot would stick to 0.0 all the time, a minimum value of
0.001 is enforced.

212

If you are curious about the algorithm: This operation is
just z5°P¢, So it’s not “logarithmic” or “exponential” but
polynomial.

Splitting the pot into two hemisperes

The jacks lefthalf, righthalf, lefthalfinv and
righthalfinv allow you to split the pot in the middle
into two ranges and use them for something completely
different. Let’s make an example:

[pot]
pot = P1.1
lefthalf = 0

1
righthalf = 02

Now let’s start with the pot in the center position. Both
outputs will be at 0. 0. If you now turn the pot to the left,
just lefthalf (at 01) is going to rise until it reaches 1.0
at the left end of the pot range. righthalf is staying at 0
all the time.

At theright half of the pot range, likewise lefthalf stays
zero and righthalf will raise from 0 to 1.

The jacks lefthalfinv and righthalfinv are similar,
but are 1.0 in the neutral position in the center and fall
to 0.0 at the edges.

Virtual pots

This circuit can handle so called “virtual pots”. This is a
situation where the physical position of the potentiome-
ter does not match it output value. There are three situa-

Table of contents at page 2

tions where the pot circuit automatically switches to this
virtual mode:

- Whenyou share (overlay) pots using the selectin-
put

- When you you enable presets (using preset or
loadpreset)

- Whenyou set a reset

If course you can even use combinations of this: Overlay
a pot with multiple functions, work with presets and set
areset value at the same time.

If none of these three feature are used, there is not virtual
pot and the physical position always counts.

In virtual mode, the last virtual value of the pot is always
saved to the SD card and restored the next time your start
your Droid.

In addition, in virtual mode the LED gauge is automati-
cally activated. That displays the current virtual value of
a pot using the 16 LEDs of the Droid master.

Sharing / overlaying pots

Potentiometers are valuable ressources and sooner or
later you will run into a situation where you wish you had
more pots. So you come up with the idea of using one
pot for more than one function and switch between those
with a button.

Previously DROID offered the circuit switchedpot for
that task but that had certain limitations and also was not
consistent with other circuits.

Let’s make an example: Our task is to share potP1.1so0it
setsindividualrelease values for four different envelopes.
First we need something to switch between these four.

DROID manual for blue-2

We do this with a buttongroup (see page 90):

[p2b8]

[buttongroup]
buttonl = Bl1.1
button2 = B1.2

button3 = B1.3
buttond4 = Bl.4
ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

Now at any given time, exactly one of the four buttons
(i.e. their LEDs) is active. Now we add four pot circuits
using the same pot. The trick is the select input. Each of
these four should be selected just if one specific button
is active. The output of each is being sent to one of the
envelopes:

[pot]
pot = P1.1
select = L1.1
output = _RELEASE1l
[pot]
pot = P1.1

select = L1.2
output = _RELEASE2

[pot]
pot = P1.1
select = L1.3
output = _RELEASE3

[pot]
pot = P1.1
select = L1.4
output = _RELEASE4
213

Finally we can add the four envelopes:

[contour]
trigger = I1
release = _RELEASE1l
output = 01
[contour]
trigger = I2
release = _RELEASE2
output = 02
[contour]
trigger = I3
release = _RELEASE3
output = 03
[contour]
trigger = I4
release = _RELEASE4
output = 04

Now you can switch between the four envelopes with the
buttons and use the pot to adjust the release time of the
selected envelope.

Hints:

+ Don't mixupBl.1andL1.1. If youwoulduseB1.1
for the switching, you would need to hold the but-
tondown while turning the knob. Inwhich case you
wouldn’t need the buttongroup circuit.

. Itis supported (and maybe useful) to select several
of the "virtual” pots at the same time. In such a sit-
uation the turning of the real knob will adjust all of
the selected values at the same time.

- Pots are no motorized faders. So they cannot show
the current value correctly after switching. See be-
low for details.

+ In certain cases the selectat input might come
handy: if you do the switching with one number

Table of contents at page 2

that changes, not a bunch of gate signals. See the
jack table below for details.

Working with presets

The pot circuit supports up to 16 presets. With the use
of the preset input you can select one of these. Set a
number from 0 to 15 there to switch between presets. A
change of that number immediately switches to another
preset.

As an alternative you can work in a triggered mode
by patching loadpreset and savepreset in addition.
Switching presets happens just on these triggers. In trig-
gered mode it’s like have one more preset: the current
“working” position of the pot.

Using a reset value

A trigger to reset will set the virtual position of the
pot to a defined start value (which you can adapt with
resetvalue). This means that now the physical postion
of the pot is not anymore identical with the virtual posi-
tion. For that reason the pot runs in virtual mode as soon
as you connect the reset input.

Invirtual mode that the state of the virtual pot is saved to
the SD card, the pickup procedure (as described below) is
applied and the LED gauge is active per default.

Picking up the pots

When you use overlaying, presets or a reset value, your
potsruninvirtual mode. It means that the physical value
of the pot might not be identical with its output value.

DROID manual for blue-2

As an example let’s assume that - using the upper exam-
ple with overlaying - you first press B1.1 and set decay
fully CW 1.0. Now you select B1.2. Because 0.5 is the
start position of every virtual pot that is the current value
of the second virtual pot. But the physical potisat1.0.

This is solved in the following way:

- If you turn the physical pot right, the value of the
virtual pot is always increased until bothreach 1.0
at the same time.

+ If the physical potis already at 1.0 when you select
a virtual pot, it cannot be increased further. You
first have to turn the pot left a bit and then right
again.

+ If you turn the physical pot /eft, then the value of
the virtual pot is always decreased until both reach
0.0 at the same time.

+ If the physical potis already at 0.0 when you select
a virtual pot, it cannot be decreased further. You
first have to turn the pot right and then left again.

If you really want even more details - here we go: Let’s
assume that the virtual pot is at 0.4 when you select it.
And let’s further assume that the physical pot is at po-
sition 0.8. When you turn it /eft, the physical pot has a
way of 0.8 to go until 0.0 and the virtual just 0.4. So
the virtual pot is moving with half of the speed, for both
to reach 0.0 at the same time. When you turn the pot
right, the virtual pot has 0.6 to go until maximum, while
the physical pot has just 0.2 left until it reaches its max-
imum. So now the virtual pot moves three times faster
than the physical.

This algorithm is different than the common “picking up”
of pots that you see in Eurorack land quite a lot in such
situations. | preferred my solution because it seems to
be more convenient - especially if you want to change a
value a little bit. Also it allows to have multiple virtual
pots to be selected at the same time without having their

214

values immediately snap to the same value.

By the way: it is also possible to select none of the pots.
Which is a convenient way to reset the physical pot to
the middle position so that you always have headroom
for movement left and right, before selecting one of the
virtual pots.

Table of contents at page 2

Input Type Default Description

pot ol)4 0.0 Wire your pot here, e.g. P1.1
outputscale AAN 1.0 The final output is multiplied with this value. It's a convenient method for scaling up and down the pot range.
notch AAN 0.0 By setting this parameter to a positive number you create an artificial “notch” of that size. We suggest using 0.1 (or

10%. The maximum allowed value is 0.5. Greater values will be reduced to that. Note: Using this in combination with
outputscale also moves the notching point. E.g. with outputscale = 2 the notch willbe at1.0.

discrete 10203 Setting this value to 1 or larger switches the pot over to select a discrete integer number, rather than a continous value.
Forexamplediscrete = 5makesthe potoutputone of the exactvalues0, 1, 2, 3or4. Thisisideal for selecting presets
and similar. If you enable ledgauge (highly recommended), it shows you the value by using the LEDs of the master in
an adapted way.

The maximum allowed number is 16.

When using discrete, the resetvalue input is interpreted as a discrete number. So for example if you have discrete
= 5, you can use resetvalue = 3 to set the selected value to the number 3 after a reset. A potential outputscaleis
applied afterwards.

Notes: The options notch and slope do not work in discrete mode. outputscale is still applied, though. All outputs
other than output are dead and output 0.0. discrete = 1does not really make sense, since there is just one value to
select from and the output will always be 0. 0.

slope AL 1.0 Changes the resolution of the pot in lower or higher ranges. Set slope to 2 or more, if you want small values near 0.0
to be “zoomed in”. Set slope to 0.5 or 0.3 if you want to zoom in value nears 1.0.

DROID manual for blue-2 215 Table of contents at page 2

Input Type Default Description

ledgauge AL = The “LED gauge” uses the 16 LEDs of the DROID master in order to indicate the current value of the pot. This is
especially useful for “virtual” pots - i.e. those pots that you get when you use select in order to layer several different
functions onto one pot. In that situation the position of the physical pot can be different than that of the virtual one,
so the gauge shows you the effective virtual value.

Furthermore, by illuminating the inner four LEDs, the gauge shows when the pot hits exactly 0.5. This can only happen
if you use the notch parameter. Otherwise its practically impossible to hit exactly.

The LED gauge is automatically activated if you use select. If you don't like the LED gauge, you can turn it off with
ledgauge = off. Otherwise ledgauge set’s the color of the indicator in the same way as the R-registers do and at the
same time enables the gauge even if you don’t use select.

Here are some color examples that you can use for the value of ledgauge:

0.0 blue

0.1 light blue

0.2 cyan
0.35 | green
0.5 yellow

0.6 orange

0.65 | red

0.75 | magenta

0.9 violet

1.0 blue

The colors repeat over in a kind of wheel at 1.0, so e.g. 0.35 creates the same coloras 1.35.

resetvalue ol D1 0.5 This parameter defines the value your pot will get when there is a trigger to reset. This s the value before outputscale
is applied.

If you use discrete, the parameter does not expect a fraction but a discrete number in the range of the discrete values
(0, 1, 2, etc.

DROID manual for blue-2 216 Table of contents at page 2

Input Type Default Description

reset I A trigger here resets the virtual pot value to 0.5 or - if resetvalue is patched - to that value.
Using reset also means that the pot is running in “virtual” mode. This means that the actual physical position of the
pot does not always match its logical virtual position.

select _— The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat 10203 This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset 10203 This is the preset number to save or to load. Note: the first preset has the number 0, not 1! This circuit has 16 presets,
so this number ranges from 0 to 15.

loadpreset _f_ A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset _f_ A trigger here saves a preset.

Output Type Description

output o s Your pot output comes here.

bipolar /\/\/\ Optional output witharange from-1.0to 1.0, where the center notchisat 0.0 (or from -outputscale to +outputscale
if that is used).

absbipolar AL A variation of bipolar that always outputs a positive value, i.e. the potwillgo 1... 0.5... 0... 0.5... 1 (if outputscale
is not used).

lefthalf AL~ This output allows you to split the pot into two hemispheres. Here you get outputscale ... 0.0 while the potisin the
left half. In the middle and right of it you always get 0.

righthalf AAN This is the same but for the right half. It outputs O while the pot is in the left half and 0.0 ... outputscale from the
middle to the fully right position.

lefthalfinv AL~ This outputs 1.0 - Lefthalf, i.e. the value range 0.0 ... 1.0... 1.0 when the pot moves left — mid — right (and the

DROID manual for blue-2

scaled by outputscale).

217 Table of contents at page 2

Output Type Description

righthalfinv /\/\/\ This outputs 1.0 - righthalf, i.e. the value range 1.0... 1.0 ... 0.0 when the pot moves left — mid — right (and the
scaled by outputscatle).

onchange _f_ This output emits a trigger whenever the pot is turned in either direction.

One pot circuit needs 268 bytes of RAM.

DROID manual for blue-2 218 Table of contents at page 2

11.43 quantizer - Non-musical quantizer

This quantizercircuitis very simple. It readsaninputvolt-
age, quantizesit to the next discrete step that you config-
ured and outputs it.

You can use it for musical purposes by setting the number
of steps to 12 per Volt (which is default). It will quantize
the input to semitones.

The following example scales downa potP1.1to 1V (i.e.
one octave) and then quantizes it to semitones. Since 12
is the default value for steps this parameter can be omit-
ted here:

[quantizer]
input = P1.1 * 1V
output = 01

Note!: In fact you can select 73 semitones here because
if you turn the pot fully CW it will output 1, which will be
scaled to 1V and then quantizedto 1V - whichis the 13th
semitone above the lowest possible note.

Note2: if you are looking for a more musical quantizer
then have a look at the Minifonion circuit.

You can use the Quantizer circuit as a sample & hold cir-
cuit if you set steps to 0 and use the trigger input:

[quantizer]
input = 1I1
steps =10
trigger = I2
output = 01

Input Type Default Description

input AAN 0.0 Patch the unquantized input voltage here

trigger I This jack is optional. If you patchit, the quantizer will work in triggered mode. Here the output pitch is always frozen
until the next trigger happens.

steps 10203 12 Number of steps that one Volt should be divided in. The defaultis 12 and will quantize the input voltage to semitones.
The number of steps is related to a value of 1V which means 0.1. It js allowed to use a fractional number here. E.g.
the value 1.2 will quantize to 12 steps per 10 V (which means 12 steps per 1.0, which can make sense. A value of 0.0
(or lower) will basically mean an infinite number of steps and thus practically disable quantization.

bypass i 0 If you set this gate input to 1 then quantization is bypassed and the input voltage is directly copied to the output.

Output Type Description

output _:“—'H’_ Here comes your quantized output voltage

One quantizer circuit needs 80 bytes of RAM.

DROID manual for blue-2

219

Table of contents at page 2

11.44 queue - Clocked CV shift register

This circuit implements a shift register (a queue) with 64
cells. Each cell contains one CV value. At each clock im-
pulse the CVs each move one cell forwards. The last CV
is dropped. And the current input value is copied to the
first cell.

There are eight outputs, which you can place at any of the

[queue] outputpos3 = 64
input = I1 outputl = 01
clock = I2 output2 = 02
outputd4 = 04 output3 = 03

The next example places three outputs at the positions 3, Please note:

64 cells you like. Ifyou do not specify any pl tthe | 24andea
cellsyou like. [T you donot specity any placement, the . Since the DROID is very precise in processing CV
putputs ;f\re Placed at th.e'flrst eight gells - un'd thus the voltages you can use the queue in order to delay
information in the remaining 56 cells is not being used. [quetlle] - melodies from sequencers etc.
input = . i
The following example reads CVs from the input I1. 04 al- clock = I2 Ast aI:vayss also bthecvlnputts ”m:jtputdpos;]l
ways shows the CV value that was seen at the input four outputposl = 3 .ou 'pu poss may be controlied and change
cycles previously: outputpos2 = 24 in time.
Input Type Default Description
input AP 0.0 This CV will be pushed into the first cell of the shift register whenever a clock occurs.
clock I Each clock signal at this jack will move the CV content from every cell of the shift register to the next cell. The CV in
the last cell will be dropped.
outputposl ... outputpos8 10203 = Specifies the position of each of the eight outputs - i.e. which cell of the shift register it should output. Allowed are
values from 1 up to 64. These jacks defaults to 1, 2, ... 8, so if you do not wire them the eight outputs reflect the first
eight positions of the shift register.
Output Type Description
outputl ... output8 AL Eight outputs for eight different positions of the register. If you do not wire outputposl... outputpos8, these outputs
show the content of the 15t, 2nd gth cq||,

One queue circuit needs 432 bytes of RAM.

DROID manual for blue-2

220 Table of contents at page 2

11.45 random - Random number generator

A random number generator with clocked and unclocked
mode, that can either create voltages at discrete steps
and completely free values.

This circuit creates random numbers between two tun-
able levels minimum and maximum. In clocked mode each
clock creates and holds a new random value. Inunclocked
mode the random values change at the maximum possi-
ble speed (about 6000 times per second).

Simple example for clocked random numbers between TVand3V:
0.0and 1.0 (1.0 translatesinto 10 V at the output):
[random]
[random] clock =11
clock =11 output = 01
output = 01 minimum = 1V
maximum = 3V
Example for creating random output voltages between

Input Type Default Description

clock N Optional triggger: if this input is used then the output holds the current random number until the next clock impulse
(sample & hold)

minimum AL~ 0.0 Minimum possible random number

maximum AL 1.0 Maximum possible random number

steps 10203 0 Number of different voltage levels. If this is set to 0 (default), any voltage can appear, there is no limit. If this is 1,
then there is no random any more since there is only one allowed step (which is the average between minimum and
maximum. At 2 the only two possible output values are minimum and maximum. At 3 the possible levels are minimum,
MLnLNumMaXIMUM and maximum and so on...

Output Type Description

output AAN Output of the random number / voltage

One random circuit needs 76 bytes of RAM.

DROID manual for blue-2

221 Table of contents at page 2

11.46 sample - Sample & Hold Circuit

Thisisasimple sample & hold circuit. Each time a positive Example: input =I1
trigger is seen at the jack sample a new value is sampled sample = I2
from input and sent to the output. output = 01
[sample]
Input Type Default Description
input AAN 0.0 Input signal to be sampled
sample _f_ A positive trigger here will read the current value from input and store it internally.
gate _ This is an alternative way of making the circuit take a sample from the input. Here it is sampling all the time while the
gate is high. In that way it is a bit like bypass. But as soon as the gate goes low again, the output sticks to the last
sample value just before that.
timewindow AAN 0.0 This optional parameter helps tackling a problem that many (non-analog) sequencers show: often their pitch CV is not
at its final destination value at the time their gate is being output. Often you see a very short “slew” ramp of say 5 ms
after the gate. During that time the pitch CV moves from its former to the new value.
Now if you trigger the sample circuit with the sequencer’s gate you will essentially sample the previous pitch CV instead
of the new one. Or maybe something in between.
Now the timewindow parameter introduces a short time window after the sample trigger. During that time period the
sample & hold circuit will constantly adapt to a changed input CV (is essentially in bypass mode). When that time is
over, the input is finally frozen.
The timewindow parameter is in seconds. So when you set timewindow to say 0.005 (which means 5 ms), you give the
input CV 5 ms time for settling to its final value after a trigger to sample before freezing it.
bypass _— While this gate input is high, the circuit is bypassed and input is copied to output.
Output Type Description
output AAN The most recently sampled value is sent here.

One sample circuit needs 92 bytes of RAM.

DROID manual for blue-2

222 Table of contents at page 2

11.47 sequencer - Eight step sequencer

This circuit implements a sequencer that is a bit similar
to the widely known Metropolis sequencer by Intellijel. It
lacks a couple of its features - but most of these can be
patched externally by use of other circuits. On the other
handitis notlimited to 8 stages since you can chain multi-
ple instance of this sequencer together to form one large
sequencer very easily.

Since everything in the DROID is controllable via CV, of
course pitch and gate signals are included, which makes
the circuit much more versatile than it may seem at a first
look.

Here is a small example of a CV sequencer that is playing
four voltages in a turn (it needs a clock into I1):

[sequencer]
clock = I1
pitchoutput = 01
pitchl = 1V
pitch2 = 3.5V
pitch3 = 8V
pitch4 = =2V

If you set the outputscale parameter to ﬁ V (which is

the same as the number ﬁ, you can specify pitches di-
rectly in semitones:

[sequencer]

clock = Il
pitchoutput = 01
outputscale = 1/120
pitchl =0
pitch2 = 12
pitch3 = 10
pitch4d =17
pitch5 =5

DROID manual for blue-2

pitch6 =3
pitch7 5
pitch8 =7

The following example uses four expander buttons for
turning the steps on or off and four pots, which are scaled
down to arange of OV ... 3V.

[p2b8]
[p2b8]

[1fo]
hz = 4
square

_CLOCK

[button]
button = B1.1
led = L1.1

[button]
button = Bl1.2
led =1L11.2

[button]
button = B1.3
led = L1.3

[button]
button = Bl1.4
led = L1.4

[sequencer]
clock _CLOCK
pitchoutput = 01
gateoutput 02
pitchl P1.1 * 3V
pitch2 P1.2 * 3V
pitch3 = P2.1 * 3V

223

pitch4 = P2.2 * 3V
gatel = L1.1
gate2 = L1.2
gate3 = L1L1.3
gated = L1.4

Note: the pitch values you dial in with the pots are not
quantized, so it’s a bit hard to hit a musical pitch. Please
have a look at the circuits quantizer (page 219) and
minifonion (page 174) for how to quantize pitch values.

Making longer sequences

The sequencer circuit is limited to 8 steps. But: you can
easily chain a large number of these circuits together to
form longer sequences. This is super easy. Just set the
jack chaintonext to 1 and place another sequencer cir-
cuit with more steps after that. Here is an example for a
12 step sequencer:

[p2b8]

[1fo]
hz = P1.1 * 30
output = _CLOCK

[sequencer]
clock = _CLOCK
reset = Bl.1

pitchoutput = 01
gateoutput = 02
outputscaling = 1/120

pitchl =1
pitch2 = 8
pitch3 = 13
pitch4 = 25

Table of contents at page 2

pitch5 = 4

pitch6 = 11

pitch7 =7

pitch8 = 21

chaintonext = 1 # continue at next sequencer

[sequencer]

pitchl = 2

pitch2 = 9

pitch3 = 14

pitchd4 = 26

You can make the chain longer by adding more sequencer
circuits. All but the last must have chaintonext set to 1.
Here comes a 19 step sequencer:

[p2b8]

[lfo]
hz = P1.1 * 30
output = _CLOCK

[sequencer]
clock = _CLOCK
reset = Bl.1

pitchoutput = 01
gateoutput = 02
outputscaling = 1/120

pitchl =1
pitch2 = 8
pitch3 = 13
pitchd4 = 25
pitch5 = 4
pitch6 = 11
pitch7 = 7
pitch8 = 21

chaintonext = 1 # continue at next sequencer

[sequencer]
pitchl = 2
pitch2 = 9

DROID manual for blue-2

pitch3 = 14
pitchd4 = 26
pitch5 = 2
pitché = 9
pitch7 = 14
pitch8 = 26
chaintonext = 1 # continue at next sequencer
[sequencer]
pitchl = 3
pitch2 = 10
pitch3 = 15
Notes:

- Define all the input and output jacks like clock,
pitchoutput etc. just for the first sequencer. All
subsequent ones just have pitch, gate, repeat,
slew and cv definitions.

+ The parameter chaintonext is dynamic. You could
make or break the chain with a toggle button or
something else if you like.

224

Table of contents at page 2

Input Type Default Description

clock I Each trigger into this jack advances the sequence by one step.

reset I A trigger here resets the sequence to the first step

stages 10203 = Number of inputs of pitch.., gate.., slew.., cv and repeats that should be used. If you set stages to a number
higher than the number of used inputs, all inputs will be used. If you omit this parameter, all used inputs will be used.

steps 10203 0 With this input you can force the sequencer to begin from start after a certain number of clock cycles. If you omit the
parameter or if it is set to 0, the sequencer will play all stages with all repeats until it resets to the beginning.

transpose AAN 0.0 This voltage is added to the pitch output.

outputscaling AL~ 1.0 The output pitch is multiplied by this parameter.

gatelength AL = The length of the output gates. If it is unpatched, the original input clock is fed through 1:1 (with its own duty cycle).
When used it is a ratio from 0.0 to 1.0 and relative to the cycle of the input clock.

pitchl ... pitch8 AAN 0.0 These are the pitches of the various steps. You can put fixed numbers here but also of course pots or variable inputs.
Note: The number of used input jacks defines the length of the sequence, unless you override that with stages.

cvl ... cv8 AL 0.0 Each step has an optional CV assigned. You can use that CV for modulating something or even outputting a second
pitch information.

gatel ... gate8 _— 1 The gate inputs should be 0 (of f) or 1 (on). For stages with a 0-gate no output gate is produced and the pitch informa-
tion is kept at the previous state. Unpatched gates are considered to be on!

slewl ... slew8 AL 0.0 Enables slew limiting for that stage. The input is not binary but you can set the amount of slew here - individually for
each step. 0.0 switches the slew off, higher values create slower slews.

repeatl ... repeat8 AAN 1.0 Set this to a positive integer number like 1, 2, and so on. It sets the number of times this stage should be repeated until
the next stage will be approached. It is currently not allowed to have 0 repeats - although this would make sense in a
future version.

chaintonext _ = If you set this input to 1, the next sequencer circuit’s pitch and other step inputs will be added to this sequencer. See
the general circuit notes for details.

Output Type Description

pitchoutput AAN The pitch output. It is unquantized.

cvoutput AAN The optional CV output, in case you use the cvl... cv8 inputs.

gateoutput i The gate output.

DROID manual for blue-2

225 Table of contents at page 2

One sequencer circuit needs 660 bytes of RAM.

DROID manual for blue-2 226 Table of contents at page 2

11.48 slew- Slew limiter

This is a CV controllable slew limiter for CVs. Special
about it is that it implements three alternative algo-
rithms. The traditional exponential algorithm (as is com-
monly implemented in analog circuits), a linear algorithm
and a special S-shaped curve.

Here is a simple example for a slew limiting on I1 — 01
which is controlled with the pot P1.1:

[slew]
input = Il
slew = Pl.1
exponential = 01

Exponential shape

This is the “classical” slew limit shape, which originates
from the (negative) exponential loading current of a ca-
pacitor. It is also the shape of a low pass filter that is
used for slew limiting. The slope is proportional to the
distance between the current and the target voltage. Or
in other words the voltage changes fast at the beginning
and slower at the end:

6 .

4 s
3
3
~

2 4

0

time
—— Exponential —— original pitch

DROID manual for blue-2

Linear shape

The linear algorithm simply limits the voltage change per
time to a certain change rate, e.g. to 10 V per second.
If the input voltage changes faster (for example suddenly
jumps up), the output voltage follows that with that max-
imum rate. At a pot position of 0.5 the maximum slew is
120V per second.

6 .

4 1
3
kS
~

2 A4

0

time
—— Linear —— original pitch

S-Curve shape

The S-curve - when applied to pitches - sounds different
than an exponential curve since it more reflects the way
e.g. a trombone player accelerates and deaccelerates his
arm in order to move to another pitch. In our algorithm
we assume that in the first half of the time the arm accel-
erates at a constant rate (which is controlled by the slew
parameter) and at the second half of the time it deaccel-
erates (again at that rate, just negative), until it exactly
reaches the target pitch.

There is one audible difference to a real trombone player,
however. The real musician would start to move his arm

227

before the new note begins, in order to be at the target
positionright in time. But here the movement is initiated
by the pitch change it self so it is delayed by the slew lim-
iting.

6 .

4 A4
3
3
~

2 A4

0

time
—— S-curve —— original pitch

Table of contents at page 2

Input Type Default Description

input VAT Wire the CV that you wish to slew limit here.

slew AAN 1.0 This controls the slew rate. A value of 0.0 disables slew limiting. The output immediately follows the input without
any delay. A value of for example 2.0 in linear mode means that 2.0 seconds are needed for a change of 1V (which is
avalue of 0.1 or one octave if used as pitch). In the other two modes the slew time is tuned to sound similar. Negative
values of this parameter are treated as 0. 0.

slewup AAN 1.0 This allows a special handling when the voltage moves upwards. The slew limiting for upwards is slew multiplied
with slewup. Since slew defaults to 1.0 you can just use slewup and slewdown if you want to control both directions
separately.

slewdown AL~ 1.0 Sets the slew rate for downwards movement.

gate _ = If this jack is patched, the slew limiting is only active while this gate is high. Otherwise it’s like setting the slew param-
eter to zero.

Output Type Description

exponential AP Output for the resulting CV with the exponential (classical) slew algorithm applied

linear AP Output for linear slew limiting

scurve AL Output with the slew limitation according to the S-curve algorithm.

One slew circuit needs 104 bytes of RAM.

DROID manual for blue-2

228

Table of contents at page 2

11.49 spring - Physical spring simulation

A physical simulation of a mass hanging from on an
ideal springk which can create interesting “bouncing” CV
sources.

Consider the following drawing:

0.00 T
0.25 ~+
0.50 T
075 1 springforce
1.00 T+
4 gravity

Without any further parameters the mass starts at po-
sition 0.00 and velocity 0.00 and is accelerating down-
wards until the force of the spring equals the gravity. At
this point it decelerates until the velocity is zero. Now
the mass is being accelerated upwards until it reaches the
top position at 0.00 again. This results, in essence, to a
damped sine wave.

The positionandvelocity are available at their respec-
tive outputs ready to be used for modulation.

DROID manual for blue-2

[spring]
position = 01
velocity = 02

Now, this could be done more easily with the LFO circuit
(see page 137). Butit's getting interesting when you look
at the other parameters and the modulation possibilities.
Please look at the table of jacks for details.

Friction

Per default the motionis without any friction and thus the
mass will move up and down forever. You can apply two
different types of friction. flowresistance is the type
of friction a body has in a liquid or gas. Its force is rela-
tive to its velocity. Whereas the normal friction force
is constant.

When you use any type of friction, the spring will finally
stop swinging. You need to either shove it from time to
time or reset it to its start with the reset trigger input.

The following example will create a slowly decaying sine
wave, which is restarted whenever a trigger is sent to
reset:

[spring]
flowresistance = 0.5
reset = Il

position = 01
velocity = 02

229

Shoving

You also can shove the mass downwards or upwards. As
long as you send a gate signal into shove the mass will
be shoved downwards. The exact force can be set with
shoveforce and defaults to being the same as the grav-
ity. A negative value will lift the mass upwards.

Setting shove to a constant 1 value will steadily apply
shoveforce, which can be interesting as that is itself a
changing CV (some LFO, feedback loop or whatever).

The physical model

Please note that the physical modelis normalized inaway
such that every parameter is 1. For example the mass is
kg and the gravity is 1%. The force of the springis 1.

In order to avoid anomalies or infinities, the velocity of
the mass is limited to +10"* and the position is limited
to the range of £10 m.

Table of contents at page 2

Input Type Default Description

mass VAT 1.0 The mass of the object on the spring. The heavier it is, the farther the spring will move up and down.

gravity AAN 1.0 The gravity of the simulated planet the spring is mounted at. If you set the gravity to zero, the mass will move exactly
around the zero position from positive to negative and back. But you need to shove it or set a start position other than
0, in order to get it started.

springforce AL 1.0 The force of the string per mit is stretched. In an ideal spring the force is proportional to the current elongation.

flowresistance AL 0.0 Setting this to a value > 0 will dampen the oscillation in a way, that higher velocities will be damped more then slower
ones. This means that impact of the friction will get less and less as time goes by and the movement slows down.

friction AL~ 0.0 Setting this to a value > 0 will also dampen the oscillation, but in a way that is independent of the current speed of
the mass.

speed AAN 1.0 This parameter speeds up (or slows down) the perceived time. It works on a 1V/Oct base. So if you set speed to 2V or
0.2 it will speed up the movement by 100%.

shove _— 0 While this gate input is logical 1, an extra force of 1N is applied to the mass pointing downwards. You can change that
force with shoveforce.

shoveforce AL 1.0 This is the force being applied to the mass while shove is active

reset _f_ Resets the whole system to its start position.

startvelocity AL~ 0.0 Sets the velocity the mass has which DROID starts of a reset is triggered

startposition AL 0.0 Sets the position the spring has which DROID starts of a reset is triggered

Output Type Description

velocity AL~ Outputs the current velocity of the mass

position AAN Output the current length of the string. If the string goes upwards (which is possible with certain modulations), this

can be negative.

One spring circuit needs 168 bytes of RAM.

DROID manual for blue-2

230 Table of contents at page 2

11.50

This circuit automatically creates a perfect pure intona-
tion for up to eight input pitches.

Introduction

This means that all pitches are in just intervals, which cor-
respond to small whole number ratios such as % or g.
Assuming that you have perfectly tuned and calibrated
VCOs, If these pitches are used to play a chord, there will
be no or just minimal audible beatings and the chord will

sound very pure.

In normal equal temperament intonation all intervals are
amultiple of ¥/2 and thus there is no pure interval at all,
with the exception of the octave. So all chords will sound
impure.

The problem about pure or just intonation is, that you
need to decide for just one scale, e.g. C major, and then
tune all 12 notes in a way that chords from that scale
sound good. But as soon as you change the scale, the in-
tervals will sound ugly.

What makes the superjust uniqueis that fact, thatitau-
tomatically creates a pure intonation in a dynamic way. It
constantly “listens” to the notes that are currently being
played and creates a perfect intonation just for those, not
forascale or so. As soon as at least one note changes, all
notes are retuned in order to find a new perfect tuning.
This is a bit like a well-trained string ensemble or choir,
where each musician listens and adjusts his or her pitch
in relation to all others.

DROID manual for blue-2

superjust - Perfect intonation of up to eight voices

Usage

The nice thing is: you don’t need any configuration. You
need not specify any information about the root note,
the scale or anything else. Neither need the inputs be
quantized so some scale or tuned to 440 Hz. The circuit
will simply analyse all input pitches, apply its algorithm
(patent pending) and then just slightly raises or lowers
each note so that at the end each pair of frequencies have
a rational oscillation ratio with small numerator and de-
nominator. This is done in a way that the average pitch
does not change. Just pipe your pitches through that cir-
cuitand you are done. And if you want to use a quantizer,
use superjust after quantization.

Here an example for three voices:

[superjust]
inputl = I1
input2 = I2
input3 = I3
outputl = 01
output2 = 02
output3 = 03

Tuning

Of course, an exact tuning of your VCOs is crucial, since
the pitch differences between a normal tempered into-
nation and a perfect intonation are quite small. The cir-
cuit helps you in the process of tuning with the inputs
tuningmode, which you can map to a toggle button:

[button]
button = B1.1

231

led = L1.1
[superjust]
inputl = I1
input2 = I2
input3 = I3
outputl = 01
output2 = 02
output3 = 03

tuningmode = L1.1

Now when the button B1.1 is active, all outputs will out-
put zero volts. Tuning with 0 V is not optimal in some
cases. You should tune your VCOs always roughly in the
average pitch you play them. So you can set the tuning
voltage with the parameter tuningpitch. Here it is set
to 2 V (2 octaves higher then 0 V):

[button]
button = Bl.1
led = L1.1

[superjust]
inputl = I1
input2 = I2
input3 = I3
outputl = 01
output2 = 02
output3 = 03

tuningmode = L1.1
tuningpitch = 2V

Sometimes it is desirable to change the tuning pitch to
other octaves on the fly. This example uses pot P1.1 for
going through several octaves, and uses a quantizer for
creating steps of 1V each:

Table of contents at page 2

[button] Perfect VCO calibration input = _01
button = B1.1 output = 01
ted = L1.1 If you really want to eliminate all beatings in your chords nudgeup = B1.1
. . . nudgedown = B1.3
[quantizer] while using analog VCOs, you probably need something
input = P1.1 to correct tracking deviations. Here | strongly recom- [calibrator]
steps = 1 # 1 step per octave mend using the circuit calibrator (see page 93). Here input = 02
output = TUNINGPITCH is an example with three voices, where buttons of a P2B8 output = 02
are used for fine tuning the VCO tracking in each octave: nudgeup = B1.2
[superjust] nudgedown = Bl.4
inputl = I1)
input2 = I2 [superjust] [calibrator]
input3 = 13 inputl = Il input = _03
outputl = 01 input2 = 12 output = 03
output2 = 02 input3 = I3 nudgeup = B1.5
output3 = 03 outputl = 01 nudgedown = B1.7
tuningmode = L1.1 output2 = _02
tuningpitch = _TUNINGPITCH output3 = _03
The number of pitch inputs and pitch outputs you patch
[calibrator] should be identical.
Input Type Default Description
inputl ... input8 v = 15t .. 8th pitchinput
tuningmode . 0 While this is 1, all outputs output the value set by tuningpitch. This is for tuning all outputs. Since perfect tuning is
crucial for perfect intonation, this is quite useful.
tuningpitch é%’t oV This pitch CV will be output while the tuning mode is active.
bypass _— 0 While this is 1, all inputs are passed through to the outputs without changes.
transpose d % ov This value is being added to all outputs, but not in tuning or bypass mode. It can e.g. be used for making a vibrato on
a chord.
Output Type Description
outputl ... output8 v 15t ... 8tN pitch output

One superjust circuit needs 196 bytes of RAM.

DROID manual for blue-2 232 Table of contents at page 2

11.51 switch - Adressable/clockable switch

This circuit supports a set of various switching opera-
tions. It can switch several inputs to one output either
by means of addressing the input via CV or by stepping
forward and backward. You can do the same vice versa:
connecting one input to one of several outputs while set-
ting the inactive outputs to 0 V.

You can even use several inputs and outputs at the same
time and thus create an n x m switch with the option of
rotating the outputs against the inputs by means of ad-
dressing or stepping.

At minimum you need to patch two inputs and one out-
put (or vice versa), plus a switch like forward, backward
oroffset.

The first example switches four inputs I1 ... I4 to one
output 01 be means of a trigger at forward. At the be-
ginning Il is wired to 01. Each time a trigger is seen at
forward the switch switches to the next input and at the
end starts over at I1 again. So it cycles through I1 — I2
— I3 = I4 — I1:

[switch]
inputl = Il
input2 = I2
input3 = I3
inputd = I4
output = 01
forward = I8

Please note, that output and outputl are synonyms
here. You can use either way you like. Just the same is
input just a shorthand for inputl.

Now Let’s do the opposite thing: distribute one input to
four different outputs:

DROID manual for blue-2

[switch]
input = I1
outputl = 01
output2 = 02
output3 = 03
outputd4 = 04
forward = I8

Now, if you try this out, you might notice that a trigger
to forward moves the selected output backwards! This
is no bug but very logical. The reason will get more clear
if we build a switch with several inputs and outputs. Let’s
make a 3x 3 switch:

[switch]
inputl = I1
input2 = I2
input3 = I3
outputl = 01
output2 = 02
output3 = 03
forward = I8

Now a trigger to forward moves each output forward to
the next input. That is the same as saying each input
moves backward to the previous output. Of course you
can change the direction by using backward instead of
forward.

Instead of moving the switch with a trigger you also can
address it by usinga CV at the input offset. In this exam-
ple we use a steady CV being either O (for selecting 01) or
1(10V) for selecting 02:

[switch]
input = 1I1

233

outputl = 01
output2 = 02
offset = I7

Using two inputs and two outputs creates a switch that
can swap these two. Here with offset 0 inputl is con-
nected to outputl and input2 to output2. If offset is
1, inputl will be connected to output2 and input2 to
outputl.

[switch]
inputl = Il
input2 = I2
outputl = 01
output2 = 02
offset = I7

Now let’s make another example for a CV addressable
switch. The CV is read from I7. At a voltage of 0 V
outputlis connected to inputl, at 1V to input2, at 2V
to input3, at 3V to input4, at 4V to inputlagain, at5V
to input2 and soon:

[switch]
inputl = I1
input2 = I2
input3 = I3
inputd = I4
outputl = 01

offset = I7 * 10 # 1 V per switch step

Generally speaking, if you connect less inputs than out-
puts, the unconnected inputs are regarded as getting a
0 Vinput. If you connect less outputs then inputs, the un-
connected outputs send their values into the black horri-
ble void.

Table of contents at page 2

Input Type Default Description

inputl ... input8 VAT 0.0 15t . 8thinput

forward I If a trigger or gate is received here, the switch adds one to the current internal switch offset. So every output moves
to the next input and every input moves to the previous output.

backward _f_ Similar then forward, but switches backwards

reset I Resets the switch to its initial position. Assuming offset is at 0, inputl is connected to outputl, input2 to output2
etc.
If reset and a trigger at forward / backward happen at the same time (within 5 ms), the reset will win and the switch
is being reset to offset 0. This avoids problems with unprecise timing of external sequencers.

offset 10203 0 This allows CV addressable switching. The number read here is being used a shifting offset and is always added to
the internal offset. For example if you send 5 here, it is like you have triggered forward five times after the last reset.
Please note, then 5 would mean 50 Volts, not 5 Volts. So if you patch an external CV like I1 here, you probably want
to multiply with some useful number.

Output Type Description

outputl ... output8 AL 15t ... 8t output

One switch circuit needs 288 bytes of RAM.

DROID manual for blue-2

234 Table of contents at page 2

11.52

This circuit has been superseded by the new circuit
pot (see page 212). (see page 212). pot can do all
switchedpot can do and much more. So switchedpot
will be removed soon.

This circuit allows you to use one of your potentiometers
on your controllers for up to eight different functions.
It is like creating up to eight virtual pots. With the in-
puts switchl .. switch8 you select, which of these vir-
tual pots are currently active. When you turn the (physi-
cal) pot, all active virtual pots are being changed.

The values of all virtual pots start at center position (0.5).

The current values of all virtual pots are saved in the
DROID’s internal flash memory, so next time you power
on you have all settings of the virtual pots reserved.

Here is an example, where one pot is used to control both
decay and release of an envelope.

[switchedpot]
pot = P1.1
switchl = Bl.1
switch2 = Bl1l.2
outputl = _DECAY
output2 = _RELEASE
[contour]
gate = Il
decay = _DECAY
release = _RELEASE
output = 01

Now - while you press and hold button B1.1 and turn the
knob, the decay parameter will change. Holding B1.2 will
change release. Holding both at the same time is also

DROID manual for blue-2

switchedpot - Overlay pot with multiple functions (OBSOLETE)

possible and will change decay and release at the same
time.

Hints:

+ If you do not like to hold the buttons then you
might want to use the button circuit for convert-
ing the buttons into toggle buttons.

- If you want one button per function and want
always one pot to be selected, you can use the
buttongroup circuit for combining the buttons
into a group.

Picking up the pots

Pots are no encoders. So when reusing a pot for more
than one function at a time there is always the problem
that when you switch to one pot function the pot prob-
ably currently is not set to the current value of the func-
tion. As an example let’s assume that - using the upper
example - you first pressB1l.1and set decay fully CW1.0.
Now you select release. Because 0.5 is the start position
of every virtual pot that is the current value of release.
But the physical potisat1.0.

DROID solves this in the following way:

+ If you turn the physical pot right, then the value of
the virtual pot is always increased until both pots
reach 1.0 at the same time.

+ If the physical pot is already at 1.0 when you select
a virtual pot, it cannot be increased further. You
first have to turn the pot left a bit and then right
again.

+ If you turn the physical pot /eft, then the value of
the virtual pot is always decreased until both pots

235

reach 0.0 at the same time.

+ If the physical pot is already at 0.0 when you select
a virtual pot, it cannot be decreased further. You
first have to turn the pot right a bit and then left
again.

Let’s assume that the virtual pot is at 0.4 when you se-
lect it. And let’s further assume that the physical pot is
at position 0.8. When you turn it /eft the physical pot
as a way of 0.8 go until 0.0 and the virtual just 0.4. So
the virtual pot is moving with half of the speed, so that
both reach 0.0 at the same time. When you turn the pot
right, on the other hand, the virtual pot has 0.6 to go un-
til maximum while the physical pot has just 0.2 left until
it reaches its maximum. So now the virtual pot moves
three times faster than the physical.

This algorithm is different than the common “picking up”
up pots that you see in Eurorack land quite a lot in such
situations. We preferred our solution over that because it
seems to be more convenient - especially if you just want
to change a value just a little bit. Also it allows to have
multiple virtual pots to be selected at the same time.

By the way: in the upper example it is possible to select
none of the pots. That is a convenient way to reset the
physical pot to the middle position so that you always
have headroom for movement left and right, before se-
lecting one of the virtual pots.

Table of contents at page 2

Input Type Default Description

pot ol)4 The pot that you want to overlay, e.g. P1.1

bipolar _— If this input is set to 1, the usual pot range of 0 ... 1 will be mapped to -1 ... +1, which converts this to a bipolar
potentiometer. This is done by multiplying the output with 2.0 and substracting 1.0 afterwards.

switchl ... switch8 i These inputs select which of the virtual pots should be changed when the physical pot is being turned. These should
be set to 0 or 1 (or of f and on).

Output Type Description

outputl ... output8 ol i The output of the up to eight virtual pots.

One switchedpot circuit needs 204 bytes of RAM.

DROID manual for blue-2

236

Table of contents at page 2

11.53

This circuit converts a steady input clock into an output
clock with flexible timing modifications. The most com-
mon use is a “swing” feeling where every second note is
delayed. But this circuit is much more flexible.

The length of a timing pattern can be up to eight steps.
That means that you can set a different relative time shift
for each clock pulse in a sequence of up to eight.

Let’s start with a simple swing pattern, which is just a se-
quence of two. We assume an external input clock at G1
and output the resulting modified clock to G2:

timing - Shuffle/swing and complex timing generator

swing pattern.

Creating a reverse swing, where every second pulse is
early is as easy as using a negative number for timing2:

[timing]
clock = G1
output = G2

timingl = 0.0
timing2 = -0.3

Creating a sequence with an odd number of steps can cre-
ate rather weird groove patterns. Look at the following

Now every second note of three is delayed by 20% and ev-
ery third note by 10%.

Of course, you can use timingin order to create a simple
clock shift by creating a pattern with just one timing, as
well. The following example will shift the input clock for-
wards, so that it always comes a bit earlier. This can be
used for compensating a slight delay of a master clock:

[timing]
clock = G1
output = G2

timingl = -0.03

[timing] example:
clock = G1
output = G2 Notes:
timingl = 0.0 [timing]
timing2 = 0.3 clock = Gl - This circuit needs a steady and stable input clock.
output = G2 + In order to get a synchronized start together with
. . timingl = 0.0 the rest of your patch, it is advisable also to make
In this example eyery secon'd clock Pulsg is delayed by timing2 = 0.2 use of the reset input.
30% of one clock tick’s duration - which gives a standard timing3 = 0.1
Input Type Default Description
clock I Patch a steady clock here for this circuit to be of any use
reset _f_ A trigger here resets the internal step counter and restart at step 1.
timingl ... timing8 AP = Specifies a relative timing for each step in relation to the input clock. A timing of 0.3 will shift the respective beat 30%
of a clock cycle behind, while -0.3 will make it 30% early.
Output Type Description
output I Here comes the modified output clock

DROID manual for blue-2

237

Table of contents at page 2

One timing circuit needs 188 bytes of RAM.

DROID manual for blue-2 238 Table of contents at page 2

11.54

This circuit has been superseded by the new circuit
button (see page 86). button can do all togglebutton
can do and much more. So togglebutton will be re-
moved soon.

This small utility circuit converts a normal push button
into a toggle button that is either on or of f. It toggles
its state every time the button is being pressed. It even
can persist the current state of the button in the DROID’s
internal flash memory, so at the next time you start your
modular the button will have the same state as just be-
fore you switched it off.

Typically you will wire button to one of your controllers’
buttons like B1.1 and led to the LED in that button
(L1.1). LED will then always visualise the current state
of the button. As a side effect the LED register L1.1 will
store the button state as a value 0 or 1 and hence can be
used by some other DROID as aninput.

Here is a typical example. The button is being used for
enabling the loop in the CV looper:

[togglebutton]
button = Bl.4
led = L1.4
[cvlooper]
loop = L1.4

If you do not want the state of the button to be persisted
in the DROID's flash memory then use startvalue for
setting a start value. This make sense for the CV looper
since the loop is apparently empty anyway if you start
your DROID. By the way: off is a synonym for 0.

DROID manual for blue-2

togglebutton - Create on/off buttons (OBSOLETE)

[togglebutton]
button = Bl1.4
led = L1l.4
startvalue = off
[cvlooper]
loop = L1.4

Since a multiplication with 0 or 1 can switch off or on a
signal you can use the LED register directly for enabling
a signal. The next example uses a button for switching
between 0 V and the output of an LFO:

[togglebutton]
button = Bl1.4
led =L1.4
[1fo]
level =L1.4 #0or 1
sine =01

Usually the toggle button switches between the two val-
ues0and 1. Sometimes you need different values. There-
fore there are the two inputs offvalue and onvalue for
two alternative values for these two states and the out-
put outputl where you can fetch that value (since led
will continue to send 0 or 1 in order for the LED to work
properly). Here is an example for a toggle button that
switches a clock divider between 2 and 4:

[togglebutton]
button = Bl.4
led = L1.4
offvalue =2
onvalue =4
output = _CLOCK_DIV

239

[clocktool]
input = Gl # external clock
output = G2
divide = _CLOCK_DIV

Of course offvalue and onvalue are CV controllable.
How can make this sense? Well - as they can take variable
inputs you can use a togglebutton for directly switching
between two different input CV signals. The following
example will send two different wave forms of an LFO
to 01. The button B3.1 switches between sawtooth and
sine:

[lfo]
hz =2
sawtooth = _SAWTOOTH
sine = _SINE
[togglebutton]
button = B3.1
led = L3.1
offvalue = _SAWTOOTH
onvalue = _SINE
output =01

Hint: if you need to have not only two but three or four
different states for your button then have a look at the
circuit button.

Buttons with up to four layers

The toggle button can overloaded with up to four func-
tions. For switching between these layers you need a CV.
This example assigned three different layers to one but-
ton. Each layer has its own state.

Table of contents at page 2

[togglebutton] output3 = _FO00_BAR sulting in a number of 0.5 which is multiplied by 2 and
button = B1.4 switch = I1 * 2 thus evaluates to 1), then a second copy of the button
led = L1.4 is activated with its own state. The LED now shows the
2::53:; - _E?\SE\I;EE#S::I; Now if I1 is near zero volts, then the button behaves like state of that second button which output will outputs the

- - in the previous example. But when you set it to 5V (re- value of the first button.

Input Type Default Description

button _f_ The actual push button. Usually you want to wire this to B1.1, B1.2 and so on: to one of the push buttons of your
controllers. Each time that input goes from low to high the state of the push button will toggle.

reset I A positive trigger edge here will reset the button into the state “not pressed” - regardless of its current state

onvalue AAN 1.0 Value sent to output when the push button is on. Setting this to a different value than the default value saves you
attenuating its value later on when you use it as a CV.

offvalue AL~ 0.0 Value sent to output when the push button is off.

doubleclickmode _ off This input can enable a double click mode when set to 1. In that mode the button only toggles it's constant state if you
double press it in a short time. Otherwise it behaves like a momentary button, that inverts the persisted state (which
you toggle with the double click).

startvalue _— State of the push button when you switch on your system. Setting this to on or of f will force the buttoninto that state.
Using this jack disables the persistence of the state! In switched mode this will be used for the other button layers as
well.

Output Type Description

led _§ i When the button’s state is on a value of 1.0 will be sent to that output - regardless of the values in onvalue and
offvalue. Usually you will wire this jack to the LED within the button, e.g. toL1.1, L1.2 and so on

output AAN This jack will output either onvalue or of fvalue depending on the state of the 15t .. ath putton. If you have not wired
those inputs then this is the same as the led output.

inverted AL~ The same as outputl, but sends onvalue when the button is off and offvalue when the button is on. Note: there is
no inverted version of output2 ... outputa4.

negated _— Similar to inverted, but always sends 1 when the button is off and 0 when the button is on - independent of the values

of onvalue and offvalue.

DROID manual for blue-2

240 Table of contents at page 2

One togglebutton circuit needs 120 bytes of RAM.

DROID manual for blue-2 241 Table of contents at page 2

11.55 transient - Transient generator

This circuit creates (possibly very slow) linear transients
from a defined start value to an end value. The dura-
tion of that transition is either set in seconds or specified
as a number of clock ticks. This circuit is built in a way
that very long transients are possible, even several days,
weeks, months, years or whatever you like.

Here is a simple example:

[transient]
start = 1V
end = 3V
duration = 600
output = 01

Here the duration is meant to be 600 seconds (10 min-
utes). So at the beginning 01 will be at 1 V. Then it rises
slowly until after ten minutes it reaches 3 V. There it stays
forever.

There are two ways of restarting it again. Either you send
a trigger to reset or you set loop to 1. When loop is ac-
tive, the transient will start over at start immediately
when it reaches end:

[transient]
start = 1V
end = 3V
duration = 600
output = 01
reset = Gl
loop =1

As an alternative to seconds you can specify the length
in terms of clock ticks. This needs a steady clock signal
patched into the clock input.

DROID manual for blue-2

[transient]
start = 0.2
end = 0.7
duration = 32
clock = I1
output = 01

Here the duration of one transient is exactly 32 clock
ticks. This makes it simpler to exactly align a transient
with a musical structure of a song or the like.

Changes while in the air

As start, end and duration are CV inputs, they might
change while the transient is running. This is how
transient behaves in such situations:

The start value is just taken into account whenever the
transient starts. this is:

- When the DROID starts
+ When there is a trigger at reset
- When the transient reaches the end and Loop is on.

Whenever that happens, the current output level is set to
start. Alsothe output phaseissetto0. Phaseis akind of
internal clock that measures which part of the transient
has been run through already.

At any given time transient assumes that the phase
times the duration equals the time left. And the distance
to go in the remaining time is the current distance from
the current output level to the end. These two values di-
rectly translate into a slope. This slope now determines
how fast the output level is moving and into which direc-
tion.

242

From this follows:

- When you make the duration longer in-flight, the
speed of change will get slower.

+ When you change start in-flight, nothing hap-
pens.

+ When you change end in-flight to a value that is
“farther” away from the current level, the speed of
change increases.

- Ifyou change end to be the current level of the tran-
sient, it seems to stop, but in fact the slope is just
zero and it still lasts until the duration is over.

+ The output level is always smooth. No sudden
steps. With one exception: When the transient re-
sets to its start value.

In pingpong mode (see the table of inputs for details) this
changes accordingly. While the transient is on its way
back, consider start and end exchanged.

Table of contents at page 2

Input Type Default Description

start VAT 0.0 Start value of the transient

end AL 1.0 Target value of the transient

duration AAN 1.0 Duration: if the clock input is used, it is in clock ticks. Otherwise it is in seconds. A negative duration will be treated
as zero. And a zero duration will make the output always be at end level.

loop _ 0 If this is set to 1, the transient will start over again as soon as it reaches the end.

pingpong _— 0 If this set to 1, the transient will start moving backwards towards the start when it has reached end. It will swing back
and forth, in fact looping infinitely.

freeze _ i 0 while this is set to 1, the transient it frozen at its current position.

reset I A trigger here will immediately set the transient back to its start value.

clock _f_ If you patch a clock here, the duration will be set in terms of clock ticks, not of seconds. This needs to be a steady clock
in order to get predictable results.

Output Type Description

output ’\/\/‘ Here comes the current value of the transient.

phase AL~ This output reflects the current phase of the transient. It behaves as if start would be 0 and end would be 1.

endoftransient _ When loop and pingpong is off, this output goes to 1 when the transient has reached the end - and stays there. In loop

mode just a short trigger is sent. In pingpong mode that trigger is not sent when the transient has reach the end-value,
but when it is back at start (i.e. after one full cycle).

One transient circuit needs 168 bytes of RAM.

DROID manual for blue-2 243 Table of contents at page 2

11.56

This circuit implements a CV controllable delay for a trig-
ger or gate signal. It listens for triggers at input and
sends the same triggers /ater to the output. It does not
look at the voltage level of the inputs. The output trig-
gers are always sent with 10V (I1 ... I8)or5V (onthe
G8 expander).

As a difference to an analog trigger delay this circuit is ca-
pable of keeping memory of up to 16 triggers. This means
itis able to process further incoming triggers while previ-
ous triggers are still in the delay. This allows you to delay
complex rhythmic patterns, e.g. in order to reuse the out-
put of one track of a trigger sequencer shifted in time for
another instrument.

Furthermore, it is able to retain the gate length of the
original input signal and output the delayed gate with ex-
actly the same length.

Here is the simplest possible example, which delays an
incoming gates / triggers by exactly one second:

triggerdelay - Trigger Delay with multi tap and optional clocking

[triggerdelay]
input = Gl
output = G2

You can set the delay in seconds via the delay jack. And
if you patch gatelength, the original gate length is being
ignored and overridden by this value (also in seconds):

[triggerdelay]
input = Gl
output = G2
delay = 0.1 # 0.1 seconds
gatelength = 0.05 # 50 ms

Clocked mode

triggerdelay supports a clocked mode, in which all tim-
ing is relative to aninput clock. You enable clocked mode
by simply patching a steady clock into clock. Now delay
and gatelength are relative to one clock cycle.

The following example delays all input triggers by one
clock cycle (which is the default):

[triggerdelay]
input = Gl
output = G2
clock = G3

If you specify delay and/or gatelength they are now
measured in clock cycles:

[triggerdelay]
input = Gl
output = G2
clock = G3
delay = 16 # clock cycles
gatelength = 0.5 # half a clock cycle

Input Type Default Description

input _ 0 Patch triggers or gates to be delayed here.

delay AL 1.0 Amount of time the incoming triggers are being delayed. When clock is patched, this is in relation to one clock cycle,
so a delay of 4 will delay the input pattern by exactly 4 beats. Fractions are allowed also. If clock is not patched, this
parameter is in seconds. So for example in order to delay by 100 ms you need a delay of 0. 1.

gatelength AL = Unless you patch this jack the length of the output gates is exactly the length of the input gates. By use of this param-
eter you override that length and set a fixed length in seconds - or if clock is being used - in clock cycles.

repeats 10203 1 Number of times the delayed trigger is being repeated. Each further repetition is with the same delay.

mute i 0 A high gate signal suppresses any further output gates. However, the current gate is finished normally.

DROID manual for blue-2

244

Table of contents at page 2

Input Type Default Description

clock I When you patch this input, the trigger delay runs in clocked mode. In this mode delay is relative to one clock cycle.
l.e. adelay if 0.5 will delay the trigger by half a clock cycle. The same holds for gatelength. That is measured in clock
cycles, too.

Output Type Description

output i Outputs the delayed triggers/gates, while keeping the gate length - unless you have changed that

overflow _— Whenever there are more input triggers than this circuit can keep memory of, this output outputs a gate of 0.5 sec
length. You can wire this to an LED in order to know when this happens.

One triggerdelay circuit needs 340 bytes of RAM.

DROID manual for blue-2 245 Table of contents at page 2

	Installation
	Creating DROID patches
	Getting started
	Working with the Forge
	Using the master's inputs and outputs
	Numbers and voltages
	Multiply and add, attenuation and offset
	Internal connections
	Using controllers

	Creating DROID patches with a text editor
	General procedure
	Finding a problem in your DROID patch
	Basic structure of the patch file
	Inputs, outputs and other registers
	Attenuating and offsetting inputs
	Internal patch cables
	Using outputs as inputs
	Using inputs as outputs
	Parameter arrays
	Comments & spaces
	More than one patch on the memory card

	Droid under the hood
	How the module's state is saved
	The order of the circuits
	Displaying the value of a register
	Displaying current values

	Controllers and Expanders
	The P2B8 controller
	The P10 controller
	The S10 controller
	How to use controllers in your patch
	Controller latency
	The G8 expander

	The X7 expander
	Quick start
	General overview
	Installation
	USB access to your SD card
	MIDI
	MIDI through
	Four gate outputs
	Eight multi color LEDs
	Fast patch upload via Sysex
	Software update for the X7
	Some technical details

	The M4 motor fader controller
	Quick start
	Installing the M4
	Using the faders in your patches
	The touch plates
	The LEDs
	Registers
	The motor faders
	Adapting the fader power
	The power management
	Discharging
	Software update for the M4

	Firmware upgrade
	What version do you have?
	Normal update procedure
	Upgrade from green to blue

	Calibration, Factory Reset other maintainance stuff
	The maintenance mode
	Factory reset
	Calibration of the outputs
	Using your own SD card

	Hardware
	Reference of all circuits
	 adc – AD Converter with 12 bits
	 algoquencer – Algorithmic sequencer
	 arpeggio – Arpeggiator – pattern based melody generator
	 bernoulli – Random gate distributor
	 burst – Generate burst of pulses
	 button – Does all sorts of useful things with buttons
	 buttongroup – Connected buttons
	 calibrator – VCO Calibrator
	 chord – Chord generator
	 clocktool – Clock divider / multiplier / shifter
	 compare – Compare two values
	 contour – Contour generator
	 copy – Copy a signal
	 crossfader – Morph between 8 inputs
	 cvlooper – Clocked CV looper
	 dac – DA Converter with 12 bits
	 droid – General DROID controls
	 euklid – Euclidean rhythm generator
	 explin – Exponential to linear converter
	 faderbank – Create multiple virtual faders in M4 controller
	 fadermatrix – Matrix of up to 4x4 virtual motor faders
	 firefacecontrol – Control a RME Fireface interface (experimental)
	 fold – CV folder – keep (pitch) CV within certain bounds
	 fourstatebutton – Button switching through 4 states (OBSOLETE)
	 lfo – Low frequency oscillator (LFO)
	 logic – Logic operations utility
	 math – Math utility circuit
	 matrixmixer – Matrix mixer for CVs
	 midifileplayer – MIDI file player
	 midiin – MIDI to CV converter
	 midiout – CV to MIDI converter
	 midithrough – MIDI routing through X7
	 minifonion – Musical quantizer
	 mixer – CV mixer
	 motoquencer – Motor fader sequencer
	 motorfader – Create virtual fader in M4 controller
	 notchedpot – Helper circuit for pots (OBSOLETE)
	 notebuttons – Note Selection Buttons
	 nudge – Modify a value in steps using two buttons
	 octave – Multi-VCO octave animator
	 polytool – Change number of voices in polyphonic setups
	 pot – Helper circuit for pots
	 quantizer – Non-musical quantizer
	 queue – Clocked CV shift register
	 random – Random number generator
	 sample – Sample & Hold Circuit
	 sequencer – Eight step sequencer
	 slew – Slew limiter
	 spring – Physical spring simulation
	 superjust – Perfect intonation of up to eight voices
	 switch – Adressable/clockable switch
	 switchedpot – Overlay pot with multiple functions (OBSOLETE)
	 timing – Shuffle/swing and complex timing generator
	 togglebutton – Create on/off buttons (OBSOLETE)
	 transient – Transient generator
	 triggerdelay – Trigger Delay with multi tap and optional clocking

