
Universal CV Processor

User manual
for firmware version blue-6
August 22, 2024

Contents

1 Installation of themastermodule 5

2 Getting started 7
2.1 DROID explained . 7
2.2 Creating DROID patches . 7
2.3 Working with the Forge . 11
2.4 Using the master’s inputs and outputs 12
2.5 Numbers and voltages . 13
2.6 Multiply and add, attenuation and offset 14
2.7 Internal connections . 14
2.8 Controllers . 15

3 Advanced patching concepts 17
3.1 One knob – multiple functions . 17
3.2 Presets . 21
3.3 Tap tempo . 23

4 Patch generators 25
4.1 Introduction . 25
4.2 Enable the patch generators . 25
4.3 How to use patch generators . 26
4.4 Motor Fader Performance Sequencer (MFPS) 27
4.5 Droid Megasequencer . 42

5 Creating DROID patches with a text editor 47
5.1 General procedure . 47
5.2 Basic structure of the patch file . 47
5.3 Finding a problem in your DROID patch 48
5.4 Table of error codes . 50
5.5 Inputs, outputs and other registers 51
5.6 Specifying numbers in your patch 54
5.7 Attenuating and offsetting inputs 54
5.8 Internal patch cables . 56
5.9 Using outputs as inputs . 56
5.10 Using inputs as outputs . 56
5.11 Parameter arrays . 57
5.12 Comments & spaces . 57
5.13 Abbreviated parameter names . 57

5.14 More than one patch on the memory card 58

6 Controllers 59
6.1 Installing the controllers . 59
6.2 How to use controllers in your patch 60
6.3 Troubleshooting . 62
6.4 The P2B8 controller . 64
6.5 The P4B2 controller . 65
6.6 The P10 controller . 66
6.7 The S10 controller . 67
6.8 The P8S8 controller . 68
6.9 The B32 controller . 69
6.10 The E4 encoder controller . 70
6.11 TheM4motor fader controller . 71

7 The G8 expander 75
7.1 Introduction . 75
7.2 Installation . 75
7.3 Using the G8 in patches . 76

8 The X7 expander 77
8.1 Quick start . 77
8.2 General overview . 77
8.3 Installation . 78
8.4 USB access to your SD card . 78
8.5 MIDI . 79
8.6 MIDI through . 82
8.7 Four gate outputs . 83
8.8 Eight multi color LEDs . 83
8.9 Fast patch upload via Sysex . 83
8.10 Software update for the X7 . 85
8.11 Some technical details . 86

9 TheMASTER18 88
9.1 Introduction . 88
9.2 Using the Forge . 88
9.3 The switch . 88
9.4 USB access to your SD card . 88
9.5 MIDI . 89

2

9.6 Sinfonion link . 89
9.7 VCO tuner . 89
9.8 Gate inputs and outputs . 90
9.9 Diagnostic LEDs . 90

10 The R2M/R2C controller bridge 91
10.1 Introduction . 91
10.2 Setup with one master . 91
10.3 X7 connected to the master . 91
10.4 X7 in the skiff . 92
10.5 Controllers before the R2M/C bridge 92
10.6 More than one bridge . 92
10.7 Setup with twomasters . 92

11 Droid under the hood 93
11.1 How the module’s state is saved . 93
11.2 The order of the circuits . 94
11.3 Displaying the value of a register . 94
11.4 Displaying current values . 96
11.5 Controller latency . 97

12 Firmware upgrade 98
12.1 Why upgrading the firmware? . 98
12.2 Checking your version on the MASTER 98
12.3 Checking your version on the MASTER18 98
12.4 Normal update procedure . 98
12.5 Upgrade a MASTER from green to blue 99

13 Calibration, factory reset and othermaintainance stuff 100
13.1 The maintenance mode of the MASTER 100
13.2 Factory reset on the MASTER . 101
13.3 Factory reset on the MASTER18 . 101
13.4 Calibration of the outputs of the MASTER 101
13.5 Calibration of the outputs of the MASTER18 102
13.6 Using your own SD card . 103

14 Hardware 104

15 Musical scales 107

16 Reference of all circuits 110
16.1 adc – AD Converter with 12 bits . 113
16.2 algoquencer – Algorithmic sequencer 115
16.3 arpeggio – Arpeggiator – pattern based melody generator 127
16.4 bernoulli – Random gate distributor 138
16.5 burst – Generate burst of pulses . 139
16.6 button – Does all sorts of useful things with buttons 141
16.7 buttongroup – Connected buttons 146
16.8 calibrator – VCO Calibrator . 150
16.9 case – Switch choosing from inputs via conditions 153
16.10 chord – Chord generator . 154
16.11 clocktool – Clock divider / multiplier / shifter 162
16.12 compare – Compare two values . 165
16.13 contour – Contour generator . 167
16.14 copy – Copy a signal, while applying attenuation and offset 172
16.15 crossfader – Morph between 8 inputs 173
16.16 cvlooper – Clocked CV looper . 174
16.17 dac – DA Converter with 12 bits . 177
16.18 delay – A tape delay for CVs, gates and numbers 179
16.19 detune – Detune multiple voices in a most disharmonic way 182
16.20 droid – General DROID controls . 183
16.21 encoderbank –Createbankofup to8virtual input knobs fromE4encoders185
16.22 encoder – Provide access to a knob on the E4 controller 189
16.23 encoquencer – Performance sequencer using E4 encoders 198
16.24 euklid – Euclidean rhythm generator 216
16.25 explin – Exponential to linear converter 218
16.26 faderbank – Create multiple virtual faders in M4 controller 220
16.27 fadermatrix – Matrix of up to 4x4 virtual motor faders 222
16.28 firefacecontrol – Control a RME Fireface interface (experimental) . 228
16.29 flipflop – Simple flip flop . 231
16.30 fold – CV folder – keep (pitch) CV within certain bounds 232
16.31 fourstatebutton – Button switching through 4 states (OBSOLETE) . 234
16.32 gatetool – Operate on triggers and gates, modify gatelength 235
16.33 ifequal – Check if two values are equal 238
16.34 lfo – Low frequency oscillator (LFO) 239
16.35 logic – Logic operations utility . 245
16.36 math – Math utility circuit . 248
16.37 matrixmixer – Matrix mixer for CVs 250
16.38 midifileplayer – MIDI file player 253

DROIDmanual for blue-6 3 Table of contents at page 2

16.39 midiin – MIDI to CV converter . 260
16.40 midiout – CV toMIDI converter . 268
16.41 midithrough – Forward MIDI events from input to one or more outputs 277
16.42 minifonion – Musical quantizer . 279
16.43 mixer – CVmixer . 285
16.44 motoquencer – Motor fader sequencer 286
16.45 motorfader – Create virtual fader in M4 controller 311
16.46 multicompare – Compare in input with up to eight possible values . . 315
16.47 notchedpot – Helper circuit for pots (OBSOLETE) 316
16.48 notebuttons – Note Selection Buttons 317
16.49 nudge – Modify a value in steps using two buttons 320
16.50 octave – Multi-VCO octave animator 323
16.51 once – Output one trigger after the Droid has started 325
16.52 outputcalibrator – Tune the calibration of your CV outputs 326
16.53 polytool – Change number of voices in polyphonic setups 327
16.54 pot – Helper circuit for pots . 329
16.55 quantizer – Non-musical quantizer 337
16.56 queue – Clocked CV shift register . 339

16.57 random – Random number generator 340
16.58 recorder – Record and playback CVs und gates 341
16.59 sample – Sample & Hold Circuit . 347
16.60 select – Copy a signal if selected 348
16.61 sequencer – Simple eight step sequencer 349
16.62 sinfonionlink – Sync harmonic state from Sinfonion 353
16.63 slew – Slew limiter . 355
16.64 spring – Physical spring simulation 357
16.65 superjust – Perfect intonation of up to eight voices 359
16.66 switch – Adressable/clockable switch 361
16.67 switchedpot – Overlay pot with multiple functions (OBSOLETE) . . . 363
16.68 timing – Shuffle/swing and complex timing generator 365
16.69 togglebutton – Create on/off buttons (OBSOLETE) 367
16.70 transient – Transient generator . 369
16.71 triggerdelay – Trigger Delay with multi tap and optional clocking . . 371
16.72 unusedfaders – Declare unused motor faders 373
16.73 vcotuner – measure frequency and tuning of a VCO 374

DROIDmanual for blue-6 4 Table of contents at page 2

1 Installation of themastermodule

Installation of the MASTER:

Controller connector
The connector for the controllers has 6 pins (two
rows of three pins) and is used for connecting a
chain of B32, P2B8, P4B2, B32, P10, P8S8 and
M4. Also the X7 is connected here. An X7 must
always be the first in the chain.

Programming port

The 6 pin programming port is not mounted in a
box. Caution: Do not connect anything to this
port! It is solely for the initial programming in our
labs. Later firmware upgrades are done via the
Micro SD card.

Expansion port for G8 expanders

The connector for the G8 expanders has 8 pins
(two rows of four pins). Here you can add up to
four G8 expanders for an additional 8 - 32 gate in-
puts/outputs. Please refer to page 75 for details.

Power connector

The power connector has 10 pins (two rows of
five pins). Use the shipped 10 pin ribbon ca-
ble in order to connect it with the bus board of
your Eurorack case. Important: Put the red
stripe down!

Do not mix up the connectors! This will destroy
your electronics. Do not force in cables in the
wrong orientiation orwith thewrongnumber of
pins! Do not attach anything to the program-
ming port.

DROIDmanual for blue-6 5 Table of contents at page 2

Installation of the MASTER18:

Controller connector
The connector for the controllers has 6 pins (two
rows of three pins) and is used for connecting a
chain of B32, P2B8, P4B2, B32, P10, P8S8 and
M4. Also the X7 is connected here. An X7 must
always be the first in the chain.

Programming port

The 6 pin programming port is not mounted in a
box. Caution: Do not connect anything to this
port! It is solely for the initial programming in our
labs. Later firmware upgrades are done via the
Micro SD card.

Diagnostic LEDs
The MASTER18 does not have LEDs on the front
panel. Insteaddiagnostic information is displayed
with these four LEDs on the back of the module.
Usually you don’t need this information. If you
run in trouble you can unscrew the module and
get some additional information of what’s going
on here.

Expansion port for G8 expanders

The connector for the G8 expanders has 8 pins
(two rows of four pins). Here you can add up to
four G8 expanders for an additional 8 - 32 gate in-
puts/outputs. Please refer to page 75 for details.

Power connector

The power connector has 10 pins (two rows of
five pins). Use the shipped 10 pin ribbon ca-
ble in order to connect it with the bus board of
your Eurorack case. Important: Put the red
stripe down!

Do not mix up the connectors! This will destroy
your electronics. Do not force in cables in the
wrong orientiation orwith thewrongnumber of
pins! Do not attach anything to the program-
ming port.

DROIDmanual for blue-6 6 Table of contents at page 2

2 Getting started

2.1 DROID explained

is flexible system for generating and processing
control voltages in your Eurorack modular system. It
can do almost any CV task you can imagine, including
sequencing, melody generation, quantizing, switching,
mixing, working on clocks and triggers, envelopes, LFOs,
random voltages and any combination of these at the
same time. It also give flexible access to MIDI.

The base of every system is aDROIDmastermod-
ule. There are two kinds to choose from:

TheMASTER has

• 8 CV inputswith high quality 16 bit converters
• 8 CV outputswith high quality 16 bit converters
• a 4× 4 multicolor LED matrix displaying the state
of the inputs and outputs.

The MASTER18 has

• 8 CV outputswith high quality 16 bit converters
• 2 inputs and 4 outputs for gates and triggers
• A builtin VCO tuning device
• a USB-C connector for MIDI and fast configuration
• 2 MIDI inputs via TRS (3.5 mm jacks)
• 2 MIDI outputs via TRS (3.5 mm jacks)

Extension modules:

• You can add USB and MIDI to your MASTER by
adding an X7 expander (see page 77).

• You can add up to 32 additional gate inputs and
outputs to yourmaster by adding up to fourG8 ex-
panders (see page 75).

• And finally you can add up to 16 controllers with
potentiometer, buttons, encoders, motor faders,
switches andmore to your master to complete the
system.

Note: In this manual whenever I write “master” in lower
case I refer to both MASTER andMASTER18.

2.2 Creating DROID patches

To bring your system to life, you need to create a
Droid patch and load it to your master.

What is a Droid patch? Well, the is like a self con-
tained modular system for CV in a module. In order to
avoid confusionwith “real”modules – the building blocks
in a Droid patch are called circuits. There are very sim-
ple circuits like a mixer for CVs. And there are also very
complex circuits like an sophisticated algorithmic trigger
sequencer called algoquencer (see page 115).

Much like real modules, the circuits have input and out-
put jacks. These are called inputs or outputs, or some-
times also “parameters”. Each of them can be set to a
fixed value, wired to one of ’s physical inputs or
ouputs, set by a knob or button on a Droid controller or
internally wired to other circuits in order to create more
complex patches.

ADroid patch lists all the circuits youwant to use and de-
scribes how they are connected and how the parameters
are set.

Technically, a patch is a small text file with the name
droid.ini, which is located on the micro SD card in the
SD slot of the master. You can create and modify this
file with any text editor you like, and the chapterWriting
Droid patches with a text editor goes in all length through
the structure of that file (see page 47).

However, starting in November 2022 there is a new ap-
plication for Mac and Windows called the Droid Forge

DROIDmanual for blue-6 7 Table of contents at page 2

– or simply the Forge. That’s the new graphical tool
for creating patches and makes working with the Droid
super easy. The Forge is available for free down-
load for on https://shop.dermannmitdermaschine.

de/pages/downloads.

Working with the Forge is highly recommended. How-
ever, in thismanual youwill find lots of examples that re-

fer to the text representation in droid.ini, because it’s
much easier for showing just small portions of a patch
thana full sized screen shotof theForge. And it is straight
forward to recreate these examples in the Forge.

DROIDmanual for blue-6 8 Table of contents at page 2

https://shop.dermannmitdermaschine.de/pages/downloads
https://shop.dermannmitdermaschine.de/pages/downloads

Afirst patch example – step by step

So let’s start! First install the Droid Forge. Download it
from the upper link and install it to your Windows PC or
Mac. After starting it you get awindow like in the screen-
shot above. TheWindow is divided into three areas:

• At the top there is the rack view, where you see the
Droid modules that you are working with

• At the bottom right is the patch view, where you
see the circuits and their parameters

• At the bottom left is the list of sections. They are
for dividing your patch into sections and make it
easier to read.

Now let’s create a first simple patch. The first step is to
choose wether to useMASTER or MASTER18. Select this
in themenu Rack in the entryMastermodule. For this ex-
ample we assume the MASTER.

Then it’s time toaddyourfirst circuit. FromtheEditmenu
chooseNewcircuit.... This opens a dialog for adding a cir-
cuit to your patch:

Select the LFO circuit and click OK. This adds an LFO to
your patch. Because the setting at the bottom left is set
to Start with typical example, your LFO will already have
a couple of inputs and outputs defined:

Input are written in blue, outputs in red. You learn about
all available parameters of a circuit in its chapter here in
this manual. Have a look at the LFO circuit on page 239.
For example:

• hz sets the speed of the LFO in cycles per second.
• level defines the maximum voltage level of the
output

• bipolar changes the range from 0 V ... 10 V to -
10 V ... 10 V, if set to 1.

The outputs provide various wave forms of the LFO.

If you want to add more inputs or outputs, choose New
parameter... from the Edit menu or press the icon Pa-
rameter in the toolbar. And of course every action in the
Forge has a keyboard shortcut, in this case N (or Ctrl N
onWindows).

DROIDmanual for blue-6 9 Table of contents at page 2

Nowmove the cursor to the row square, either with the
cursor keys or by clicking with the mouse. Move the cur-
sor to the second column.

In the rack view, click on theDroidmaster on the first jack
in the third row of jacks. That jack is called “Output 1”
or simply O1. This inserts Output O1 as a value for the
square parameter. The LFOwill now send a square wave
to output 1 of the Droid master.

Move the cursor to the second columof the parameter hz
and type 5 and hit the enter key.

Move the cursor to the first column of all other parame-
ters and delete those rows by hitting the backspace key
so that you just have two lines left. We don’t need these
parameters for now.

This is how it should look like when your are finished:

Your first patch is ready!

There are twoways to load the patch to yourmaster. The
first is by manually swapping the SD card:

• Pull the memory card from your master and put it
into a card reader in your Mac / PC. After a couple
of seconds the toolbar icon Save to SD becomes ac-
tive.

• Press that icon to copy your patch to the SD card.
It will automatically be ejected afterwards.

• Put the SD card back to your master and press the
master’s button. That loads the patch and the LED
for output 1 will start flashing in 5 Hz (five times a
second).

The second way to deploy a patch is much more conve-
nient, but needs an attached X7 expander (see
page 77 for more details on the X7). With the X7 you can
deploy the patch via MIDI sysex:

• Wire the X7 with the shipped USB-C to classic USB
cable to your Mac / PC.

• Set the switch on the X7 to the right. After a short
delay the Activate! icon in the Forge becomse ac-
tive.

• Click Activate!. Your patch will immediatly be
loaded an become active.

Hint: Alwayskeep themicroSDcard in themasterwhile
making music with your . It is needed to store
the current state of your patch so you don’t loose your
settings, sequences and so on when turning off your
rack. Also when the SD card is missing there might be
very tiny timing issues (in the range of some milli sec-
onds) while the master is trying to contact the SD card
and can’t.

DROIDmanual for blue-6 10 Table of contents at page 2

2.3 Working with the Forge

Beforewe have a deeper look at howDroid patcheswork,
let’s first have a closer look at the Forge.

Problems

Your patch can have problems. These are inconsistencies
thatwould confuseyour , if you load it. Oneexam-
ple is a parameter line without a value. In order to avoid
such trouble, theForgedoesnot let you loadapatchwhile
it has problems.

As you see from the screenshot, there is a red triangle in
the toolbar and also a note in the statusbar telling you
that there are two problems. If you click on either of
them, your cursor will jump to the next unsolved prob-
lem. Fix these and you will be able to load the patch.

When loading a patch does not work

Aswe have seen in the first section, the two toolbar icons
for loading a patch are only active, when that is possible.
If you encounter problemswith Save to SD, please check:

• Make sure your micro SD card in the card reader of
your computer.

• Make sure it is an SD card that already has been
used in the Droid. New and empty cards will not
be accepted.

• If unsure, check with your Finder or Explorer, if the
card is really accessible.

In case of a problemwith Activate!, check the following:

• This button only works if you have an X7 expander
attached to your master.

• Check the correct wiring of the X7.
• The switch of the X7must be in the right position.
• The X7must be connectedwith a USB cable to your
Computer.

• USB-C toUSB-Cdonotwork! Use the cable shipped

with the X7 or a similar one.
• If the icon still does not get active, try putting the
X7 switch to the middle position and after a small
pause right again.

Working with sections

In the bottom left of the Forge you see a pane with the
entry Untitled section. Sections are a good way to or-
ganize more complex patches. Each section contains a
list of circuits – and thus a part of your patch. You can
move around sections with drag & drop. You can dupli-
cate, rename and delete them and do many other practi-
cal things.

DROIDmanual for blue-6 11 Table of contents at page 2

2.4 Using themaster’s inputs and outputs

Inputs and ouptuts

The MASTER has eight CV inputs and eight CV ouputs,
both ranging from -10 V to +10 V. The inputs are abbre-
viated with I1, I2, ... I8, the outputs with O1, O2, ... O8.
The MASTER18 does not have CV inputs, but instead it
has two trigger/gate inputs called I1 and I2 and four trig-
ger/gate outputs called G1 .. G4.

These jacks allow your Droid patch to communicate with
the outside world. The abbreviations O1 and so on are
also called registers.

To use an output, you need to connect an output param-
eter of a circuit to it. There are several ways to do this:

• Click on the output jack in the image of the master
while the cursor is right next to an output parame-
ter.

• Type the output’s name while the cursor is at that
position, e.g.O3.

• Press enter while the cursor is next to an output.
That opens a dialog where you can see all options.

For inputs it’s much the same. Move the cursor into the
second column, right next to the input name, and assign
one of the inputs.

Input normalization onMASTER

Eurorack modules know the concept of input normaliza-
tion. This means that an input gets some default signal
whennothing is patched in the jack. The supports
this by offering the registers N1 ... N8. These behave like
outputs that are internally connected to the normaliza-
tions of the input jacks.

When circuit send an output signal to N1, this signal is
seen by input I1, as long as nothing is patched into that
input. This allows you to create more flexible patches.

You might for example have an internal clock in your
patch (created with an LFO circuit) that can be overrid-
den by patching something into I1.

Todo that, sendyour internal LFOclock signal toN1. Then
let the rest of the patch use I1 as clock input.

Gate in- and outputs on theMASTER18

The two inputs I1 and I2 on the MASTER18 can be used
as inputs just as the inputs of the MASTER. The differ-
ence is that these just know the logical levels “low” and
“high”. Low is when the input voltage is below 0.75 V. In
the patch this is treated like 0. If the voltage is above, it’s
considered high and treated as 1.

If you send something to one of the four gate outputs G1
… G4, it will output 0 V if your input signal near to 0 and
5 V otherwise.

All these six jacks are ment for tasks like clocks, triggers
and gate signals.

Using the G8 gates expander

You can connect up to four G8 expanders to your master.
Each G8 gives you eight additional gate inputs or ouputs.
Each jack of the G8 can be used as an input or output, de-
pending on how you use it in your patch.

In the Forge there is one G8 being displayed in your rack
view per default. If you don’t have a G8 or you have
more than one, you can fix that in the Viewmenu. When
the current patch actively uses any of the G8 jacks, the

DROIDmanual for blue-6 12 Table of contents at page 2

needed G8s are always being displayed. Use your G8
ether by clicking on one of the jacks in its image, or press
Enter for aguideddialogandselectG:Gate, or simply type

e.g. G2.7 for gate 7 on the second G8 expander.

Note: The G8 cannot output continous CV values. When
used as output it either sends 0 V or 5 V. And inputs see a

high signal at a voltage about 0.75 V.

Please refer to page 75 for more details on the G8.

2.5 Numbers and voltages

How voltages are converted

is a CV processor that inputs and outputs con-
trol voltages. But internally it works with just numbers,
because this is much more convenient. Here is how the

operates:

1. When reading voltages from the input jacks, these
are converted from the range -10 V to +10 V into
the number range from -1 to +1.

2. All circuits operate on these numbers.
3. When sending numbers to the output jacks, the

numbers are converted back from -1 to +1 to the
voltage range -10 V to +10 V.

This means that if the reads a voltage of 2.5 V at
one of its inputs, in the patch this will appear as
0.25. Or if you send a value of 0.5 to one of the outputs,
it will output exactly 5.0 V. This is in fact very convenient
as you will see.

In your patch you can either write 2.5V or 0.25. Both
mean the same. It’s up to you which of both you prefer.

Voltages out of range

The ’s hardware cannot work with voltages be-
yond ±10 V. This is no limitation, since Eurorack has a
maximumvoltage range of±12 V and barely anymodule
reaches even 10Vat its output. Many digitalmodules are
even limited to the range 0 V...5 V.

That means that any voltage out of that range appearing
at an input is simply truncated. Send -10.8 V at an input
and will see it as -10 V. Or send the number 1.1 to
an output (which would be 11 V) and it will output 10 V
nevertheless.

But: internally – in your patch – numbers can get
arbitrarily low or high. So in intermediate steps it’s abso-
lutely no problem toworkwith larger numbers. Some cir-

cuits even require such numbers. E.g. in the minifonion
(see page 279) you specify the root note B by saying root
= 11. On the side of the jacks thatwouldmean 110V, but
that’s not relevant here.

For those of you wanting to dig more into the de-
tails of number processing: works inter-
nally with 32 bit floating point values. The ex-
ponent is 8 bits. The largest number is slightly
above 300000000000000000000000000000000000000
(a 3 with 38 zeroes).

The smallest number greater than zero is approximately
0.000000000000000000000000000000000000011
(that’s 37 zeroes after the decimal point). The negative
range is similar.

One word about the G8 expander: its outputs can only
output two possible voltages: 0 V and 5 V. The rule is:
any number>= 0.1 sent to one of its G registers will set
its output to 5 V, any other number to 0 V.

DROIDmanual for blue-6 13 Table of contents at page 2

2.6 Multiply and add, attenuation and offset

As you might have noticed, input parameters of circuits
have three columns where you can enter values, whereas
outputs just have one. These three columns are:

A: Input value
B: multiplication / factor / attenuation

C: offset

So thevalue that’s actually usedby the input isA×B+C.
That’s much like Eurorack modules that have an addi-
tional potentiometer for CV attenuation (hence multipli-
cation) and/or offset.

The special thing about is: Even the attenuation
and the offset can themselves be CVs (come from exter-
nal sources, other circuits, etc.). So essentially evey input
has a small VCA andmixer included.

2.7 Internal connections

One important concept for building more interesting
patches is adding connections between circuits. These
connections are called internal cables.

Consider the following example: You have one LFO cir-
cuit that outputs a square wave, which should be used as
a clock signal. That clock shall trigger an envelope circuit
(called contour).

Let’s assume you want to create a cable from the square
output of the LFO to the gate input of the envelope. To
do this, move the cursor to the second column of the
square output and press = (equals). This starts creating
a cable. You will see an indicator in the statusbar.

Now move the cursor to the target of the cable: the pa-

rameter value of the gate input. Here press = again (or
enter, if you like). This opens a small dialog for giving the
cable a name. Choose a nice name that helps you under-
stand what’s going on later – for example CLOCK.

After hitting enter or pressing OK, you get a connection
from the square output to the gate input. The envelope’s
output is wired to O1 in this example, so you get an enve-
lope triggered at 8 Hz at output 1.

These are the rules for internal cables:

• Every cable must be connected to exactly one out-
put.

• Every cable must be connected to at least one in-
put.

Thatmeans that you can use a cable as amultiple and dis-
tribute signals to several circuits. But if a cable has no in-
puts or no ormore than one output connects, it counts as
a problem and you cannot load the patch.

Note: There are more ways to create patch cables:

• In a cell type an underscore followed by the name
of the cable.

• In a cell press enter and choose a cable in the value
dialog (or type a name for a new cable)

• Hold while clicking into another cell (Windows:
Alt key). That creates a cable between the two
cells.

DROIDmanual for blue-6 14 Table of contents at page 2

2.8 Controllers

Adding controllers

The fun part with is attaching one or more con-
trollermodules to yourmaster. When theproject started,
there was just the P2B8 controller available, which has
two potentiometers – or short pots – and eight buttons.
Hence the name! Now there are alltogether six con-
trollers that you can get for Droid. Learn more about
the available controllers and how to connect them to the
master on page 59.

In anutshell, whenwiring the controllers please check the
following things:

• Check that the small green jumper on each con-
troller is set to Park (or removed). Just on the last
controller it must be at Last.

• The X7must always be the first in the chain.
• The cable coming from the master must go to IN,
the cable to the next controllers is plugged into
OUT.

Once your system is setup, it’s very easy to use con-
trollers in your patch. The first step is adding them to
the rack view of the Forge. To do this double click on
the background or chooseNew controller from one of the
menus or use the Icon Controller in the sidebar. The or-
der of the controllers from left to right in the Forge must
match the order of the wiring in your rack.

Notes:

• You can rearrange controllers with drag & drop.
The patch will automatically be adapted so all
references to the controls still work as expected.
That’s an easyway to adapt a foreign patch to your
rack.

• When you remove a controller the Forge offers you
to remap its controls to other existing controllers.

• The master, X7 and G8s cannot be moved.
• If you don’t have or don’t use the G8 or X7, you can
hide it from the rack view. Check the View menu
for that.

Using pots

The easiest way of using a potentiometer is by moving
the cursor to a cell of an input parameter and then click-
ing on the pot in the rack view. This will insert something
like Potentiometer P1.2 in the cell.

Here P1.2 is the register name for the pot and it means
controller onepot two. If you aren’t amouse guy, you also
can type P1.2 if you like (omit the word Potentiometer,
that will appear automatically). Or you press enter in a
cell to get the value selector where you find the pots un-
der Controls.

A pot always represents a value from 0.0 to 1.0 depend-
ing on the pot position. Often that range is not what you
need, butwith the help of the columns2 and3 (factor and
offset) you can create any custom range. Consider using
pot P1.2 for setting and LFO speed between 1 and 10Hz.
This can be done by:

Column 1: Potentionmeter P1.2
Column 2: 9
Column 3: 1

In the text representation this would be:

hz = P1.2 * 9 + 1

The math is easy: If the pot is totally at its left position,
the register P1.2 has the value 0.0. So 9× 0.0 = 0.0 and
thus adding one gives 1. At the right position the value of
the pot is 1.0, so 9× 1 + 1 = 10.

You can domuchmore complex things with potentiome-
ters. For any of those please have a look at the circuit pot
(see page 329). For example you can:

• Overlay one pot with several independent func-
tions by using select

• Save different values of a pot into up to 16 presets
• Create a virtual center notch, tomake it easy to se-
lect the middle position exactly.

• Have a pot output discrete numbers, for example
0, 1, ... 8, to select preset numbers, pattern lengths
und much more

• Apply a non-linear slope to the output value

If you don’t need any any of these, just use pot directly
without the pot circuit. That keeps your patch simpler.

Hints:

• If you right-click on a pot, button or other control
in the rack view, you get a context menu.

• You can rearrange assignments of controls with
drag & drop in the rack view.

• Double clicking on a control allows you to label it.

Using buttons

A button outputs the value 1 while pressed or 0 other-
wise. It’s register abbreviation is B, so B3.4 is the button
four on controller 3. You assign them just like pots.

DROIDmanual for blue-6 15 Table of contents at page 2

Themain difference is that buttons contains an LED. So if
youwant tomake use of that, you need to output a value
to the LED.

The button LEDs have their own registers, named L. So
the LED in button B3.4 is called L3.4. If you send a 0.0
to an LED, it will be dark. A 1.0 will make it shine at full
brightness. Anything inbetween selects some intermedi-
ate brightness.

Sounds complicated, but at the end it makes sense, as
you will see. And it also gives you flexibiliy.

Most times you don’t like to hold the button all the time
to make it do its work. You want it to switch between
on and off with each press. This is done with the circuit
button (see page 141). And that also helps you to deal
with the LED.

The following example is in Droid source syntax, but it is
straight forward to setup this in the Forge. Add the circuit
Button and the two parameter lines button and led:

[button]
button = B1.1
led = L1.1

Now each press at button 1 on controller 1 will toggle the
button. led is an output parameter so the LED register
L1.1will hold the current state of the button – either 0 or
1.

You can use that as an input to some other circuit, for ex-
ample for switching on and off an LFO by setting its level
to 0 or 1:

[button]
button = B1.1
led = L1.1

[lfo]
hz = 3
level = L1.1
sine = O1

There aremanymoreways for using buttons. Please look
at page 141 for more examples. And also look at the cir-
cuit buttongroup (see page 146). It can group several
buttons together in a convenient way.

Hint:

• If in a circuit the LED definitions do not match the
buttons, a light bulb icon will apear in the circuit

header. Click that to make the LEDs automatically
match the buttons.

Switches

The S10 controller has ten switches. They have the regis-
ter abbreviation S. The first two switches have eight po-
sitions and output the discrete numbers 0, 1, ... 7. The
small switches just have three positions: 0, 1 and 2.

You can either use these switches directly in your patch or
might want to try the circuit switch (see page 361), for
assigning something for every switch position. Create a
circuit with one input for every position and just one out-
put.

You get more details on the S10 on page 67.

Motor faders

The motorized faders from the M4 are always accessed
via special circuits. Please refer to page 71 for all details
about the M4.

DROIDmanual for blue-6 16 Table of contents at page 2

3 Advanced patching concepts

3.1 One knob –multiple functions

Introduction

What I liked about modular synthesizers from the be-
ginning was the principle known as “one knob one func-
tion”. In the 60’s that was certainly not yet a principle. It
was the only way to build devices. Today buttons dedi-
cated exclusively to a specific function have been almost
completely rationalized away – whether it’s washingma-
chines, cars or even doorbells of apartment blocks. Sure,
the manufacturer saves money by simply installing one
touchscreen instead of 50 real mechanical switches. The
only thing that’s unfair is that we are being told that it’s
progress that our car’s cockpit is so ”clean” that we have
to navigate to the third menu level to change the seat
heating.

So “one knob one function” feels like pure luxury these
days! And is built for you to indulge in such a lux-
ury. After all with 16 B32 controllers you can connect no
less than 512 buttons to onemaster. So you can get quite
far in reserving one button for one function.

The problem, however, (and I have to admit this at this
point) is that it is a luxury. If you spend some time in cre-
ating cool patches, new ideas pop up like mush-
rooms and in no time all pots and buttons are occupied.
And not everyone has the money, the time and the pa-
tience, to order new controllers all the time.

That’s why has a sophisticated system of over-
laying your controls with almost as many functions as
you want and switch between them, similar to menus or
modes.

Overlaying pots

Let’s start with pots. Let’s assume that you have one
P2B8 and want to use the upper pot to control both the
attack and release of an envelope. The first step is to use
the circuit pot (see page 329). It is able to create a virtual
pot from a real one. Let’s do this and start with control-
ling the attack:

[p2b8]

[pot]
pot = P1.1
output = _ATTACK

[contour]
trigger = I1
output = O1
attack = _ATTACK

While thisworks, it hasnot really helped, yet. Still thepot
has just one function. In order to map a second function
on the same pot we need to do three things:

• Create a second pot circuit for the same poten-
tiometer.

• Add a button for switching between these two
functions.

• Use the select input in both pot circuits to choose
which of the two functions should be active.

Forour examplewewant touse thebuttonB1.1 to switch
between controlling attack and release. For that we cre-

ate a button circuit, so thatwe can toggle the button. On
should choose release and off attack.

We use the normal output of that circuit for selecting the
release function. And the inverted output of the button
is 0 when the button is active and 1 otherwise: just the
opposite of output. We use that to select the other vir-
tual pot – that for attack. Here is the complete patch:

[p2b8]

[button]
button = B1.1
led = L1.1
output = _SELECT_ATTACK
inverted = _SELECT_RELEASE

[pot]
pot = P1.1
select = _SELECT_ATTACK
output = _ATTACK

[pot]
pot = P1.1
select = _SELECT_RELEASE
output = _RELEASE

[contour]
trigger = I1
output = O1
attack = _ATTACK
release = _RELEASE

To summarize:

DROIDmanual for blue-6 17 Table of contents at page 2

• For each virtual pot function that you need, create
one pot circuit.

• Patch the outputs of these circuit to the inputs you
want to control.

• Use the select inputs of the pots to decide which
pot should be active.

• Make sure that at any time exacly one of the pot
circuits is selected.

Note: As soonas youmap several virtual functions toone
pot, there is a difference between the physical position
of the actual pot and the current virtual value. Neverthe-
less, turning the physical knob changes the virtual value.
Please refer to pot (see page 329) for details.

Using button groups for selection

In the upper example we used a button for toggling be-
tween two states. If you want to have more than two
function on a pot you need to choose a different method
for selecting the “mode”. One is to use a buttongroup
(see page 146), like the following one:

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

This group acts like “radio buttons”. If you press one of
the four buttons, it is selected and the other three but-
tons are switched off. At any time, exactly one of the
buttons is active.

Now we can use the L1.1 … L1.4 outputs of the button
group for selecting four different pot functions:

[pot]
pot = P1.1
select = L1.1
output = _ATTACK

[pot]
pot = P1.1
select = L1.2
output = _DECAY

[pot]
pot = P1.1
select = L1.3
output = _SUSTAIN

[pot]
pot = P1.1
select = L1.4
output = _RELEASE

An alternative way is to use the output of the
buttongroup. This outputs one of the numbers 0, 1,
2 and 3 depending on the selected button.

You can have the pot circuit get active on a specific num-
ber by using it’s selectat input in addition to select. If
you use that, you can specify a value that select needs
to have for the circuit to be selected (This also avoids a
problemwith the led outputs of the button group, which
don’twork if the button group itselfuses select, aswewill
see later). Look:

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4

led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
output = _SELECT

[pot]
pot = P1.1
select = _SELECT
selectat = 0
output = _ATTACK

[pot]
pot = P1.1
select = _SELECT
selectat = 1
output = _DECAY

[pot]
pot = P1.1
select = _SELECT
selectat = 2
output = _SUSTAIN

[pot]
pot = P1.1
select = _SELECT
selectat = 3
output = _RELEASE

Here thefirstpot circuit is selectedwhen_SELECThas the
value 0, and so on.

Selecting with switches

The S10 controller (see page 67) is perfect for selecting
virtual functions. The two rotary switches have eight po-
sitions each and can directly be used for select in com-
bination with selectat.

DROIDmanual for blue-6 18 Table of contents at page 2

[s10]

[pot]
pot = P1.1
select = S1.1
selectat = 0
output = _ATTACK

[pot]
pot = P1.1
select = S1.1
selectat = 1
output = _DECAY

[pot]
pot = P1.1
select = S1.1
selectat = 2
output = _SUSTAIN

[pot]
pot = P1.1
select = S1.1
selectat = 3
output = _RELEASE

Note:

• In this example the switch positions 4 though 7
don’t have any function.

• The small toggle switches of the S10 output 0, 1 or
2 and are useful for smaller selections.

Overlaying buttons

Just as pots, buttons can have multiple overlayed func-
tions. This time you need to use the select input from
the circuit that controls the buttons. The most obvious
such circuit is button. But also buttongroup and even

more complex circuits like algoquencer (see page 115),
matrixmixer (see page 250) and nudge (see page 320).

Here is an incomplete sketch of a circuit that uses a but-
tongroup with three buttons to select one of three in-
stances of an algoquencer. That way the buttons B1.1,
B1.2 and B1.3 choose between three “tracks” or “instru-
ments”:

[p2b8]
[b32]

[buttongroup]
button1 = B1.1 # select track 1
button2 = B1.2 # select track 2
button3 = B1.3 # select track 3
led1 = L1.1
led2 = L1.2
led3 = L1.3
output = _TRACK

[algoquencer]
select = _TRACK
selectat = 0 # track 1
button1 = B2.1
button2 = B2.2
button3 = B2.3
button4 = B2.4
...
led1 = L2.1
led2 = L2.2
led3 = L2.3
led4 = L2.4
...
trigger = O1

[algoquencer]
select = _TRACK
selectat = 1 # track 2
button1 = B2.1
button2 = B2.2

button3 = B2.3
button4 = B2.4
...
led1 = L2.1
led2 = L2.2
led3 = L2.3
led4 = L2.4
...
trigger = O2

[algoquencer]
select = _TRACK
selectat = 2 # track 3
and so on...

Notes:

• The three algoquencer circuits are mapped to the
same buttons but at any time just one them uses
them and displays its state at the LEDs of these
buttons.

• Since the buttongroup outputs the values 0, 1 and
2, the first track (aka “Track 1”) is selected by 0, not
by 1.

Important: CV inputs of algoquencer like activity are
not handled by the select input, even if you assign a pot
to them. These are “dump” CV inputs that just use the
value that is patched there. If you want your activity pot
tobe switched, aswell, useadditionalpot circuits anduse
the select input at these, as discussed above.

Multi level menues or selections

Selections can be nested into several levels. Let’s make
an example: You have a top level buttongroupmade out
of the buttons B1.1… B1.4 on a B32. Each button selects

DROIDmanual for blue-6 19 Table of contents at page 2

one of four instruments. Each such instrument is repre-
sented by one arpeggio (see page 127).

The second level consists of eight buttons on the B32 –
the buttons B1.5 … B1.12 – shall select the allowed scale
notes for the arpeggio, such as select1, select3 and so
on. So alltogether you have 4× 8 = 32 settings, but just
12 buttons.

The implementation is straightfoward if you keep in
mind that you must not used the led... outputs of a
buttongroup for something else than the actual LEDs, if
that group uses its select input. Remember: the led out-
puts of an unselected circuit are inactive.

In the toplevel group of buttons this is not a problem,
since it is always active. It doesn’t use its select input:

Select the instrument
[buttongroup]

button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

The second level groups can directly use the L1.1 … L1.4
registers for their selection. But here we cannot use the
led outputs for selecting the scale notes, since they will
be inactive if the instrument is not selected. Instead, we
can use the buttonoutput outputs. They always keep
their value – regardless of the current selection.

Scale notes of instrument 1
[buttongroup]

minactive = 1

maxactive = 8
select = L1.1 # first instrument
button1 = B1.5
button2 = B1.6
button3 = B1.7
button4 = B1.8
button5 = B1.9
button6 = B1.10
button7 = B1.11
button8 = B1.12
led1 = L1.5
led2 = L1.6
led3 = L1.7
led4 = L1.8
led5 = L1.9
led6 = L1.10
led7 = L1.11
led8 = L1.12
buttonoutput1 = _SEL_INST1_1
buttonoutput2 = _SEL_INST1_3
buttonoutput3 = _SEL_INST1_5
buttonoutput4 = _SEL_INST1_7
buttonoutput5 = _SEL_INST1_9
buttonoutput6 = _SEL_INST1_11
buttonoutput7 = _SEL_INST1_13
buttonoutput8 = _SEL_INST1_FILL

In thearpeggio (seepage127) circuit of instrument1you
cannowwire the selectioncables to the corresponding in-
puts:

Arpeggiator 1
[arpeggio]

select1 = _SEL_INST1_1
select3 = _SEL_INST1_3
select5 = _SEL_INST1_5
select7 = _SEL_INST1_7
select9 = _SEL_INST1_9
select11 = _SEL_INST1_11
select13 = _SEL_INST1_13
selectfill1 = _SEL_INST1_FILL

selectfill2 = _SEL_INST1_FILL
selectfill3 = _SEL_INST1_FILL
selectfill4 = _SEL_INST1_FILL
selectfill5 = _SEL_INST1_FILL
... # further stuff here

Notes:

• This example shows how you can use one
buttongroup with eight buttons and maxactive
= 8 as a elegant replacement for eight individual
button circuits.

• Other use casesmight prefer theoutputof thebut-
ton group instead of the buttonoutput outputs.

Dealing with unused buttons

Youmight have situationswhere some of the buttons are
not selected at all. With this I mean that none of the se-
lected circuits use them. doesn’t touch the LEDs
in these buttons and they keep their last state. This can
be confusing and you probably will want to switch LEDs
in unused buttons off.

You do this by using a buttongroup circuit where you
don’t map the buttons, just the LEDs, and set maxactive
= 0. And you make sure this “dead” button group is se-
lected in the above situation:

[buttongroup]
select = _SOME_SELECT
maxactive = 0
led1 = L2.5
led2 = L2.6
led3 = L2.7
led4 = L2.8

DROIDmanual for blue-6 20 Table of contents at page 2

The upper example switches of the LEDs L2.5 … L2.8,
whenever _SOME_SELECT is not zero.

Overlaying switches of the S10

People keep asking how they can put multiple functions
on the rotary or toggle switches of the S10. I must admit
that I haven’t found a good way to do this. The LED in a
button can be switched as the function switches. In a pot
I always can detect somemovement. But howwould you

deal with the fact that the current position of a mechani-
cal switch does not match it’s “logical” position. OK, you
toggle a switch back and forth after switching the mode,
in order to show that you want to changd its value. But
that’s not really fun to do.

So right now, the S10 is for the true believers in the “one
switch one function” principle.

Overlaying faders of theM4

The motor faders in the M4 are meant to be overloaded
with multiple functions. It’s really what makes them
standout against all other input devices. Unlike pots they
can correctly show their current value physically. And
they even can behave as switches with discrete position
if needed.

Using the faders of the M4 is done by dedicated circuits.
Please refer to the chapter about the M4 for details (see
page 71).

3.2 Presets

Introduction

If you look carefully through the description of all
circuits, you will find some that have a preset in-
put. Among these are algoquencer (see page 115),
button (see page 141), buttongroup (see page 146),
calibrator (see page 150), faderbank (see page 220),
fadermatrix (see page 222), matrixmixer (see page
250), motoquencer (see page 286), motorfader (see
page 311), notebuttons (see page 317), nudge (see page
320) and pot (see page 329). All these circuits have
in common that they have some internal “state” that
can be changed by user interaction. For example in
algoquencer this state comprises the current trigger pat-
tern that you’ve entered with the buttons.

A preset is one “memory slot” where you can load or save
the circuit’s state. This is done with the inputs preset,
loadpreset and savepreset. When you load another
preset, the circuit immediately switches to a different
state. This does notmean that it does a reset of the cur-
rent running state: For example the algoquencer does

not jump to the first step when you load a preset.

For internal reasons the total memory that a circuit
can use for its state is limited. Therefore, each of the
upper circuit provides a different number of presets.
For example the algoquencer has 16 presets whereas
motoquencer has only 4. Hereby the currently active
state does not count as a preset, so motoquencer has five
times the memory for storing its state: the currently ac-
tive one plus the four presets. All these five states are
automatically saved to your SD card whenever there is a
change.

Switching presets with a button press

Switching between the presets can be done in two ways:
in triggered mode and in immediate mode. Let’s start
with the triggered mode. Here you need to use all three
mentioned inputs:

• The input preset tells the circuit which of the pre-

sets to load or save. The first preset has the num-
ber 0, the second is 1 and so on.

• A trigger to loadpreset loads a preset into the cir-
cuit.

• A trigger to savepreset saves the current state of
the circuit into a preset.

Typically youwould use a buttongroup (see page 146) to
specify the preset number. If you have a S10 controller,
it’s straight forward to use one of the rotary switches for
the preset number. But you can also turn a normal pot
intoa rotary switchbyusing the circuitpot (seepage329)
and set discrete to the total number of different presets
that you want to use.

Here is an example of switching presets in an
algoquencer using a pot. We use the full 16 presets.
Loading is donewith button B1.1 and savingwith button
B1.2. Note: the preset numbers start from 0, so it’s a
perfect match for the discrete function:

[p2b8]

DROIDmanual for blue-6 21 Table of contents at page 2

[pot]
pot = P1.1
discrete = 16 # output will be 0 ... 15
output = _PRESET

[algoquencer]
preset = _PRESET
loadpreset = B1.1
savepreset = B1.2
...

Notes:

• When you load a preset, changes to the current
state get lost (if you haven’t saved them before).

• The current state does not get lost when you
restart your or switch off your modular. It
is saved to the SD card along with the presets.

Using long presses to avoid losing data

It’s not entirely unlikely that youwill press thewrongbut-
ton from time to time. When that’s your load or save
button, you might overwrite some sequence that you’ve
carefully crafted.

It’s therefore a common trick to shield the preset triggers
with long presses. Use a button (see page 141) circuit for
each of the two buttons and use it’s longpress output.
The led output is not neccessary as the button has no
state. Here is the upper example with the extra safety
net enabled:

[p2b8]

[pot]
pot = P1.1

discrete = 16 # output will be 0 ... 15
output = _PRESET

[button]
button = B1.1
longpress = _LOAD_PRESET

[button]
button = B1.2
longpress = _SAVE_PRESET

[algoquencer]
preset = _PRESET
loadpreset = _LOAD_PRESET
savepreset = _SAVE_PRESET
...

Now the loading and saving just happenswhen you press
and hold the respective button for at least 1.5 seconds.

Hint: If you are a more experienced geek, you
could try using a burst (see page 139) circuit to create a
short blinking animation in the buttonwhenever a preset
is loaded or saved (left as an exercise).

Immediate switching of presets

The other way of switching presets is without triggers or
buttons. This is even simpler to implement. Just omit the
loadpreset and savepreset inputs:

[p2b8]

[pot]
pot = P1.1
discrete = 16 # output will be 0 ... 15
output = _PRESET

[algoquencer]

preset = _PRESET
...

Here are the differences to the triggered mode:

• As soon as you turn the pot (i.e. the preset input
changes, a new preset is loaded.

• The current preset is automatically saved.

And a subtlety: because the current preset and the cur-
rent state are essentially the same, you “lose” one mem-
ory slot. With immediate switching, motoquencer has
just the four presets and no “extra” preset in the current
state.

Switching with triggers only

There is yet anotherway of switching presets. It is a com-
bination of the other ways. Here you work with triggers,
but these triggers at the same time hold the number of
the preset to load or to save. This makes situations eas-
ier where you have one button per preset. Look at the
following example:

[mixer]
input1 = B1.1 * 1
input2 = B1.2 * 2
input2 = B1.3 * 3
output = _LOAD_PRESET

[mixer]
input1 = B1.4 * 1
input2 = B1.5 * 2
input2 = B1.6 * 3
output = _SAVE_PRESET

[algoquencer]
loadpreset = _LOAD_PRESET
savepreset = _SAVE_PRESET

DROIDmanual for blue-6 22 Table of contents at page 2

This means that if the trigger CV has the value 2 when it
is non-zero, it loads preset number 2. This mode is auto-
matically active, if you don’t patch the preset input.

There is one drawback of this method: you cannot eas-
ily access preset number 0 that way, since the CV 0 is not
sufficient for triggering the input. The trick is sending a
value larger than 0.1 (which is the threshold for boolean
“true” values) and less than 0.5 (whichwould be rounded
to 1). So for example send a trigger with the value 0.3 to
load or save preset number 0.

Things not stored in presets

Every now an then the question pops up why things like
activity of the algoquencer are not saved in a preset.
The answer is: the activity is not part of the internal
state of the algoquencer. It’s aCV input. Its value comes
from the outside.

At first this might be counterintuitive if youmap a pot to
it (like activity = P1.1). But believe me: it’s still a CV
input. algoquencer cannot know that it’s a pot. And if it
would save that toapreset, and load it later: What should
it do with the CV input? Should it be ignored in future?

You see: lot’s of problems...

Still youmightwant to save the pot’s position to a preset.
And this can be done with a pot (see page 329) circuit, as
we will see below.

Saving pots to presets

You might ask yourself: How can I get a preset for the
position of a potentiometer, such as on the P2B8? Espe-
cially if I use it for controlling things like activity in an
algoquencer?

The solution is very easy: Use pot (see page 329). It has
a preset input. And then patch it’s output to the input
that you want to control with the pot via an internal ca-
ble:

[pot]
pot = P1.2
preset = _PRESET
output = _ACTIVITY

[algoquencer]
activity = _ACTIVITY

Of course you can combine that with the presets of
algoquencer and switch the value of activate along
with the actual sequencer pattern. Here is an example:

[p2b8]

[pot]
pot = P1.1
discrete = 16 # output will be 0 ... 15
output = _PRESET

[pot]
pot = P1.2
preset = _PRESET
output = _ACTIVITY

[algoquencer]
preset = _PRESET
activity = _ACTIVITY
...

Note: After loading a preset into a pot, its physical posi-
tion does not reflect its logical value anymore (it would
need a motor for that, just as the motor faders). Please
look at the description of pot (see page 329) to learn how
this works.

3.3 Tap tempo

There are a few circuits that have a taptempo input.
Among these are burst (see page 139), contour (see
page 167), gatetool (see page 235) and lfo (see page
239). Such an input is used to specify a time interval or a
frequency. That’s basically the same. For example an in-
terval of 0.5 seconds corresponds to a frequency of 2 Hz.
Sometimes that interval is thenusedasagate length. The
circuit lfo (see page 239) is an example of a circuit that

uses this information as a frequency.

With taptempo, instead of specifying a number of sec-
onds or milliseconds, you send a number of succeeding
triggers. The time span between these triggers is used as
the time interval.

There are two ways of using taptempo inputs. One way

is, as the name suggests, a manual input. You can wire
a button to the input and then “tap in” the time interval
with a series of button presses. Here is an example with
lfo (see page 239):

[lfo]
taptempo = B1.1
sine = O1

DROIDmanual for blue-6 23 Table of contents at page 2

There are a few details that you should now when in-
putting a tap tempo:

• Two button presses are enough to enter a tap
tempo.

• If you press three times, the two intervals between
the three presses are averaged so your tempo input
gets more precise.

• If you press more than three times, just the last
three presses are recognized.

• If you press the button and the last press wasmore

then four seconds ago, you start a new row of
presses. So you cannot tap in an interval greater
than four seconds.

• After you start your , the taptempo is preset
to 0.5 seconds (which corresponds to 2 Hz).

The second way of using a taptempo input is by patching
a steady clock here. Most probably this will be your mas-
ter clock. Since always the last three clock ticks (“taps”)
are recognized, the set interval is constantly updated to
any changes in the speed of the clock. Please note:

• Speed changes in the input clock need some time
to be recognized.

• When the input clock stops, the tap tempo is not
set to zero or infinity, but simply keeps at the last
setting.

• The taptempo input of the LFO does not keep the
phase in sync. If you need that, patch the sync in-
put in addition to the taptempo input.

DROIDmanual for blue-6 24 Table of contents at page 2

4 Patch generators

4.1 Introduction

Building complex patches for can be quite chal-
lenging, especially if you are just at the beginning of your
journey. So what people have suggested since the begin-
ning was a good collection of ready-to-use patches.

While this idea sounds appealing, it’s actually not as easy
as it seems. Everybody has as a different set of modules
and controllers, and different ideas. And creating an vari-
ant for every possible situationwould vastlymultiply the
number of needed patches.

As an example take a patch that creates a performance
sequencer based onM4motor fader controllers (see page
71). There are so many possible configrations:

• Howmany tracks should be provided?
• Should the output be via MIDI or CV/Gate?
• What parameters per step should there be?
• Shall we use two our four M4 controllers?
• Should it rely on a G8 expander for gate output?
• What type of master module should it use?
• ... and so on.

It’s obvious that creating one dedicated patch for each
variant like one for “Sequencer for three tracks with two
M4s, MIDI output, no G8, using MASTER18, extra CV for
velocity” would not be feasable.

So we had to find a better solution. And here it is: the
Patchgenerators. Apatchgenerator is aprogramor script

that creates a ready-to-run patch based on choices you
make in a dialog in the Forge. For example in this dialog
you would select the number of tracks, the configuration
of modules to use and so on. Then you pressOK and get
a patch that you can upload to your master. Since it’s a
normal patch, you can edit it before this. For example
you could rearrange the buttons by dragging and drop-
ping themwith the mouse.

As a start the Forge comeswith onefirst patch generator:
that for a performance sequencer with motor faders.

You can even create your own patch generators. But
that’s a topic that will be covered in a future version of
this manual.

4.2 Enable the patch generators

Thepatch generators are not enabled bydefault. The rea-
son is that additional software needs to be installed on
your box. This software is the programming language
“Python 3”. It’s very common but still may be missing on
your system.

If you are running the Forge onWindows, you should now
install Python 3, if it’s not already there. You can do this
either from the Microsoft store. The exact version (3.11,
3.12 or whatever) is not important. It just needs to be
version 3. Or you can get Python directly from its official
home page. This is at Python downloads for Windows.

Important: If you see a checkbox with the text “Add

Python toenvironmentvariables”,make sure that you en-
able it. Otherwise the Forge won’t be able to find the
Python interpreter and thinks it’s not installed.

To enable the patch generators select the menu File /
Patch generators / Enable patch generators.. This will
bring up the following popup:

DROIDmanual for blue-6 25 Table of contents at page 2

https://www.python.org/downloads/windows/

Now click Yes to proceed. If you are running on Mac and
Python 3 is not yet installed, you need to install it now.
You probably get the following popup:

Simply confirm by clicking on Install and you are done.

If everything went fine, or if Python 3 was installed any-
way at the first place, you get the following summary:

When you now enter the patch generators menu again,
you new see a check mark next to “Enable patch genera-
tors” and below it the list of all available patch generators
appear – including “Motor Fader Sequencer”. Then you
can proceeed with the next section.

4.3 How to use patch generators

Here is how to generate a patch with a patch generator:

1. Open the DROID Forge and go to the Menu File→
Patch generators. Here you find a list of all genera-
tors your version of the Forge offers.

2. Select one of these. A dialog with options appears.
3. If you like, select one of the presets and press Load

preset to load it.
4. Go through all tabs of the dialog and change any of

the options if you like.
5. PressOK. This generates a new patch.
6. Make sure that the order of the controllers of the

generated patch matches that in your rack.
7. Load the patch to your master as usual.

In the rack view all used buttons and jacks are labelled, so
you see how this patch is operated. Furthermore the gen-
erated patch might have comments in the circuits. This
makes it easier to learn how it is built.

Note: If is completely possible and OK that you edit
the generated patch before using it. You might want to
change the order of the controllers, to match your cur-
rent setup of yourmodules. Or youmightwant to change
the assignments of some jacks or buttons with drag and
drop. But: As soon as you generate the patch again, your
changes will be overwritten and you need to do them,
again.

Hints:

• There is a menu shortcut for the patch generators
(Command + Shift + G on Mac and Ctrl + Shift + G
onWindows). This shortcut brings up the most re-
cently used patch generator. So redoing the gener-
ation with different options is really fast.

• Some generated patches can be really complex. I
suggest that you turn on all options for compress-
ing patches before uploading them to the Droid
module, otherwise the patch might exceed the

maximum size of 64.000 bytes. You do this in the
Preferences:

DROIDmanual for blue-6 26 Table of contents at page 2

4.4 Motor Fader Performance Sequencer (MFPS)

Introduction

This patch generator creates a patch for a performance
sequencer based onM4motor fader controllers (see page
71). The sequencer aims at creating interesting melodies
for bass lines and lead voices. It is not so much about
drum sequencing, even if you could use it for that task,
as well.

The Motor Fader Performance Sequencer (MFPS) excels
in situations where you are performing. If offers lots of
features that are useful in live improvisation, finding in-
spiringmelodies andsimplyandplayingmusic. Especially
the fast and intuitive control with the M4 faders with
force feedbackmake it stand out amongst all existing Eu-
rorack sequencers.

Here are some of the features:

• up to 8 parallel tracks
• output via CV/gate and/or MIDI
• builtin arpeggiator per track
• up to four presets for each track
• gatelength, velocity and glide per step
• pitch and gate randomization

• up to 32 steps per track
• steps can have a length of 1 - 16 clock ticks
• create even longer tracks using forms and condi-
tional gates

• diatonic transposition within the chosen scale
notes

• performance menu with toplevel control over all
tracks

• everything is controlled with motor faders
• the faders give haptic feedback
• Get root, scale and transposition from a Sinfonion
• Mini arpeggiator for repeats and ratchets
• Pitch accumulator
• and much more...

To use this sequencer, you need the following modules:

• 1×MASTER or MASTER18
• 1× P2B8
• 1× B32
• 2×M4

You can extend the patch by adding further modules:

• up to three G8s provide more gate ouptuts
• an X7 adds MIDI support to your MASTER
• two additional M4s let you edit 16 steps without
switching

The sequencer has one to eight tracks. Each track con-
trols one external instrument, either via CV/Gate or via
MIDI.When usingMIDI, you can assignmultiple tracks to
the same channel and thus create polyphony.

Each track consists of a normal melody sequencer with
8, 16 or 32 steps. In addition it has a builtin arpeggia-
tor, which creates alogrithmic melodies based on many

parameters. Youcan switch to thearpeggiatorwithabut-
ton.

Setting up the sequencer

Call the patch generator Motor Fader Performance Se-
quencer like described on page 26. Make sure your mod-
ules are mounted in the correct order in your case.

An easy way to thoroughly learn the sequencer is start-
ing with the presetMinimum (1 track) and play with the
sequencer for a few minutes. Than add more and more
features as you like.

As analternative you can load thedefault preset and start
with the whole features set with four tracks and three
presets per track. This is also the configuration theMoto
Kit comes preloaded with. If you have purchased that,
you got a sheet of stickers. We suggest using these stick-
ers label all the buttons and the two pots – once you are
satisfied with your feature set.

If you like, you can reorder some of the buttons with the
mouse via drag & drop before you finally label them.

And now let’s see, how this sequencer works...

DROIDmanual for blue-6 27 Table of contents at page 2

Basic operation

The one basic feature that the sequencer always has –
regardless of the configuration you choose in the patch
generator – is that of playing notes. This means that the
clock is moving a kind of “pointer” through your 8, 16 or
32 step sequence. In the normal Note mode every fader
represents the pitch of one step. The touch button below
let’s you toggle the gate of this step between on and off.

When you move the faders you will notice that you can
feel something likedentsornotches. Theseare simulated
with the fader motors and give you haptic feedback. Ev-
ery notch represents one note of the current scale. This
makes it easier to precisely change a note without look-
ing at some display.

When you learn how to play the sequencer you
might get stuck, things might get weird because

you have changed a setting without knowing what’s go-
ing on. At any time you can do a long press (1.5 sec-
onds or longer) on the button CLR to reset everything to
the factory defaults. Don’t forget to turn on some of the
steps (touch buttons!) in order to get some notes played,
after that.

Selecting andmuting tracks

If you configure your sequencer with more than
one track, there will be one button with a number

for each track. Press this button to select the track. All
settings that are track-specific, such as the values of the
sequence steps, the track menu or other things, always
refer to that track.

Some of the settings are globally and affect all tracks at
once (such as the root note and the scale). If in ques-

tion, this manual will point out wether a setting is track-
specific or global.

Tracks canbemuted. Hold theCTRL-button
andpress the trackbuttonat the same time.

This will mute or unmute the track. Muting means that
the gate output of the track is suppressed. The track
moves forward even if muted, so it stays in sync with the
other tracks.

Root, scale, other tonality things

Many of the features in the sequencer can be enabled or
disabled in the patch generator dialog. So some of the
functionsdescribed in themanualmaynotbepart of your
specific sequencer – especially if you started with a min-
imum setup. If you are missing something, return to the
patch generator and youwill find a checkbox there to add
it.

Regardless of your specific configuration there is always
the Tonality menu. By menu I mean a “layer” where the
eight faders control certain things that are not related to
sequencer steps. There are several such menus in the se-
quencer, aswewill see later. Amenu always uses the first
eight faders. If you have a setup with 4M4s, the faders 9
to 16 don’t have any function here.

You bring up the tonality menu by pressing the
button labelled MENU in the patch generator. In

the sticker set that you get with the Moto Kit, there is a
button with a keyboard symbol for this menu.

The main task of the menu is selecting the root note and
scale that you are playing in. Most of the faders have a
global meaning – they affect all tracks at once. Here is
the meaning of the eight faders:

1. Root note

2. Scale

3. octave switch

4. Diatonic transposition

5. Absolute transposition

6. Tuning / composemode

7. Glide duration (per track)

8. Note range (per track)

Tonality menu

The first fader selects the root note. The fader has 17
notches that you can feel (force feedback). These fader
positions mean (from bottom to up): C, C♯, D, ... B, C.
The C is duplicated at the top.

The second fader selects themusical scale. It has 12 posi-
tions which represent the following 12 scales (from bot-
tom to up). Themore common scales have colors, so that
you can find them faster. The color is displayed in the
touch button below the fader when that scale is selected.
The default scale is natural minor (8). It is selected when
you reset the sequencer to the factory settings.

DROIDmanual for blue-6 28 Table of contents at page 2

12 aug – Augmented scale (just whole tones)

11 dim – Diminished scale (whole/half tone)

10 phr – Phrygian minor scale (with ♭9)

9 hm – Harmonic minor (♭6 but ♯7)

8 min – Natural minor (aeolian)

7 dor – Dorian minor (minor with ♯13)

6 hm5 – Harmonic minor scale from the 5th

5 alt – Altered scale

4 sus – mixolydian with 3rd/4th swapped

3 X7 – Mixolydian (dominant seven chords)

2 maj – Normal major scale (ionian)

1 lyd – Lydian major scale (it has a ♯4)

Scales

The root note together with the scale determine
the notes that you select with the pitch faders

when the sequencer is in NOTE mode. You even reduce
themusical “material” more by switching off some of the
notes on the P2B8.

Enabling the button CHRO brings you into chro-
matic mode, where always all 12 notes are in use

and the root note and scale don’t have any effect. More
details about root and scale are in the next chapter.

The third fader is a global octave switch with five posi-
tions. So you can go up or down by two octaves. It af-
fects all your tracks at once. It’s neutral position is in the
middle.

Fader four is more musical. It does a diatonic transposi-
tion. For each position you move it up or down, the se-

quenced melodies of all tracks are moved up to the next
or previous notewithin the selected scale notes.

The absolute transposition on fader 5 – on the other hand
– simply changes the final output pitch by semitomes.
That effectively also changes the root note of the sale.
The fader has 25 positions. The middle position is neu-
tral. So you have a range of one octave in 12 semitone
steps up or down.

Hint: touching the button below fader 3, 4 or 5 snaps it
back to its neutral position.

Fader 6 has three positions. The bottom position is the
normal position. In themiddle you activate tuningmode.
Here all tracks output a C and produce steady gate ry-
thms. This allows you to tune your oscillators. The oc-
tave switch still works so you can tune your VCOs in the
pitch that they are played later on.

The top position of fader 8 enabled the compose mode.
Herewhen youmove a fader in pitchmode, the newpitch
is immediately played. The clock does not forward the
steps. This makes it much faster to dial in melodies. Try
it out! Note: the compose mode only works if the se-
quencer is running and the track is not muted.

The remaining two faders control settings per track. This
means that the setting you edit depends on the currently
selected track. You can try this by switching between
tracks while the menu is open.

Fader 7 sets the length of glides of the current track. If
you don’t have enabled glides or the track has just MIDI
output, the fader is without function.

Fader 8 is also per track and selects the pitch range of the
melody sequencer. The fader has six positions, which se-
lect one, two, three, four, five or six octaves. The posi-
tion second from the bottom selects two octaves and is

the default setting.

Note: If you change this setting, your current melody
in the selected track changes. If you increase the note
range, the melody will be spread out over a larger pitch
range. Decreasing the note range compresses your
melody to a more narrow range.

Scales and scale notes

A very important concept of the sequencer is that of
scales and scale notes. As we have seen above, there is
always one scale selected – for example C minor.

Within this scale for each track you select which of the
seven notes to use separately. This is done with seven
button of the P2B8, which are layouted as follows:

The button CTRL is for selecting alternate func-
tions. We will talk about that later. It has nothing

to do with the scale but is located on the P2B8 because
there was just this nice place left.

The other seven buttons represent the seven notes of the
currently selected scale. For example if youhave selected
C minor, the button 3RD represents the E♭. This note se-
lection is used both for the normal sequencer and for the

DROIDmanual for blue-6 29 Table of contents at page 2

arpeggiator. By switching on and off the note buttons
you select which notes of the scale are currently allowed
to be played.

Hint: When you hold CTRL while pressing one of the
seven scale note buttons, all other buttons are switched
off. That way you can “perform melodies” by holding
CTRL and pressing various buttonswhile the sequence or
the arpeggiator is running.

Don’t get alarmed when your faders wiggle when you
change thenote selection. If you removeanote, thenum-
ber of allowed notes is reduced and there are less posi-
tions your pitch fader can have. It automatically adapts
to the nearest allowed position. As long as you don’t
move your pitch fader, it remembers its original position
and moves back there as soon as you re-enable the note
that it originally set for that step.

Each track has its own note selection and when you
switch the track, the seven buttons will go on and off
automatically to represent the note selection of the new
track.

The button CHRO switches to a chromatic scale and
allows all 12 notes to be used – ignoring the scale

and the note selection.

Clocking

Every sequencer needs a clock to forward the sequences
from step to step. Our sequencer has several options
clocking. They have the following order or precedence:

1. The internal clock – if it is included and running
2. External clockviaCV input if that feature is enabled
3. MIDI clock from TRS port 1 (MASTER18 or X7)
4. MIDI clock from TRS port 2 (MASTER18)

5. MIDI clock from USB (MASTER18 or X7)
6. Sinfonion-Link, if this is enabled (MASTER18)

The internal clock is only present if you add it to
your patch. This is done in the setting Features

→ Internal clock. This adds a button lablled CLK, which
brings up the following menu:

1. Set 0, 100 or 200 BPM

2. Add 0, 10, 20 ... 90 BPM

3. Add 0, 1, 2, ... 9 BPM

4. Continous clock bend

5. Swing

6. Start / stop the clock

7. Extra clock divider

8. Pitch accumulator (per tr.)

Clockmenu

The first three faders are notched and let you set the BPM
of the internal clock in 100s, 10s andones. As always, the
lower settings are at the bottom. So you select 120 BPM
by setting the first fader in the second notch (counting
from the bottom), the second fader in the third notch and
the third fader at the bottom. This way you get 100 + 20
+ 0 BPM. The maximum speed is thus 299 BPM.

Fader 4modifies this speed in a continousway from com-
plete stop (bottom) to exactly double speed (top). To
return to exactly 120 BPM (or whatever your have set),
touch the button below fader four. It snaps back to its
center an the LED goes green. Red means that the speed
is modified. When fader 4 is at the top position, your
maximum clock speed is 598 BPM.

Fader 5 adds a swing / shuffle feeling from none at all
(bottom) to strong (top). At is applied on external clocks,
too – even if they are already shuffled.

Fader 6 has just two positions and will jump back and
forth if youmove it just abit or if you touch thebuttonbe-
low. At the bottom position the LED is red and the inter-
nal clock is stopped. If there is an external clock source,
that is taken instead.

Fader 7 is a clock divider for the case that you have en-
abled Connectivity→ Output for clock with user defined
divider. The fader has 16 positions for the clock divisions
1 to 16.

Fader 8 edits a setting per track: The maximum range of
the pitch accumulator for the current track. The accumu-
lator is described below. If you have disabled the internal
clock in the Features tab, the range of the pitch accumu-
lator is set to 4.

The trackmenu

Anothermenu is the trackmenu. This is not global
but the faders control values of the current track.

You switch between your trackswith the buttons Track1,
Track 2 and so on.

The track menu has the following eight settings:

1. Autoreset

2. Shift steps

3. Octave switch

4. Diatonic transposition

5. Activity

6. Movement pattern

7. Even clock divisions

8. Odd clock divisions

Trackmenu

DROIDmanual for blue-6 30 Table of contents at page 2

In this menu there is the general rule, that each setting
can be snapped to its neutral position by touching the
button below. This makes it fast to go back to normal
if you have got lost. Just swipe with your finger over all
eight touch buttons. A bright LED shows that the fader is
in its neutral position.

Fader 1 is called Autoreset. Autoreset is enabled by
moving the fader away from its bottom position. It
sets a number of clock ticks after which the sequence is
restarted – regardless of what’s going on in it. For ex-
ample if you move the fader three steps upwards, your
sequence will be restarted after three clock ticks. This
might or might not be three steps – depending on the
number of repeats that you’ve chosen on the first steps.

Shift steps on fader 2 cycles all your steps by that number
of positions to the right. This shifts the melody in time
and can create interesting rhythmic effects.

Theoctave switchon fader 3has its neutral position in the
center and can go up or down by two octaves. It is added
to the global octave switch in the tonality menu.

Fader 4 does a diatonic transposition of the current track
within the scale and the selected scale notes. This is a
very musical feature and you need to try it out and lis-
ten to it. This transposition is added together with the
diatonic transposition from the tonality menu.

Fader5 selects aminimumactivity level a stepmusthave.
Other steps are silenced. This allows you to reduce a
melody and make it simpler for the while. If you don’t
have enabled Activity in the generator dialog, this fader
is unused. See below for how to set the activity of steps.

Fader 6 selects alternative movement patterns for your
sequence. By this I mean how the sequence moves
through its 8, 16 or 32 steps. There are 10 different pat-
terns to choose from:

10 random jump to any allowed (other) note

9 go forward by a small random number of steps

8 random single step forward or backward

7 double step forward, single step forward, double
step backward, single step forward

6 double step forward, double step backward, sin-
gle step forward

5 double step forward, one step backward

4 two steps forward, one step backward

3 ping pong – forth and back

2 backward

1 forward

Trackmovement patterns

Faders 7 and 8 allows you to alter the speed in which the
track is running in reference to the master clock. Fader
7 has the following seven positions for altering the clock
speed:

/ 8 / 4 / 2 1:1 ×2 ×4 ×8

Fader 8 provides odd divisions and multiplications:

/ 7 / 5 / 3 1:1 ×3 ×5 ×7

If you combine fader 7 and 8 you can polyrythmic things
like 3

4 .

The performancemenu

The performance menu is an optional feature that
gives you instant access to a selection of faders

from the trackmenu but for all tracks at once. You enable
it by selecting at least one option in the tab Performance
menu.

All options you select here are put into the performance
menu for each track. So if you have four tracks and eight
faders, it does not make sense to select more than two
options.

The colors of the LEDs below the faders match those of
the same functions in the track menu.

Pitch and gate

Now let’s talk about the actual sequencer. Every
sequence step has at least a pitch and a gate – and

DROIDmanual for blue-6 31 Table of contents at page 2

depending on your configuration lots of other aspects.
Hit the button NOTE to start editing pitches and gates.

When you move the faders you will see that you feel
notches (force feedback). Each notch represents one of
the selected scale notes. If you alter the note selection by
switchingonandoff intervalsonyouP2B8, thenumberof
notches accordingly changes and your faders might wig-
gle into newpositions. Themaximumnumber of notches
is 25. If you select a large pitch range in the global menu,
the notches might be turned off.

Touching the buttons below the faders toggle the gates
for the steps.

More steps than faders

Depending on space and money, you can either use the
sequencer with two or with four M4 controllers. That
means that you have either 8 or 16 faders. You set this
in the tabModules.

Independent of this you can set the length of the tracks
to 8, 16 or 32 steps. This is done near the top of the Con-
figuration tab.

In the default configuration there are four tracks,
each has 16 steps. With two M4’s you can control

eight steps at a time. The button PAGE switches to edit-
ing steps 9 - 16 while it is lit.

Hint: A press on the track button of the already selected
track does the same as the PAGE button: it toggles the
current page.

If you have eight faders and 32 steps, you get four but-
tons for paging, labelled 1 - 8, 9 - 16, 17 - 24 and 25 - 31.
With these you can select the page you want to edit.

If you work with pages, it is helpful to include the
button COPY in your patch. This is done with Fea-

tures→Copy&pasteof sequencebars (doesnotworkbe-
tween tracks). Press the COPY button to copy the con-
tents of the current page into an internal clipboard.

Then select another page and press CTRL +

DROIDmanual for blue-6 32 Table of contents at page 2

COPY to paste its contents.

This copy & paste mechanism copies all aspects of the
steps, not just those that are currently selected.

Hint: Try this following: press COPY to copy the current
page. Jam around by changing the melody. Later you
can come back to your original melody by pressing CTRL
+ COPY, without using a preset for this.

Further step parameters

There are lots of aspects of sequencer steps that you can
add with the patch generator tab Step parameters:

Pitch randomisation, pitch accumulator

The button labelled RAND brings you to pitch ran-
domisation and to the pitch accumulator. The

eight positions of the fader have the followingmeanings:

8 accumulator: shift up twice each turn

7 accumulator: shift up each turn

6 accumulator: shift down each turn

5 accumulator: shift down twice each turn

4 strong pitch randomization

3 medium pitch randomization

2 slight pitch randomization

1 randomization + accumulator off

Pitch randomization / accumulator

The default is that the fader is at the bottom. This turns
off any randomization or accumulation.

The lower three settings above zero turn on pitch ran-
domization. Here the pitch of the step is randomly raised
slightly, intermediatly or strongly.

Theother four settingsaremuchmore interestinganden-
able thepitchaccumulator. Thepitch accumulatormakes
melodies more interesting by altering a note every time
it is played. You have four different settings (per step):
you can shift the note up by one or two notes in the scale
on each sequence repetition. This is selected by the fader
position 7 and 8. The LED below the fader changes from
cyan to green. Or you can shift the note down by one or
two notes every turn. This is selected by the fader posi-
tions 6 and 5 (red LED). The shift is always done within
the current scale and selected scale notes.

For example let’s assume you are in C major (white keys
on a keyboard) and the step’s note in question is set to

a G. Now, if you set the pitch accumulator to shift one
note up (position 7), the first round of the sequence a G
is played, next time a A, then a B, then a C (next octave)
and so on.

Now you might ask: does this go to infinity? Of course
not! In fact you can set the number of turns until the note
is reset to its original value (in this case G). This number
is set with fader 8 in the clockmenu and has a range from
0 (pitch accumulation turned off) up to 16 (reset the ac-
cumulator after 16 times the sequence has been played).
If you have disabled the internal clock, there is no clock
menu. Thepitch accumulator range is set to4 in this case.
Thedefault setting is 4,which is themostnatural andmu-
sically least surprising setting.

At the end, using a pitch accumulatorwith the repeats set
to 4 can change amelodywith just 16 steps into onewith
64 steps.

Velocity

The button VELO switches to editing an additional
CV value per step. Here the faders run freely with-

out notches. If you are using MIDI output, the fader po-
sition sets the note velocities. In CV/gate mode, the ve-
locity is output at an additional CV output per track. You
can patch it to wherever you like. In this mode, the touch
buttons show the gates, as well.

Gate length and glide

ThebuttonGL selects editing a gate lengthper step
with the faders. It ranges from super short to al-

most the length of one clock cycle, if the fader is up.

The touch buttons below select steps to have pitch glid-

DROIDmanual for blue-6 33 Table of contents at page 2

ing enabled. The length of these glides can be set in the
tonalitymenu.

Glides do not work in MIDI output.

It is a super lucky coincidence that both gate length and
glides can be appreviated with GL :-).

Gate probability

The button PROB introduces a probability that a
step is actually played. At the top position of the

fader, the step is always played if the gate is on. The fader
has eight positions (notches), with the following mean-
ings:

8 played always 100%

7 random chance of 50% 50%

6 played every even turn 50%

5 played every odd turn 50%

4 random chance of 25% 25%

3 played every 4th turn 25%

2 random chance of 12% 12%

1 played if last randomwas positive –

Gate probabilities

As you can see, not every setting is a simple random
chance. Especially the settings 5 and 6 are very musi-
cal. They make a step be played just every odd or even
turn of the sequence. This essentially doubles the length
of the sequence. Steps with such a setting have a green
LED below the fader (instead of cyan). It blinks in turns
where the step is silenced and light steady when the gate

is played.

Note: In gate probability mode the default fader setting
is at the top, not at the bottom as with most others.

Ratchets

Ratchets are editedwith thebuttonRATC. They can
be set from 1 (normal, fader at the bottom) to 8.

They divide the clock cycle of the step into equal time in-
tervals in which the step is repeated. If you set ratchets
to 2, for example, youwill get two notes played at double
time.

Note: If you use ratchets it might be neccessary to select
a short enough gate length for the notes to become audi-
ble.

The most interesting feature about the ratchets, how-
ever, is the builtin “mini arpeggiator” – also called
“ratchet shift” or “ratchet note shift”. You activate that
by turning the lower of the two pots on the P2B8 (while
the “normal” argpeggiator is turned off). You can select
15 different values, from -7 to +7. The neutral position is
in themiddle and themini arpeggiator is turned off there.

If you have a classic MASTER (not MASTER18) The cur-
rent value is displayed in its 4×4 LED field in blue. The
neutral position is at the LED of input 8:

On a systemwith aMASTER18, the current setting is dis-
played in the upper half of the B32.

Repeats (step duration), tieing, skipping steps

The button REP lets you edit the length of the
steps. Each step can be 1 to 16 clock ticks long –

while 1 is set with the fader at the bottom. In this mode,
the touch buttons select steps to skip. This is not the
same as silencing them, since skipped steps makes the
sequence shorter.

While youmove the fader, the LED below the fader helps
you dialing in a specific number of repeats. It uses the
following color scheme: The numbers 4, 8, 12 and 16 are
displayed red. The numbers 2, 6, 10 and 14 are displayed
yellow. The remaining (odd) numbers are black (LED is
off).

If you increase the duration of a step, you might want to
edit the way in which this step is played. To do this press
PAT to select the gate pattern. The gate pattern decides
how gates are played when Repeats is 2 or larger. There
are four gate patterns: In the first setting (fader down)
just the first repetition of the step is “played” (i.e. a gate
signal sent). Setting 2 will play one gate per repetition.

DROIDmanual for blue-6 34 Table of contents at page 2

Setting 3 plays one long gate. And setting 4 is like 3 but
lets the gate open when the step ends. This ties this step
to the next one. And this setting also has an effect when
the note duration is just 1.

Hint: When you hold the CTRL button while you change
the number of repeats of a step, the MFPS tries to keep
the overall length of the sequence constant. It does this
by changing the repeats in subsequent steps in the op-
posite way. The fader will move automatically in order
to keep the total number of repeats of all steps constant.
Of course this only works if there are enough repeats to
“work on”. If all steps are at one repeat and you increase
the repeats of step 1 from 1 to 9, the other steps cannot
reduce the number of repeats and stay where they are.
So your sequence gets longer by 8 16th notes. But if you
thenmove the fader back (while still holdingCTRL), other
steps will increase their repeats. Try it out!

4 play a long gate and tie to the next step

3 play a long gate

2 one gate per repetition

1 play just the first gate

Gate patterns

Similar to the ratchets, there is also a “mini arpeggiator”
for the repeats. If activated, for every repetition of a step
the note is shifted up to seven steps up or down on the
scale within the selected scale notes.

You turn on this with the upper knob of the P2B8, when
the normal arpeggiator is turned off. You can select 15
values, from -7 to +7. The middle one – 0 – is neutral and
switches the mini arp off.

If you are using aMASTER, its LEDfield show the selected
value in magenta. The middle position is that LED of in-

put eight:

On a systemwith aMASTER18, the current setting is dis-
played in the upper half of the B32.

Note: Themini arpeggiator onlyworks if the gate pattern
is set to 2 (one gate per repetition).

Actvity

Activity is a feature that allows you to change the
complexity of a pattern with just one fader. First

you assign an activity level to each step. This is donewith
the button ACT.

Stepswhere the fader is at the top position have themax-
imum activity. There are always played. When you lower
the activity, steps are silenced, when the activity setting
of the track is lowered. This is done in the trackmenu (see
above).

Limiting the range of steps

If you enable the feature Set range of steps to play
(start, end), you will find a button labelled S/E.

This allows you to restrict the part of the sequence to be
played by using touch buttons.

While you hold the S/E button, the cyan gate LED van-
ishes and instead a green LED marks the first step to be
played and a red one the last. Beware: If you have more
steps than faders, you might need to switch pages, be-
cause the start and end step are on different pages.

Touch any of the buttons below the faders to set the new
end step. All remaining steps will be skipped and the se-
quence is now shorter.

Setting the start step is a bit more work. Here you need
to touch and hold the button for the end step and while
this touch another button. This will be the start step. If
the start step is after the end step, the selected portion of
the sequence is played backwards.

You can reset the start/end setting by hold-
ing CTRL and then pressing S/E. This sets

the start step to be the first and the end step to be the
last of the sequence.

Pressing the CLRbutton (see below) does the same
but in addition resets other settings that remove

the linearity of the sequence.

By the way: Another method for making the sequence
shorter is using Autoreset in the track menu (see above).

Peace, clear andmaster reset

If you have added the feature Clear button: re-
set play mode, clear pattern, factory reset, you get

a button labelled CLR. This button has three “escalation
levels” of resetting things:

Pressing the clear button in a normal way, resets all fea-

DROIDmanual for blue-6 35 Table of contents at page 2

tures of the current track that alter the effective duration
of one sequence cycle:

• Start and end are reset to the first and last step of
the sequence

• Steps tagged with “skip” are reset to normal (non-
skip)

• The number of repeats (step length) is set to 1 for
every step

• Autoreset is disabled (first fader in track menu)
• The shifting of steps is disabled (second fader in
track menu)

• The movement pattern is set to “forward“ (6th

fader in track menu)

Press the CLR buttonwhile youholdCTRL to
reset every aspect of the current track. All

faders in the track menu go to their neutral position. All
steps are set to gate off and to the lowest note (you can
change the default gate to on in the tab configuration).
All additional parameters of the steps are set to their neu-
tral position, as well.

A long press of the clear button, makes a factory reset of
the whole sequencer!. All tracks and all presets are reset.
All settings are reset to their defaults.

The long press of the CLR button is your help if you get
completely lost somewhere. There are many possible
reasons why the sequencer won’t play any notes. The
clock might be stopped, the clock division set to some-
thing very slow, stepsmight been skipped, have a too low
activity and so on. In such a situation where you are not
able to find the reason, try a factory reset.

This is also a good idea after you change the configura-
tion of the patch in the patch generator dialog. Enabling
or disabling features might lead to saved fader positions
move to other faders that now have different meanings.

Manual reset to step 1

When you play together with other musicians or
with other sequencers, you might get out of sync.

The features Button for resetting the current (Ctrl: all)
tracks to step 1 adds the button RST.

If you press RST without the CTRL-button, the current
track is reset to step 1 immediately.

If you press RSTwith CTRL, all tracks are re-
set to step 1 immediately.

Transpose by root note

The feature Button for transposing the melody
when the root note changes add a button with the

label TBR. This is an abbreviation for transpose by root
note. This button has two states: on and off and it is a
setting that is saved per track.

If it is on, any change in the root note also transposes the
melody. The reference is C. Try the following: Set the root
note to C (in the tonality menu) and compose a melody.
Now change the root note to E♭.

When TBR is on, themelodywill be transposed alongwith
the root note and played three semitones higher. That
way it sounds exactly like the original melody, just three
semitones higher.

No try the samewith TBR off. This time themelody stays
in the same general pitch, just with some of the notes
modified by a semitone or so to match the new scale.

Both settings are musically useful and a change of the
settings can sound very interesting – as long as you have
changes in the root note as time goes by.

The inversion

The featureButton for inverting themelody (switch
low/high) adds a button with the Label INV. It is a

setting per track and vertically mirrors the melody when
on. High notes get low and low notes get high.

Forms like AAAB, and AABB

When you add the features Button for switching
the form (A / AAAB / AABB), you get a button la-

belledAAAB. Again, this is a settingper track, but this time
the button has three states. You cycle through these by
pressing it several times.

Per default the button is off. Press it once to switch to the
formAAAB. The button is half-lit. Now your steps are di-
vided in two halfs. Say you have 16 steps. Then the first
eight steps are part A and are repeated three times, be-
fore the second eight steps are played once.

The third state (button fully lit) selects AABB. Now every
half is played twice.

These forms essentially double the length of your pattern
in a musically appealing way.

If youhave set a reduced rangeof steps to play via theS/E
button, the parts A and B are cut from that smaller range.
If that is an odd number of notes, A and B don’t have the
same length and funny things will happen.

Presets

In the tab Configuration you can add up to four
presets to your configuration. A preset is a stor-

DROIDmanual for blue-6 36 Table of contents at page 2

age for the current melody of a track (including all extra
attributes of the steps) together with all settings of the
faders and buttons, including the scale note selection.

When you have enabled presets, up to four buttons with
the labels Preset A, Preset B, Preset C and PresetD appear.
Here is how presets work:

• A short press of a preset button does nothing. This
is for your safety.

• A long press (≥ 1.5 secs) saves the current melody
and all other track settings into that preset.

• A press of a preset button while CTRL is held, loads
that preset.

• Loading and saving presets affects the current
track.

• Every track has its own independent presets.
• Loading a preset does not reset the track to step 1.

Randomize the fader positions and gates

The button LUCK either randomizes your current
fader settings.

When you press LUCK together with CTRL,
your touch button settings are randomized

instead (for example gates).

This feature is enabled with the checkbox “Lucky: Ran-
domly change the faders (with Ctrl: buttons)”.

As long as you hold this button, more andmore faders or
touch buttons will change – at a rate of 40 changes per
second. If you push the button just for a short time, just
one or a few things will change. Holding it longer com-
pletely changes everything.

What the faders or buttonsmean depends on the current

mode. So if you want to randomize the velocity, bring up
the velocity mode and hold LUCK.

The arpeggiator

One of the most fun features of the MFPS is the builtin
Arpeggiator.

If you enable this feature in the patch generator,
you get a button labelled ARP. This is for switching

a track to arpeggio mode.

In arpeggio mode the pitches of the notes are not longer
determined by the pitch faders but are played by the
arpeggiator. This is an algorithmicmelody creator, which
can do more than you would think when you hear its
name.

To get started with it, do the following:

1. Choose a track and switch on the ARP.
2. Set the lower pot of the P2B8 to totally left. This is

the base pitch of the melody.
3. Set the upper pot of the P2B8 in themiddle. This is

the pitch range the melody uses.
4. Select all seven scale notes on the P2B8.

Now you should hear your synth voice, or whatever is
attached to the selected track, to play all notes of the
current scale upwards until it reaches some upper limit
(which is selected by the upper pot) and starts over again.

Note: Both pots on the P2B8 are overlayed with several
functions depending on the context. There is a separate
setting for the base pitch and range of the arpeggiator for
each track. After switching to a different track the pot
probably is not in the position of the value it actually con-
trols. As soon as you turn the pot just a bit you get the

current value either visualized in the 4× 4 LED field of the
MASTERor on the upper half of the B32 (if you use aMAS-
TER18).

There are dozends of ways to alter that melody. Try the
following:

• Alter the base pitch and the range with the two
pots. Even a range of zero can be interesting. Here
you can “play” a melody with the pitch knob.

• Try different selection of scale notes. Try to use
just three notes, for example a normal triad (ROOT,
3RD, 5TH).

As you can see, all of these alterations changes the length
of themelody and thus creates interesting polymetric ef-
fects.

And there are lots of other parameters. These are
in the track menu. Press the button TRK to bring

it up. When the arpeggiator is turned on, most of the
faders have different meanings. All of them only affect
the arpeggiator – not the normal mode, even if some of
them they have the same name.

1. Autoreset

2. Up / ping pong / down

3. Octave switch

4. Butterfly

5. Octaving pattern

6. Movement pattern

7. Drop notes from scale

8. Clocking

Arpeggiomenu

Autoreset is similar than in the normal mode. If enabled,
after that number of steps the arpeggio is reset to its

DROIDmanual for blue-6 37 Table of contents at page 2

starting point.

Up /pingpong /down changes theorder of themovement
from up to up-and-down-again or to downwards move-
ment.

The Octave switch transposes the whole melody up to
two octaves up or down. This adds up with the pitch
knob.

The Butterfly fader has just two positions: down and up.
When it is up, butterlfy mode is active. Now the order
of played notes changes to first, last, second, second last
and so on.

TheOctaving pattern has three settings. In the middle or
upper position after each note, the same note is repeated
but one octave up or down.

The Movement pattern changes the linear movement
mode through the scale to something more complex. It
has seven settings as follows:

7 random jump to any allowed (other) note

6 random single step forward or backward

5 double step forward, single step forward, double
step backward, single step forward

4 double step forward, double step backward, sin-
gle step forward

3 double step forward, one step backward

2 two steps forward, one step backward

1 step forward through the selected notes

Arpeggiomovement patterns

The fader Drop notes from the scale enables certain pat-

terns of leaving out (skipping) notes on the way. It has
four settings:

4 Skip the 2nd and 3rd note Ê Á Â Í Ä Å

3 Skip every third selected note Ê Ë Â Í Î Å

2 Skip every other selected note Ê Á Ì Ã Î Å

1 Do not skip any notes Ê Ë Ì Í Î Ï

Arpeggio drop patterns

The last fader in the arpeggio menu selects the clock or
rhythm while in arpeggio mode. At the bottom setting
the master clock is used for the gates. The next setting
selects the same gates as in the sequence. Starting from
position three there are some more faster clocks as you
move the fader up:

8 master clock× 8

7 master clock× 6

6 master clock× 4

5 master clock× 3

4 master clock× 2

3 master clock× 1.5

2 Gates from the sequence

1 master clock

Arpeggio clocking

CV/gate orMIDI output

Each track can output its notes via CV/gate,MIDI or both.
You decide this in the tabOutput:

For each tracks you can select either CV/gate or MIDI.
When choosing CV/gate, the patch generator chooses
two to four output jacks depending on the number of fea-
tures that you have selected.

Enable MIDI output by selecting one of the possible MIDI
ports. There is TRS 1 or 2 (3.5 mm stereo jack) or USB. In
order to useMIDI output, you need either aMASTER plus
X7 or a MASTER18. TRS 2 is only available on the MAS-
TER18.

You can also have some of the tracks output both MIDI
and CV/gate. To do this, put these tracks at the begin-
ning of the list. Then set them to MIDI output (choose
one of the three MIDI output ports). And then enter the
total number of these “dual” track in the field Number of
tracks usingMIDI + CV/gate (0-8).

I suggest that you don’t enable MIDI output for tracks
whereyoudon’tneed it, since it takesvaluablebandwidth

DROIDmanual for blue-6 38 Table of contents at page 2

of your MIDI outputs and also needs same RAM in the
Droid.

The MIDI channels for the individual tracks are set in the
tabMIDI:

It is allowed to use the same channel for more than one
track. This creates a polyphonic MIDI sequence.

Hint: If you do not use MIDI output, disable it. Or enable
it just for those channels that you are using with MIDI.

This saves CPU ressources. Saving CPU is always good as
the less computing power your patch needs, the better
its timing is. TheDefault preset hasMIDI enabled, so you
might want to change this.

Connectivity

In the last tab –Connectivity – there are some options for
adding CV inputs and outputs for several things. Most of

it is pretty straight-forward, so I won’t go through every
detail, just allowme some notes:

The Output for clock with user defined divider sends the
sequencer clock to the outside, but with a division from
1 to 16 applied. This division is set by fader 7 in the clock
menu from bottom (1) to top (16).

If you enable Sinfonion link, you can have the sequencer
follow the musical state of a Sinfonion. This requires a
MASTER18. To do this:

1. SetOUT 1 of the Sinfonion to Syncmaster.
2. Drawa standard patch cable fromOUT1of the Sin-

fonion to I1 of your MASTER18.
3. Enable Sinfonion link in the patch generator.

If you do this, the current root note, scale and transpo-
sition of the Sinfonion is automatically used by the se-
quencer. Beware: while you do this, you should keep the
corresponding three faders of the tonality menu in their
neutral position, because theywill add up. For example if
you set root to C♯ in your sequencer, your root note will
be always one semitone off. You need to set it to C (fader
completely down).

The setting Get tonality, clock and reset on start of song
resets all your sequencer tracks to step one if the chord
progression sequencer of the Sinfonion is at the start of
its programmed song.

DROIDmanual for blue-6 39 Table of contents at page 2

Cheat sheet - page 1

Here, again, all of the fader menus at one glance:

1. Root note

2. Scale

3. octave switch

4. Diatonic transposition

5. Absolute transposition

6. Tuning / composemode

7. Glide duration (per track)

8. Note range (per track)

Tonality menu

1. Set 0, 100 or 200 BPM

2. Add 0, 10, 20 ... 90 BPM

3. Add 0, 1, 2, ... 9 BPM

4. Continous clock bend

5. Swing

6. Start / stop the clock

7. Extra clock divider

8. Pitch accumulator (per tr.)

Clockmenu

1. Autoreset

2. Shift steps

3. Octave switch

4. Diatonic transposition

5. Activity

6. Movement pattern

7. Even clock divisions

8. Odd clock divisions

Trackmenu

1. Autoreset

2. Up / ping pong / down

3. Octave switch

4. Butterfly

5. Octaving pattern

6. Movement pattern

7. Drop notes from scale

8. Clocking

Arpeggiomenu

DROIDmanual for blue-6 40 Table of contents at page 2

Cheat sheet - page 2

12 aug – Augmented scale (just whole tones)

11 dim – Diminished scale (whole/half tone)

10 phr – Phrygian minor scale (with ♭9)

9 hm – Harmonic minor (♭6 but ♯7)

8 min – Natural minor (aeolian)

7 dor – Dorian minor (minor with ♯13)

6 hm5 – Harmonic minor scale from the 5th

5 alt – Altered scale

4 sus – mixolydian with 3rd/4th swapped

3 X7 – Mixolydian (dominant seven chords)

2 maj – Normal major scale (ionian)

1 lyd – Lydian major scale (it has a ♯4)

Scales

8 accumulator: shift up twice each turn

7 accumulator: shift up each turn

6 accumulator: shift down each turn

5 accumulator: shift down twice each turn

4 strong pitch randomization

3 medium pitch randomization

2 slight pitch randomization

1 randomization + accumulator off

Pitch randomization / accumulator

8 played always 100%

7 random chance of 50% 50%

6 played every even turn 50%

5 played every odd turn 50%

4 random chance of 25% 25%

3 played every 4th turn 25%

2 random chance of 12% 12%

1 played if last randomwas positive –

Gate probabilities

10 random jump to any allowed (other) note

9 go forward by a small random number of steps

8 random single step forward or backward

7 double step forward, single step forward, double
step backward, single step forward

6 double step forward, double step backward, sin-
gle step forward

5 double step forward, one step backward

4 two steps forward, one step backward

3 ping pong – forth and back

2 backward

1 forward

Trackmovement patterns

7 random jump to any allowed (other) note

6 random single step forward or backward

5 double step forward, single step forward, double
step backward, single step forward

4 double step forward, double step backward, sin-
gle step forward

3 double step forward, one step backward

2 two steps forward, one step backward

1 step forward through the selected notes

Arpeggiomovement patterns

4 Skip the 2nd and 3rd note Ê Á Â Í Ä Å

3 Skip every third selected note Ê Ë Â Í Î Å

2 Skip every other selected note Ê Á Ì Ã Î Å

1 Do not skip any notes Ê Ë Ì Í Î Ï

Arpeggio drop patterns

8 master clock× 8

7 master clock× 6

6 master clock× 4

5 master clock× 3

4 master clock× 2

3 master clock× 1.5

2 Gates from the sequence

1 master clock

Arpeggio clocking

DROIDmanual for blue-6 41 Table of contents at page 2

4.5 DroidMegasequencer

Overview

Welcome to the DROID Megasequencer. It is solely built
from standard Droid modules and comes preloaded with
a special Droid patch that has been carefully crafted to
create a unique musical device. Because the Droid is an
open system you can change that patch and tweak it to
your own liking. Or even change the set of modules and
build something completely new with the modules. The
patch for theMegasequencer is created by a patch gener-
ator that is directly built into the Droid Forge.

The Megasequencer uses a 32 x 16 button matrix (512
buttons) to build a “piano roll” like sequencer that can
play two independent instruments via MIDI. Instrument
one is controlled by the left half of the button. That’s
16x16 buttons with white LEDs. Instrument two occu-
pies the right half. Its buttons have blue LEDs.

Features of the Megasequencer:

• 512 sturdy mechanical hardware buttons, each
mounted and soldered in Germany.

• Instant hands-on creation of melodies and chords.
• Polyphony with up to 16 voices in parallel for two,
three or four instruments.

• Independent clock divisions, pattern length and
lots for more features for creative musical jour-
neys.

• MIDI output via USB and DIN/TRS.

Modules

TheDroidMegasequencer consists of the followingmod-
ules in that order:

1. DROIDmaster
2. X7
3. 16 x B32

If you want to create a Megasequencer from standard
Droidmodules,mount them in a Eurorack case in that or-
der and load the megaseq.ini patch onto your master. If
you’ve purchased the Megasequencer as a set, you can
use theDroidmodules for something completelynewand
different at any time.

Inputs and Outputs

The Megasequencer patch uses the following inputs and
outputs on the master and X7:

Inputs:

I1: Optional external clock. When you patch something
here, that is used as clock for forwarding the sequencers.
I2: Extern reset. A trigger here resets both sequencers

to the start.

Outputs:

G9: Clock output

All the other outputs and inputs are free. You can attach
functions to it by adapting the Droid patch.

MIDI Connectivity

The Megasequencer outputs a MIDI clock and a running
state, aswell as the note events, both on the USB and the
TRS output jack of the X7. Please consult the Droid man-
ual for details on the X7. If you want to use a standard
DINMIDI cable, use the TRS to DIN adapter shipped with
the Megasequencer.

If you send a MIDI clock via USB or TRS into the X7, that
will be used as clock and overrides the internal clock.

Notes:

• If you use USB-MIDI, the switch on the X7 module
must be at the right position. Never put it to the
left, that will bring your Droid master into SD card
mode and disable the sequencer.

• Currently USB-C to USB-C cables might not work.
Use the shipped USB-C to USB-A cable.

• If the top right LED of the X7 keeps lighting ma-
genta and the USB MIDI device “Droid X7” is not
detected by your Mac/PC, put the switch into the
middle and to the right again.

• TheTRS jackof theX7 (the top right jack) usesMIDI
type B. The shipped adapter is also type B. At the

DROIDmanual for blue-6 42 Table of contents at page 2

back of the X7 is a little switch for changing the
type toA.Youneed tounscrewthemodule for that.
See the Droid manual for more details.

Clocking

Each sequencer needs a clock in order to move the steps
forward. For this sequencer you have four clocking op-
tions:

1. MIDI Clock via USBMIDI
2. MIDI Clock via TRS/DIN (at the top left jack of the

X7)
3. Internal clock generated by the sequencer itself
4. External clock via input I1

There is no configuration but a precedence rule: If you
patch anything into I1, external analog clocking is en-
abled. All other clocks options are ignored. If you provide
a MIDI clock, that is used. Otherwise the internal clock is
used. Note: if you provide a MIDI clock both via TRS and
USB, you run intro trouble since both are honored at the
same time. Don’t do that.

The resulting effective clock is then sent to the output G9
on the X7.

Basic operation

Pressing any button will enable a note in a 16 step pat-
tern. Whenever the current step reaches the button, a
note will be played. The left instrument plays on MIDI
channel 1, the right instrument on channel 3. You can
change the MIDI channels in the menu (see below).

Themenu

There is a hiddenmenu layer where you can do lots of in-
teresting settings. Youbringup that layer bypressing and
holding the bottom left button for at least 0.2 seconds.
The menu is active while you hold the button.

While you are in the menu, the buttons do not longer re-
flect notes but have special meanings. Since there are no
labels on the buttons, this is probably a bit confusing at
the beginning, but you will learn that fast. And the last
page of this document is a printable version of menu lay-
out This is the layout of the menu:

Theupperhalf of themenu is split into left and right. Both
sides control one of the two instruments / sequencers.
The lower half is for things that affect both sequencers.

Split: If the split button is lit, the instrument is split into
two halfs. In splitmode the upper eight rows output their
notes to the MIDI channel plus one, so if the instrument
outputs on channel 1, the lower half plays on channel 1,
the upper half on channel 2. That allows you to control
two different instrumentswith one half of the sequencer.

Legato: Legato is a toggle setting. If it is enabled, the
notes will be tied, so a row of consecutive buttons is

played as one long note, otherwise several short notes
are played.

Reset: The two reset buttons in the first row reset each
individual sequencer to its start step immediately.

Speed x2: If this toggle button is lit, the sequencer plays
at double speed.

Octave: The next five buttons form a group in which at
any time one of the buttons is lit. This is an octave switch
that transposes the output notes up or down by octaves.

Preset: The next six buttons select the active preset.
Each sequencer has six presets. A preset contains of a
16x16 step melody. Switching to another preset will not
do a reset but immediately load a new pattern into the
16x16 buttons. At the beginning all presets are empty so
if you switch for the first time that will clear all buttons.
There is no load/save logic. Every change is saved imme-
diately.

Clear: Press this button to clear the current page of the
16x16 buttons of the sequencer. This affects just the cur-
rent preset. Beware: a long press (> 1.5 seconds) resets
the whole Megasequencer to factory settings (including
all the settings in themenu page). You can use that if you
are completely lost.

MIDI channel: The second row of buttons selects the
MIDI channel the sequencer should use for playing notes.
The default is channel 1 (split mode: 1+2) for the left se-
quencer and channel 3 (split mode: 3+4) on the right se-
quencer. Switching channels can be done in real time.
This can be a nice performance feature if you prepare
a couple of different instruments on different channels.
Don’t select channel 16when in splitmode, because there
is no channel 17 in MIDI.

Volume: The third row of buttons select the volume.

DROIDmanual for blue-6 43 Table of contents at page 2

That’s a MIDI message which is transferred for the se-
lected instrument. A volume of 0 (left button) will prob-
ably silence the sound completely (that’s up to yourMIDI
instrument).

Non-Accent velocity: This button row selects the veloc-
ity of the notes that do not have an accent. Accents are
discussed below. The left most button selects a veloc-
ity of 50%, the most right button selects 100% and thus
makes notes with and without accent sound equal.

MIDI Modulation wheel: This sends MIDI CC#1 mes-
sages for the instrument. You can use this to map
changes in the sound, vibrato or similar effects.

Clock divider: These 16 buttons range from 1 (first but-
ton) to 16 (right most button). If that is not set to 1,
the sequencer advances to the next step after that many
clock ticks. You can use the clock dividers for polymetric
effects. Or youmight have one instrument play at 1/16th
of the speed and play slowly changing chords.

Pattern length: If this is not set to 16 (the rightmost but-
ton), the sequencer just plays the first X steps of the se-
quence and then jumps to the beginning. Using a differ-
ent pattern length for the left and right instrument can
create interesting polymetric effects.

Activity: This setting is usually at the right position,
which means an activity of 100%. If you select another
value, just a randompart of the selectednotes areplayed.
That reduces themusical complexityof thepatternat just
one button press. Selecting an activity of 0% (left button)
mutes the instrument. You can this a mute button. Press
button 16 to unmute.

Transpose by semitones: This setting affects both se-
quencers. One of the 32 button in the row is active and
selects the base semitone (root note) for the sequences.
Each button is a different semitone.

Master clock speed: One of these 32 buttons is active
and shows the selected speed of the internal clock.

Menu: Holding this button brings up the menu, if held at
least 0.2 seconds. Release the button to leave the menu.

Stop: The stop button toggles the running state. If it
is lit, the sequencer is running, otherwise it is stopped.
This overrides any start/stop signal fromanexternalMIDI
clock.

Reset: A press on the reset button brings both instru-
ments to their first step of the sequence.

Normal / Alt / Accent / Scale: These last four buttons
select one of four global modes. Each mode is a kind of
“page” for the buttons - just like the menu page is a spe-
cial page. So alltogether there are five pages of 512 but-
tons. The Menu page is - as stated above - selected by
holding the menu button for at least 0.2 seconds. You
switch tooneof theother pagesbyholding themenubut-
ton, selectingoneofNormal /Alt /Accent / Scale and then
releasing the menu button.

Normal mode: This is the mode the sequencer comes
when you first start it. Every button represents one note
to be played.

Alt mode: Every button in the “Alternate” mode repre-
sents one note - just as in the normal mode. The notes
in this mode are played every second bar - in addition to
the notes in the normal mode’s page. That way you can
create some extra fills or ornamental notes that are just
played half of the time.

If you select a note in the Alternate page that is already
active in the normal page thius note will be removed ev-
ery second bar. So basically every active button in the
Alternate mode inverts the corresponding button in the
normal mode - but just every second bar.

Accent mode: Again, every button represents one note
in the sequence. Selectednotesget anaccent. Per default
all the downbeats are selected and the offbeats are des-
elected. Notes with an accent are played at 100% veloc-
ity. Notes without an accent are played at lower velocity.
You can set that in the menu page (see above). Accents
can make your patterns sound more interesting.

Scale mode: This mode is completely different than all
the other modes. It gives you complete control over the
musical scale that is used. To be more precise: For every
of the 16 rows you can select which note to be played.

Thefieldof buttons is divided into twoparts. The left part
with 31 out of 32 buttons per row selects one note for
each row of the sequencer. Each button represents one
semitone. The following picture shows the default situa-
tion: a natural minor scale (aeolian):

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

Note for row 16

Note for row 15

Note for row 14

Note for row 13

Note for row 12

Note for row 11

Note for row 10

Note for row 9

Note for row 8

Note for row 7

Note for row 6

Note for row 5

Note for row 4

Note for row 3

Note for row 2

Note for row 1

The last column of buttons shows a kind of “wave” ani-
mation tomake clear that thesebuttons are special. They
are for loading one of 16 default scales into the configu-
ration. Pressing any of these buttons will set all 16 rows
to notes of the chosen scale. These are the default scales
that you can load:

DROIDmanual for blue-6 44 Table of contents at page 2

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

B32
DROID

21 2422 23

25 2826 27

29 3230 31

1 42 3

5 86 7

9 1210 11

13 1614 15

17 2018 19

Chromatic (only semitones)

Diminished (starting with semitone)

Diminished (starting with whole tone)

Whole tone

Spanish (harmonic minor from 5th)

Harmonic minor

Altered

Mixolydian #11

Melodic minor

Half diminished (locrian)

Natural minor (aeolian)

Mixolydian major

Lydian major

Phrygian minor

Dorian minor

Natural major (ionian)
Note: any changes in the scale notes takes immediate ef-
fect. Try to setup some melodies in the sequencer that
use as many different notes as possible. Then go to the
scale mode and simply play around. You will see that in-
teresting musical effects can be achieved. Also have in
mind that it can be interesting if several rows play the
same note for a while. That reduces the harmonic com-
plexity of the melody.

DROIDmanual for blue-6 45 Table of contents at page 2

Megasequencermenu cheat sheet for printing

MUTE 100%

1 51 5 5 1 2 65

1 2 3 4 5 141312 15 16

1 2 3 4 5 141312 15 16

1 2 3 4 5 141312 15 16

1 2 3 4 5 141312 15 16

1 2 3 4 5 141312 15 16

1 2 3 4 5 141312 15 16

1 2 3 4 5 141312 15 16

1 2 3 4 5 141312 15 16

1 2 6

MUTE 100%

Stop Reset

Split Legato Reset Speed x2 Clear

Preset

Volume

Non-Accent Velocity

MIDI Modwheel (CC1)

Clock divider

Activity

Pattern length

MIDI channel

Octave

Volume

Non-Accent Velocity

MIDI Modwheel (CC1)

Clock divider

Activity

Pattern length

MIDI channel

Alt

Split Legato Reset Speed x2 Clear

Reset Normal Accent Scale

(free)

(free)

(free)

(free)

(free)

(free)

Transpose by semitones

Master clock speed

Menu

Octave Preset

DROIDmanual for blue-6 46 Table of contents at page 2

5 Creating DROID patches with a text editor

5.1 General procedure

If you don’t like to use the Forge, you can write patches
by directly editing the text file. This is the general proce-
dure:

1. Create a text file called droid.ini.
2. Copy this file to a micro SD card.
3. Insert the card into your master.
4. Press the button on the master.

If the finds an error in your patch, LEDs will blink
and tell you more about that error. Fix your error and try
again. That’s all.

On theMASTER18or if youhave attached in X7expander
to your MASTER, you have an additional option for load-
ing a patch, which is is a lot easier. The USB port on the
MASTER18 or X7 gives you direct access to the SD card.
The card is attached to your computer by putting the lit-
tle switch on theMASTER18/ X7 to the left. This is like in-
serting the card into your computer. Now you can edit or
copy your droid.ini. Afterwards simply put the switch
back to its center position. That will remove the card
from your computer (eject it first with your file browser).
Also the patch will be immediately loaded by your mas-
ter, no need to press the button.

Since the Forge operates on the same kind of text files,
you can open such a manual file with the Forge and also
edit Forge-created fileswith a text editor. The Forge even
has a simple built in editor for editing the patch or just
parts of it in its text form.

Procedure in details

Here is the procedure again with somemore details:

1. Use your PC, Mac or Linux box for creating a text
file with the name droid.ini. A text file is not a
MS Word file. In Windows you can create or edit a
text file with Notepad or with some more conve-
nient text editor. Note: some might want to edit
droid.inidirectly on the SD card. This is possible,
of course. It’s always handy, however, to have a
copy of that file on your computer, just in case.

2. When you are finished, copy this file to the micro
SD card your has been shipped with or to
any other micro SD card that is compatible with

. You need a micro SD card reader for this.

Do not use any subdirectories on the card. Put the
file into the main directory. The card needs to be
formattedwith the standard FAT filesystem. If you
buy a new card, it ismost likely formatted thatway
anyway. Hint: If you like, you can create and edit
your file directly on the card, of course. This saves
the extra step of copying it.

3. Insert the micro SD card into the small card slot
of your master. Put it in with the metal
contacts downwards. Be gentle, as always :-)

4. Press the button left of the SD card slot. Of
course your has to be powered up while
you do this. The now reads the file
droid.ini, copies it into its internal flashmemory
and restarts, in order to load and activate the new
patch. If everything is OK, one light will make one
quick circle around the16LEDsandyourpatch isup
and running. After that you can remove the card if
you like. Your does not need it anymore.
Note: If you are using an X7 expander, thememory
card remains in themastermodule all the time. You
also don’t need to press the button on the master,
just use the switch on the X7.

5.2 Basic structure of the patch file

Droid offeres a long list of pre-programmed functionali-
ties - called circuits - fromwhich you can pick and choose
for your needs. Each circuit takes input values, processes
them and produces output values. It is your task to set

the inputs to values you like. Such a value could be taken
from a hardware input, a button, a pot, or simply be a
fixed value. The outputs of the circuit can be connected
to hardware outputs, LEDs or even to the inputs of other

circuits in order to create more complex patches.

All this is configured in a simple text file with the name
droid.ini, which is also called the Droid patch. Using

DROIDmanual for blue-6 47 Table of contents at page 2

a simple text file has lots of advantages:

• You can edit it with nearly every operating system.
• No special software is needed. This will probably
still work in 30 years, when you just have bought
a vintage on ebay for a couple of thousand
bucks.

• You can easily post and share your patches
or patch snippets in our Discord community or on
other internet boards.

• You can copy & paste parts from other one’s
patches.

• You can add comments to your patch.

Here – again – is an example of a patch:

[lfo]
hz = 0.5
triangle = _CABLE_1

[contour]
gate = I1
decay = _CABLE_1
sustain = P1.1

release = I2
output = O1

As you can see the droid.ini is a list of circuit declara-
tions. In the upper example we see two circuits: [lfo]
and [contour]. Each one comes with a list of inputs and
outputswhich are assigned to jacks, fixed values or inter-
nal patch cables.

In the example all jack declarations are indented for bet-
ter readability.

5.3 Finding a problem in your DROID patch

It is not entirely unlikely that you got something wrong
in your patch, some syntax error, some invalid line, stuff
like that. Humans make errors, but this is no big deal,
since helps you finding the reason and location
of any problem in your patch by several means:

1. It blinks the button five times in a row.
2. It creates a file called DROIDERR.TXT on your SD

card.
3. It flashes some LEDs in a certain way.

So if you experience any strange button or LED blinking
after loading your patch, put the card back into your com-
puter (or put the switch on your X7 to the left again) and
look into the file DROIDERR.TXT, which should be there
now. This file just contains one line, maybe like this one:

ERROR IN LINE 17: Invalid output 'O9'. Allowed
is O1 ... O8

This tells you the exact location and reason of your prob-
lem so that you can easily fix it.

LED blink codes on theMASTER

Asanalternative to the error file, theMASTERalso shows
the location and reason of the error in form of LED blink
codes in its 4× 4 LEDmatrix.

There are two types of errors that you can make:

1. General errors concern the patch as a whole. The
SD card is missing. You have misspelled the file
name. Things like that. In such a case all LEDs will
flash in the same color. The color indicates the
reason of the error. On the next page you find a
table of all global error codes.

2. Local errors concern just one specific line in your
patch. In that case just some of the LEDs

will flash. Again, the color shows you the rea-
son for the error, according to the table local error
codes. In addition, the LEDs show you the exact
line number where your error occurs. This is done
in the following way:

• The input LEDS 1 … 8 indicate the tens of the
line number. If the error happens to be in line
90, then LED 1 + 8will flash. If it is in line 1 to
9, then no input LED flashes at all.

• The output LEDS 1 … 8 indicate the ones and
are added to that number. Again, if a 9 is
needed, then 8 + 1 will flash.

• If your patch hasmore than 99 lines, then the
error could be in line 100+. In that case one
of the input LEDs will flash white. That LED
indicates the hundreds of the line number.

• If the error is in some line at 900 ormore, sev-
eral LEDs will flash white. Just add them up.
So e.g. if LED 2 and LED 8 flash white, this
means 10 times 100, hence 1000.

• Themaximum line number that can be shown
that way is, if all eight LED flash white plus
99. That is 100 + 200 + ... + 800 + 99 = 3699.
If your patch has evenmore lines, better look
into thefile DROIDERR.TXT. There you can see
the line number of the error in clear text.

DROIDmanual for blue-6 48 Table of contents at page 2

Examples for error codes

Invalid parameter value in line 81:

Undefined parameter in line 90:

Invalid register in line 99:

Line too long in line 144:

The SD card was not found or could not be read:

Too many circuits or out of memory:

LED blink codes on theMASTER18

The MASTER18 does not have LEDs on the front panel.
But it has four LEDs on its back. They do not show the
location of the error but at least the type. The rule is this:

• If LD1 blinks, it’s a global error. The color matches
those in the table below.

• If LD2 blinks, it’s an error in some line of the patch.
Again look for the color in the table below.

The exact location of the wrong line is not visible in the
LED blink code. You find it in the file DROIDERR.TXT on
the SD card.

DROIDmanual for blue-6 49 Table of contents at page 2

5.4 Table of error codes

All LEDs flashing at once (global error)

yellow Patch not found: This can happen in the following situations:
1. No file with the name droid.ini is present on the memory card.
2. You started without having loaded a patch ever.
3. You did a factory reset without loading a patch afterwards.

red Toomany controllers: You have declared more than the allowed num-
ber of 16 controllers.

blue Patch is too big: The size of your droid.ini file is too big. The maxi-
mumof the sizewithout spaces and comments is 64,000 bytes –which
is quite a lot.

cyan Out of memory: The circuits in your patch use too much memory. So
youhave toomany large circuits or toomany circuits in total. Themem-
ory consumption of each circuit only depends on its type. The smallest
circuit is bernoulli and has a size of about 200 bytes. The largest cir-
cuits are midifileplayer with 7000 bytes and cvlooper with 18,000
bytes. Most circuits need between 400 and 800 bytes. And the total
available memory is about 110,000 bytes.

magenta Invalid firmware file: The firmware upgrade failed because the con-
tents of droid.fw is invalid. The file is incomplete or corrupted.

white NoSDcard found: No card could be found. Maybe you inserted it in the
wrong way? Or your card is not supported. Or you pressed the button
too early. Sometimes it helps to simple press the button again.

Note: If you get your start animationwith just white LEDs instead of colored ones, your
DAC calibration needs to be redone. See page 101 for details.

Just some of the LEDs flashing (local error in one line in droid.ini)

yellow Unknownregister: Youusedanon-existing register name (registers are
the things like O1, I7 and so on). Please check the list of allowed regis-
ters in this manual on page 52.

orange Unknown parameter name: that circuit does not support that param-
eter. Please check the circuit references in chapter 16.

red Unknown circuit: This type of circuit does not exist. Please check the
exact spelling. Maybe you have an old firmware that does not support
that circuit yet? On page 98 you learn how to do a firmware upgrade.

blue Line too long: One line in your patch exceeded the maximum allowed
line length of 63 characters.

green Internal patch cable misused: One of your internal patch cables (see
page 56) is not properly used:

1. No input: One patch cable is only used as output.

2. No output: One patch cable is only used as input.

3. Double output: One patch cable is used twice as an output.

magenta 1. Invalid header of circuit: was expecting an opening square
bracket [, but found something else.

2. Invalid parameter line: was expecting something like clock
= I7, but found something completely different. Parameters always
start with a letter. This is followed by an equals sign.

3. Invalid parameter value: Your parameter has an invalid value.
Please checkout this manual about allowed values for parameters and
their exact syntax.

DROIDmanual for blue-6 50 Table of contents at page 2

5.5 Inputs, outputs and other registers

Yourmaster has lots of inputs andoutputs. Also theLEDs
on theMASTER and in the buttons of your controllers be-
have like outputs. Buttons and pots behave like inputs.
All these are called registers, because they behave like
things that can store values. Each register is named with
one special character followed by a number or number
combination.

The eight CV outputs of your master start with the let-
ter O and are named O1 through O8. The CV inputs of the
MASTER are called I1 … I8.With the normalizations N1 …
N8 you can specify a signal or value that should be used
for I1, I2, … I8 when no patch cable is inserted. But we
will come to that later.

TheMASTER18 has two gate/trigger inputs called I1 and
I2 and four gate outputs called G1, G2, G3 and G4.

When you have attached a G8 expander, you get eight
more jacks. On the MASTER these are called G1 through
G8. On the MASTER18 they are G2.1 … G2.8. Each of
these can either be used as an input or an output. They
are simple gate inputs/outputs that just know “On” and
“Off”, or 0 and 1. When used as an output they output
either 0 V or 5 V.

Starting with the blue-3 firmware and the new version
of the G8 expander, you can add up to four G8s to you
master. If you have more than one G8, you need a dot-
notation for the gate names, for example the gate 7 on

the second G8 is called G2.7 on theMASTER and G3.7 on
the MASTER18.

The stuff on your P2B8, P4B2, B32, P10 and other con-
trollers can also be accessed via registers. Here there is
always a dot in the name, separating two numbers, like
P1.2 or B4.8. The first number is always the number of
your controller. The second number is the number of the
element on the controller. So B4.8 is the 8th button on
the 4th controller. P10 controllers just have P registers,
no B or L registers. Likewise the B32 has just buttons and
thus no P registers.

Please note that each button has two registers: one with
the letter B for the button itself. will set that to
1.0while the button is pressed (andhold) and to 0.0oth-
erwise. The second register is for the LED in the button
and begins with L. This is an output register where you
can write values to. A value of 0.0 will set the LED off,
while 1.0 creates full brightness. But the LEDs also sup-
port any number in-between and will have a brightness
according to that number. Negative numbers are treated
like positive numbers here, so -0.5will produce the same
brightness as 0.5.

As long as you do not actively use the L-registers the
LED in a button will automatically be lit while you hold
it. Please look at the button circuit in page 141 for how
to convert a push button into one that toggles its state on
each press.

Overriding the LEDs ofmaster, G8 and X7

The registers R1 through R56 give you access to the 4× 4
LEDmatrix on theMASTER and to the 2×4LEDmatrices
on the G8s and X7. The let you override the normal func-
tion of these LEDs and give you a way to show internal
states of your patch. This is especially useful when you
have a couple of unused inputs (and thus unused LEDs).
Sending some internal values to one of these LEDs gives
you some feedback about what your is doing.

Sending a value of 0.0 to such a register makes the cor-
responding LED dark. Other values select a color at full
brightness. Here is the table of colors (intermediate val-
ues give intermediate colors):

0.2 cyan

0.4 green

0.6 yellow

0.73 orange

0.8 red

1.0 magenta

1.1 violet

1.2 blue

DROIDmanual for blue-6 51 Table of contents at page 2

Registers on theMASTER:

Register Type Description

I1 I2 I3 I4 I5 I6 I7 I8 input The eight CV inputs

N1 N2 N3 N4 N5 N6 N7 N8 output The normalization of these inputs. When nothing is patched into an input, the according I-register will take its value
from the matching N- register instead. Any they are 0.0 if you have not set them.

O1 O2 O3 O4 O5 O6 O7 O8 output The eight CV outputs

G1 G2 G3 G4 G5 G6 G7 G8 input/output The jacks of the first G8 expander. Each can be used either as an input or as an output. Instead of G1 you canwrite G1.1.

G2.1 G2.2 G2.3 G2.4 ... G2.8 input/output The eight gate jacks of the second G8 expander. Use G3.X and G4.X for the third and fourth G8 expander.

G9 G10 G11 G12 output The four gate jacks of the X7 expander. These are always outputs.

R1 R2 R3 R4 R5 R6 R7 R8 output The colored LED squares in the first two rows (those for the inputs)

R9 R10 R11 R12 R13 R14 R15 R16 output The colored LED squares in row three and four (those for the outputs)

R17 ... R48 output The colored LED squares on the first, second, third and fourth G8 expander

R49 ... R56 output The colored LED squares on the X7 expander

X1 output Special register for displaying a value encoded in the 4× 4 LEDmatrix

Registers on theMASTER18:

Register Type Description

I1 I2 input Gate/trigger inputs

O1 O2 O3 O4 O5 O6 O7 O8 output The eight CV outputs

G1 G2 G3 G4 output The four gate/trigger outputs

G2.1 G2.2 G2.3 G2.4 ... G2.8 input/output The eight gate jacks of the first G8 expander. Use G3.X, G4.X and G5.X for the 2nd, 3rd and 4th G8.

G9 G10 G11 G12 output The four gate jacks of the X7 expander. These are always outputs.

R1 R2 R3 R4 output The colored diagnostic LEDs on the back of the module

R17 ... R48 output The colored LED squares on the first, second, third and fourth G8 expander

R49 ... R56 output The colored LED squares on the X7 expander

DROIDmanual for blue-6 52 Table of contents at page 2

Registers on the controllers:

Register Type Description

P1.1 P1.2 P2.1 P2.2 P3.1 P3.2 … input The pots on your P2B8, P4B2, P10 or M4 controllers. P3.2 is the 2nd pot on your 3rd controller.

E1.1 E1.2 E1.3 E1.4 E2.1 … special The encoders of you E4 controllers. These registers can only be used in junction with the circuits encoder (see page
189), encoderbank (see page 185) and encoquencer (see page 198).

B1.1 B1.2 B2.1 … B2.1 B2.2 B2.3 … input The push buttons on your P2B8, P4B2 or B32 controllers. B3.6 is the 6th push button on your 3rd controller.

L1.1 L1.2 L2.1 … L2.1 L2.2 L2.3 … output The LEDs in these push buttons

R1.1 R1.2 R1.3 R1.4 output The LEDs in the touch buttons of the M4 controller at position 1

DROIDmanual for blue-6 53 Table of contents at page 2

5.6 Specifying numbers in your patch

Note: you always need to write the numbers in ”plain”
format, for example 0.01 or 12345.67 or -5.0. Scientific
notations like 3.4^-10 are not allowed. It’s also not al-
lowed to write just .5 instead of 0.5.

There are two suffixes that you can attach to a number:
% and V. Appending a percent sign basically divides the
number by 100, so ...

pulsewidth = 45%

... is just the same as

pulsewidth = 0.45

Appending a V divides the number by 10, which is exactly
what you need in order to convert a number to a voltage

to be output at a jack. So:

pitch = 2V

... is just the same as

pitch = 0.2

Sometimes this is easier to read. Pleasebe just aware that
the V is applied just to the number itself. You couldwrite
1/12V, but that is not 1

12 V, but is
1

12V , which is – when
you convert the voltage back to a number – 1

1.2 , which is
0.8333. Whereas 1

12 V would be 0.008333 – a hundred
times smaller!

Some inputs or outputs behave like gates that only know
0 or 1, low or high, on or off. For your convenience you

can use thewords off –which is just a short hand for 0.0,
and on – which stands for 1.0, if you like. Here is an ex-
ample:

[contour]
loop = on
output = O1

This is exactly the same as:

[contour]
loop = 1.0
output = O1

5.7 Attenuating and offsetting inputs

Attenuation / Amplification /Multiplication

Each input of a circuit (not the outputs!) has a built-in op-
tion for attenuation and offsetting. Attenuation is done
bymultiplying the input with a value. Well, if you “atten-
uate” with a number greater than 1, the name attenua-
tion would not really be correct, since the signal in fact
gets amplified and not attenuated.

Let’s assume youwant to control the level parameter of
an LFOwith the first pot of your first controller (see page
239 for details on the LFO circuit). That pot can be ad-
dressed with P1.1:

[lfo]

level = P1.1
output = O1

The pot has a range from0 to 1, which corresponds to 0 V
…10 V. That’s maybe too much for you application. So
let’s limit the range to 5 V, which is the same as 0.5. This
is done by multiplying the pot with 0.5:

level = P1.1 * 0.5

Now levelwill range from 0 V to 5 V.

Theattenuationdoesnotneed tobeafixednumber. Let’s
CV control the level of the LFOwith the external input I1.
Nowwemultiply thatwith thepotP1.1, whichmakes the
latter an attenuator for the CV. How cool is that?

level = I1 * P1.1

Fixed numbers can also be negative. The following line
basically inverts the LFO’s output since its output voltage
is negated:

level = P1.1 * -1

If you like, you can use a short hand for that:

level = -P1.1

But that is really just an abbreviation for -1 * P1.1.
From that follows, that -P1.1 * I1 isnot possible, since
thiswould be -1 * P1.1 * I1, whichwould be twomul-
tiplications!

DROIDmanual for blue-6 54 Table of contents at page 2

Division

There is another shorthand: It is allowed to use division,
if the thing you divide by is a fixed number. So Instead of
pitch = I1 * 0.0833333 you can write:

pitch = I1 / 12

Again, this is a short hand for I1 * 0.0833333 and this
its treated as a multiplication. For that reason you can-
not write I1 / P1.1 or anything similar, since here the

would really have to do a dynamic division with
the current value of P1.1. Use the math circuit for such
things (see page 248).

Offsets / Summing

An offset is applied by adding a number. This must be
written after the (optional) attenuation. Let’s have the
level of the LFO set by P1.1 but be at least 2 V:

[lfo]
level = P1.1 + 0.2

Now the level would range from 2 V to 12 V. Since 10 V
is themaximum, we couldmultiply the pot with 0.8 first,
which results in a range from 2 V to 10 V:

level = P1.1 * 0.8 + 0.2

Again you are not restricted to fixed numbers. You can
also use any register you like. In this example

we use P1.1 as a coarse tune and P1.2 as a fine tune (20
times finer) for the rate of an LFO:

[lfo]
square = O1
rate = 0.05 * P1.2 + P1.1

Using + can even be used for mixing together two input
signals. The circuitcopy just copies an input to anoutput,
but since the offset can be usedwith any register you can
build a simple CVmixer:

input = I1 + I2

Note: If you want to summore than two signals, use the
mixer circuit (see page 285 for details).

Subtraction

Mathematics says, that subtraction is nothing else than
the addition of a negative number. So you can subtract
0.5 from P1.1 by writing:

input = P1.1 + -0.5

Since this looks clumsy, you are allowed to write as a
short hand:

input = P1.1 - 0.5

Note: you can also use the negation on a register:

input = I1 - I2

But note: here this is an abbreviation for -1 * I2 + I1!
So you already have “used up” your multiplication, even
if you don’t see it. The general rule is: If can trans-
form your line into the formA * B +C, everything is good.

Summary and Further notes

• Generally the format is A *B +C. So you are limited
to one attenuation (multiplication) and one offset
(addition / subtraction)

• Each of A, B and C can be a fixed number, any of
the registers or an internal patch cable (for those
see page 56).

• Attenuation must be written first, offset last.
• There are some abbreviations for subtraction and
division. Theywork if the thing can be transformed
into A * B + C.

• No other operations are allowed (no brackets, ad-
ditional operations, divisions, etc.)

• If you needmore complexmath operations, have a
look at the math circuit (see page 248).

Are you curious why does not allow more com-
plex operations here? Why is it so restrictive? The rea-
son is a matter of CPU performance! When your patch is
parsed, everything is converted to A * B + C. If you don’t
use the multiplication, B is set to 1. No offset? Then C
is 0. So when it comes to the real time computation of
these values, it’s just the simple A * B + C. No conditions
to be tested, no if/then/elses or similar stuff. It’s really
super fast. And that’s important because you want your

to have low latency and smooth envelopes.

DROIDmanual for blue-6 55 Table of contents at page 2

5.8 Internal patch cables

One of the fun parts is the fact, that internally you can
connect several circuits without using any real inputs or
outputs. Instead of an output you simply put a name of
your choice that begins with an underscore. That same
name can be used at another circuit as an input. Here is
an example of an internal LFO triggering an envelope:

[lfo]
square = _TRIGGER

[contour]
trigger = _TRIGGER
output = O1

This patch cable is always amultiple, so it can be used by
more than one circuit:

[lfo]
square = _TRIGGER

[contour]
trigger = _TRIGGER
attack = 0.0
release = 0.2
output = O1

[contour]
trigger = _TRIGGER
attack = 0.5

release = 0.8
output = O2

Note: There are two rules that are checkedby the .
And it will show an error message in green if one of these
are found to be broken (see page 48 for an explanation of
the error codes).

1. Each internal patch cable must be used as an input
and as an output (otherwise it would be useless).

2. No internal patch cable may be used twice as an
output. This would make no sense and is in effect
a short circuit.

5.9 Using outputs as inputs

There is another way of connecting circuits: You can use
an output register as an input to another circuit. The
following example creates an LFO that outputs a square
wave to LED R1, in order for it to flash in the speed of the
LFO. R1 is the LED designated for input 1, but we sim-
ply misuse that as a signal LED for our LFO. Then an eu-

clidean rhythm is triggered with that same signal, simply
by using R1 as an input here:

[lfo]
hz = 2
square = R1

[euklid]
clock = R1
length = 12
beats = 5
output = O1

5.10 Using inputs as outputs

Using input registers as outputs is not allowed. And it
would not make any sense. If you try so, you will get a
yellow blinking error message for the according line.

Look at the following example. Here – due to a copy &
paste error – the LED states are sent to the button regis-

ters. That won’t work. And for that reason won’t
allow it:

[buttongroup]
button1 = B1.1

button2 = B1.2
button3 = B1.3
led1 = B1.1 # Argr. should be L1.1!
led2 = B1.2 # Argr. should be L1.2!
led3 = B1.3 # Argr. should be L1.3!

DROIDmanual for blue-6 56 Table of contents at page 2

5.11 Parameter arrays

Some of the circuits have arrays of similar jacks, like
output1, output2, output3 and so on. Here you can al-

ways omit the digit 1 if you just want to address the first
jack in the list. So output is just the same as output1.

5.12 Comments & spaces

You can use comments in your patch by making
use of #. Then all further text until the end of the line is
being ignored: #Here comes the envelope for the foobar
voice

[contour]
trigger = _TRIGGER # wired to sequencer
attack = 0.5 # another comment
release = 0.8

output = O2 # wired to foobar trigger

5.13 Abbreviated parameter names

There is a limit of 64,000 bytes that a patch may be long.
Since spaces and comments are removed automatically
by themasterwhenyou loadapatch, theydonot account
for. Nevertheless, you can run into this limit if you create
more complex patches.

A new way to reduce the patch size has been introduced
in the firmware blue-6. Now every parameter has an ab-
breviation. You find the complete list of all abbreviations
in the firmware ZIP file in the subdirection manual. There
is afile calleddroid-cheatsheet-...pdf (with thename
of the firmware inserted). This how it looks for the circuit
algoquencer (see page 115):

For example you can write just c instead of clock, r in-
stead of reset and b instead of button. Some abbrevia-
tions use more characters such as pt for pattern.

So instead of

[algoquencer]
clock = I1
reset = I2
pattern = _PATTERN
button1 = B1.1
button2 = B1.2
...

... you can write

[algoquencer]
c = I1
r = I2
pt = _PATTERN
b1 = B1.1
b2 = B1.2
...

DROIDmanual for blue-6 57 Table of contents at page 2

The Forge has an option called Use abbreviated parame-
ter names in the preferences. If you work with the Forge,

just tick that option and your patches will be compressed
by abbreviating parameter names, automatically.

5.14 More than one patch on thememory card

Sometimes you might want to have more than one
patch on your card and switch back and forth be-

tween these without going back to your computer. This
can be done if you have at least one controller with but-
tons, such as P2B8, P4B2 or B32.

It goes like this: Put your additional patches on the
cardwith special filenames in the format droidXY .ini,
whereX is the number of the controller and Y the num-
ber of the button. Then for example droid14.ini will
be loaded if you first press and hold the button 4 on your
first controller while then pressing the load button on the
master.

This way if you have one P2B8 you can choose between
nine different patches. If you have a second P2B8 con-
troller, this extends to 17 patches, because now holding
button 1 on controller2will load droid21.ini and so on.
A B32 gives you a total of 32 alternative patches to load
and so on. And yes: if you have 10 or more controllers
and some B32 amongst them, droid124.ini would be
loaded by button 24 on controller 1, but also by button
4 on controller 12.

Important: It is crucial that every of your patch files con-
tains the appropriate [p2b8] or other controller declara-
tions! Otherwise you won’t be able to switch over to the
other patches since button presseswill not longer be reg-
istered by the master. It will instead fall back to
the normal droid.ini in that case.

If you load a patch that way, the states of your circuits
are saved in a special file that accompanies the patch.

The name of that file is DSTAXY .BIN, so for example
DSTA14.BIN if you load the patch droid14.ini. All you
need to know is that each patch has it separate state. So
if you e.g. have an algoquencer in each of two patches,
it’s patterns will seperately loaded and saved.

DROIDmanual for blue-6 58 Table of contents at page 2

6 Controllers

6.1 Installing the controllers

Controllers are easy to install and use. The picture on the
right shows the back of the P2B8 controller, but the other
controllers look similar.

Each controller has two 6-pin connectors that are
mounted in boxes (shrouded). They are labelled “LINK
OUT” (left) and “LINK IN” (right). These connectors are
for building a chain of controllers. Don’t mix this up with
the 6-pin header that is labelled “Debug”, which doesn’t
have a box!

With your controller you got a 6-pin ribbon cable. Con-
nect one end of it to the shrouded 6-pin controller con-
nector of your master and the other end to the “LINK IN”
of your first controller.

Take another 6-pin cable andwire the “LINKOUT” of your
first controller to the “LINK IN” of your second controller.
Continue until all controllers are chained together.

Finally: Every controller also has a three-pin header with
the labels “LAST” and “PARK”. When you get the mod-
ule there is a small connector (“jumper”) between the two
pins that are labelled “LAST”. This jumper is crucial for
making the chain work. Here is the rule:

• On the last controller, the jumper must be in the
position “LAST”.

• On all other controllers, the jumper must be in the
“PARK” position or removed (The park position is
just for your convencience that you don’t lose the
jumper).

Jumper for terminating the
chain

Use these connectors.

Don’t use this one!

This is howa setupwith twoP2B8son amaster looks like:

If you switch on your system after connecting the con-
trollers, those with LEDs should make a short power up
animation. This does not mean that they are wired and
jumpered correctly, though. Tomake a real test, youneed
to prepare a patch, as you will see below.

Note: The M4 controller (see page 71) needs an addi-
tional power connector to your Eurorack system. The
other controllers are powered by the master.

DROIDmanual for blue-6 59 Table of contents at page 2

6.2 How to use controllers in your patch

Working with the Forge

Before you canuse the controllers in your patch, youneed
to declare them in your patch. If you areworkingwith the
Forge, that’s super easy. Double click on the topareawith
themodules, click the “Controller” icon on the left, or use
the menu entry Edit / New controller.... This brings up a
collection of controllers:

Double click a controller to add it to your patch. Make
sure that the controllers are in the sameorder as youhave
wired it to themaster – from left to right. In case youhave
mountedyourmaster on the right sideand the controllers
from right to left, you can switch howForge displays your
patch with View / Showmaster on the right side.

Now if youwant to use one of the controls, bring the cur-

sor in your patch to the cell that shall “receive” the value
of the pot or button and click on this control in the rack
view. The Forge then inserts something like Button B2.7
into this cell. This means Button 7 on controller number
2.

Working with the motor faders in the M4 is a bit more
complex. Please have a look into the chapter about the
M4 (see page 71).

Working with a text editor

If you write your patch with a text editor, Just write
one line with the content [p2b8], [p10], [b32], [p4b2],
[s10], [m4] or [p8s8] for each for your controllers at the
top of your patch. The order of these declarations must
match the order of your controllers in the chain, begin-
ning with the one that is directly connected to the mas-
ter. Here is an example with two P2B8s followed by one
P10:

[p2b8]
[p2b8]
[p10]

Now you can use the pots, buttons and LEDs by indicat-
ing these special registers in your patch as follows:

Px.y potentiometers

Ex.y encoders

Bx.y buttons

Lx.y LEDs in buttons

Sx.y switches (S10 and P8S8)

Replace x with the number of the controller and y with
thenumber of the pot, button, LEDor switch on that con-
troller. Examples:

• P1.2 is the second pot on the first controller
• B3.8 is the eighth button on the third controller
• L3.8 is the LED in that button

DROIDmanual for blue-6 60 Table of contents at page 2

Here is a schematics of the numbering of three P2B8 con-
trollers:

P2B8

P1.1

P1.2

B1.1

B1.3

B1.5

B1.7

B1.2

B1.4

B1.6

B1.8

P2B8

P2.1

P2.2

B2.1

B2.3

B2.5

B2.7

B2.2

B2.4

B2.6

B2.8

P2B8

P3.1

P3.2

B3.1

B3.3

B3.5

B3.7

B3.2

B3.4

B3.6

B3.8

Look at the following example. Here we have three con-
trollers attached to the master: One P2B8, then one P10
and finally onemore P2B8. Thenwe use some of the pots
of the P10 for controlling the timing of an envelope cir-
cuit:

[p2b8]
[p10]
[p2b8]

[contour]
trigger = G1
output = O1
attack = P2.5
release = P2.6

Details on the potentiometers

The potentiometers of the P2B8 and P10 output a num-
ber in the range 0.0 … 1.0. This corresponds to a voltage
from 0.0 V to 10.0 V. Wherever there is a CV parameter
in a circuit (labelled in the table of inputs) you can
set a pot here. An example would be an envelope gener-
ator:

[p10]

[contour]
gate = G1
output = O1
attack = P1.3
decay = P1.4
sustain = P1.5
release = P1.6

If you do not like the range of the pot you can easily
change it by attenuation and offsetting as described on
page 54. Let’s make attack just go from 0.0 to 0.3:

[p10]

[contour]
gate = G1
output = O1
attack = P1.3 * 0.3
decay = P1.4
sustain = P1.5
release = P1.6

Of course you could use the same pot for more than one
input. The following example use one single pot for at-
tack, decay and release –with different scaling, however!

[p10]

[contour]
gate = G1
output = O1
attack = P1.3 * 0.3
decay = P1.3 * 0.5
sustain = P1.4
release = P1.3 * 0.7

Sometimes you want to use a potentiometer in a bipo-
lar way – e.g. with a range from -1.0 to 1.0. This can be
achieved by multiplication with 2 and subtracting 1:

[p2b8]

[copy]
input = P1.1 * 2 - 1
output = O1

Formore complicated tasks about pots there is the circuit
pot (see page 329). Here are some of its features:

• Make it easy to exactly dial in 0.5 by creating an ar-
tificial notch.

DROIDmanual for blue-6 61 Table of contents at page 2

• Overlay the samepotwith several independent vir-
tual values.

• Easily create a bipolar pot with access to the left
and right half of the values.

• Use the master’s 16 LEDs for highlighting the cur-
rent pot value

Details on the buttons

The buttons like on the P2B8, B32 and so on yield a value
of 1.0 while pressed and hold and 0.0 otherwise. While
this is sufficient for using them as trigger, in most cases
you want the button to toggle its state between on and
off each time you press it.

Here the circuit button helps (see page 141). It converts
a push button into an on/off switch. The following exam-
ple uses B1.1 in order to switch an LFO between unipolar
and bipolar:

[p2b8]

[button]
button = B1.1
led = L1.1

[lfo]
bipolar = L1.1
sine = O1

Please note, how the LED L1.1 is set by the button, so

that you have visual feedback of the current state. And
since that register contains 0 or 1 depending on the but-
ton’s state it can directly be used for the input bipolar of
the LFO.

The button circuit can do much more interesting things,
for example:

• Create buttons with three or four toggle states
• Combining more buttons into a group, similar to
“radio buttons”.

• Overlay onebuttonwith several independent func-
tions

• Detect double clicks and long presses

See page 141 for all the details.

6.3 Troubleshooting

Here are themost common reasonswhy controllers don’t
work as expected. If you have trouble with the con-
trollers, please try the following before you reach out to
our community or us. We have a production error rate of
less then 1 in 1000 modules so far. So the chances are
huge that you can fix your problem yourself.

Jumpers: If your LAST/PARK jumpers are not set cor-
rectly, the controllers will powerup anyways. The LEDs
will show their boot up animation. A patch might even
be able to use the LEDs in the buttons. But you won’t
get button presses or pot positions back to your master.
That’s because the jumpers organize the transportation
of the output data of the whole chain back to themaster.

IN/OUT swapped: If you mix up the two connectors, the
LEDs on the module will still light up on boot time. But
no communication works. It happens to me all the time,
since it’s easy to get confused by the fact that left/right

changes when you turn the module around.

Wrong declaration of controllers in your patch: The
controllers need to be added in their correct order to your

patch. Make sure that you have setup the con-
trollers in the FORGE in their correct order from left to
right. If you mix them up, they get garbled data from the
master that they cannot interprete.

Bad cables: This happened, even if it’s super rare. If you
are unsure and you have more than one cable, make a
setup with just one controller on the master. Make a
simple patch that uses that single controller. Now try
your other 6-pin cables. If one cable works and another
doesn’t, its an almost 100% indication that you have de-
tected a broken cable.

M4 blinking in rainbow colors: If the four LEDs of a M4
controller (see page 71) flash in the alternating four col-

ors red, green, yellow and blue, it indicates that it does
not have a communication with the master. It does this
in any of the upper situations. So checkout the hints. If it
slowly “pumps” in one color (starting with red, then yel-
low, then green), it’s currently charging its super capaci-
tors and needs some time to get ready to work (1-2 min-
utes at most).

Badmodule: If you really gotabadmodule,weapologize!
You just won a 1 in 1000 price for bad luck. But you still
get a chance to get things to work. There is a chance that
the problem just appears if the module is the last in the
chain, or if its not the last in the chain. If you have a sus-
piciousmodule, tryboth situations. Therewasonedefec-
tive module where just the “PARK” position was broken.
The solution was to put that module as last or simply re-
move the jumper from PARK.

If your thing yourmodule is defective, please contact out

DROIDmanual for blue-6 62 Table of contents at page 2

community on Discord. It’s still a good chance that you
can fix it yourself. Sometimes people are blind. You
module really looks broken, anyway: Please contact your
dealer or us directly.

And here is last hint: If you have correctly declared your
controllers in your patch, the LEDs in the buttons
should be lit as long as you hold the button (this is the
default behaviour until you use the button in our patch).

If this works, that the communication with the master is
working fine.

DROIDmanual for blue-6 63 Table of contents at page 2

6.4 The P2B8 controller

The P2B8 controller was the first available controller and
is still themost popular one, since it has a balanced num-
ber of pots and buttons and is very flexible. It is good
choice if you have just one or two controllers.

On the first P2B8...

• the two pots are addressed with P1.1 and P1.2.
• the buttons range from B1.1 to B1.8.
• the LEDs in these buttons are L1.1 to L1.8.

DROIDmanual for blue-6 64 Table of contents at page 2

6.5 The P4B2 controller

The P4B2 controller give your four nice pots and still two
buttons. Otherwise it’s very similar to the P2B8. The
P4B2 is a good choice if you like to work with a larger
number of big pots.

On the first P4B2...

• the four pots are addressed with P1.1 through
P1.4.

• the two buttons are B1.1 and B1.2.
• the LEDs in these buttons are L1.1 and L1.2.

DROIDmanual for blue-6 65 Table of contents at page 2

6.6 The P10 controller

TheP10 controller has twobig pots (the sameas theP2B8
controller) and eight small pots. Thatmakes a total of 10
pots, which are all behaving in the same way. They are
numbered from 1 to 10, so if your P10 would be the first
in the chain, these pots are adressed in a patch by

P1.1, P1.2, P1.3 ... P1.10.

The P10 is handy if you need to control lots of continuous
values. The small pots are not as easy to operate as the
big ones but they are very space efficient.

DROIDmanual for blue-6 66 Table of contents at page 2

6.7 The S10 controller

The S10 controller has ten switches. They have the regis-
ter abbreviation S. The first two are rotary switches and
have eight positions. They output the discrete numbers
0, 1, ... 7. The small switches just have three positions: 0
(down), 1 (center) and 2 (up).

In many cases the output values of the switches can be
used directly for controlling something. In other sitations
youmightwant touse theswitch circuit. It’s aperfect so-
lution for having the switch select one of a list of values.
Here is an example:

[switch]
offset = S1.1
input1 = 0
input2 = 2
input3 = 3
input4 = 5
input5 = 6
input6 = 10
input7 = 11
input8 = 100
output1 = _FADERMODE

Here the switch 1 (S1.1) sets on offset to a switch cir-
cuit and sends one of the values 0, 2, 3, 5, 6, 10, 11 and

100 into the cable FADERMODE.

As always: inputs can be CVs. So you can also have dy-
namic inputs into the switch circuit. Here we use one of
the small three-way switches to select oneof threewave-
forms of an LFO:

[lfo]
hz = 3
sine = _SINE
saw = _SAW
square = _SQUARE

[switch]
offset = S1.3
input1 = _SINE
input2 = _SAW
input3 = _SQUARE
output1 = O1

The switches are programmed in a way that if you move
them fast, intermediate values will not be seen by the
Droid circuits. So for example if you move one of the
small switches directly from down (0) to up (2), the in-
termediate middle position with the value 1 will not get
“visible”, not even for a short time.

DROIDmanual for blue-6 67 Table of contents at page 2

6.8 The P8S8 controller

The P8S8 controller is for those who love those little
sliders. The P8S8 has eight Alpha sliders with a range
of 20 mm. They behave like the normal pots and are
adressed with P1.1 through P1.8. The bottom position
is 0, at the top position their value is 1.

As a speciality the faders contain LEDs that can be con-
trolled and used for any purpose. Use the registers L1.1

through L1.8 for these. As long as you don’t use the LED
registers, the brightness of the LEDs reflect the current
fader positions.

At the bottom the P8S8 has eight toggle switches – just
the sameas in theS10 (seepage67). These switcheshave
three positions: 0 (down), 1 (center) and 2 (up). You ac-
cess themwith the registers S1.1 through S1.8.

DROIDmanual for blue-6 68 Table of contents at page 2

6.9 The B32 controller

You can never have too many buttons! And the B32
gives your not less than 32 of them. The B32 is a per-
fect companion for the M4 motor fader controller as the
M4provides lots of virtual “pots” and theB32 is handy for
switching between these.

Of course the B32 is also a good play ground for trigger
sequencers based on the algoquencer (see page 115).

ThebuttonsarenumberedB1.1 through1.32 (as labelled
on the face plate) and the LEDs accordingly L1.1 through

L1.32.

They LEDs have one restriction: The just support four
brighness levels: off, low, medium and full. This is a de-
sign decision for the sake of fast data transfer and low
latency.

Youwill notice that the B32 is super fast in detecting but-
ton presses. You can slide with one finger through a col-
umnof eight buttonsas fast as you like, but youwill never
make the B32 be too slow to detect one of the presses.

DROIDmanual for blue-6 69 Table of contents at page 2

6.10 The E4 encoder controller

The E4 is a controller with
four encoders. These are rotary
knobs that can be turned end-
lessly in either direction. Instead
of giving a certain position they
report movement. They do this
by sending digital signals when
they are turned to the left or to
the right. The encoders of the E4
have a resolution of 96 steps on
one full turn.

Each of the encoders is sur-
rounded by a square of 32
multicolor LEDs. This “ring”
is used to indicate the current
logical or virtual value of the
encoder. Encoders are ideal for
mapping multple virtual values
or presets to one knob and then
switch between these. The LEDs
will help you to orient yourself
“where you are” and which value
is currently being set.

Each encoder contains a push
button, which can be used just
like those on the P2B8 or on the
B32.

Installing the E4

You install theE4 just as all theother controllers (formore
about controllers see page 59): Connect the IN connec-
tor to your master with the 6-pin ribbon cable that came
with your module. Make sure that you always use the

shrouded pin headers (there is an additional 3×2 connec-
tor at the top, which is just for the intial programming of
the hardware).

The E4 has a green jumper on its back. If the E4 is the last
controller in your chain, set this jumper to Last. If other
controllers follow, connect the next one to the OUT con-
nector and remove the jumper or set it to Park.

The E4 also needs a connection to the power of your Eu-
rorack modular case. It will not take the power from the
master as most other controllers do. This is because the
master is not able to power all the 128 LEDs on each E4
via the controller cable.

Using the E4 in your patches

The encoders have special registers with the letter E. For
example E2.3 is the third encoder on your second con-
troller (which is presumably an E4). There is something
special about these registers. Because of the nature of
the encoders that donot have a currentposition, you can-
not directly use them. Instead you always have to use a
circuit for accessing an encoder. Currently there are three
circuits for this:

• The circuitencoder (seepage189) gives youaccess
to one encoder.

• The circuit encoderbank (see page 185) gives you
access to up to eight encoders at once.

• The circuit encoquencer (see page 198) is a
performance sequencer that can be controlled
with encoders and has the same features as the
motoquencer (see page 286).

Please read the chapter about the encoder circuit (see

page 189) for all details on how to use the E4. There are
lots of examples.

You can access the push buttons in the encoders with a
B register, e.g. B1.1 for the first button if the E4 is your
first controller.

There is also an L register for each encoder (e.g. L1.1).
This allows you to use the whole LED ring around the en-
coder as one big white LED – nicely overlaying with any
actual animation from the encoder itself.

Software update for the E4

Because the E4 has amore complex firmware than for ex-
ample the P2B8, it has built in a method for a software
update. This makes it future proof. It is not very likely
that you need to do an update any soon, but here is the
procedure anyway.

Basically you do exactly the same as for the X7 (see page
85 with the following additional notes:

• The firmware file on the SD card must have the
name e4.fw. You find the firmware file with a dif-
ferent name in the firmware release ZIP file
in the sub directory firmwares.

• In the master’s maintainance menu the upgrade of
the E4 is on position 5 (not 8 as the X7). And its
color is orange (not green).

• The E4 that you want to upgrade must be the only
module that is attached to themaster!

• The green jumper on the back of the E4must be set
to ”Last”.

• The firmware upgrade does not work reliably over
a R2M/R2C bridge.

DROIDmanual for blue-6 70 Table of contents at page 2

6.11 TheM4motor fader controller

Quick start

Here is how you get started with your M4 as fast as pos-
sible:

1. Wire theM4 to yourmaster just as the P2B8 or any
other controller. If the M4 is your last controller,
set the green jumper to “Last”, just as usual.

2. Connect theM4 to the bus power of your Eurorack
case. It is the only controller that needs its
own power connection.

3. Add the M4s to your patch with the Forge or de-
clare them in your patch with [m4].

4. Use the circuits motorfader (see page 311),
faderbank (see page 220), fadermatrix (see page
222) and motoquencer (see page 286) for using the
M4 in your patches.

Note:Whenyouswitchon thepower, yourM4unit needs
some time for charging their internal power system. That
can last 60 – 90 seconds. While they are charging, here
LEDs show a colored animation and go from red through
yellow to green and finally off.

Installing theM4

You install the M4 just as all the other controllers (for
more about controllers read about the P2B8 on page 64):
Connect the IN connector to your master with the 6-pin
ribbon cable that camewith yourmodule. Make sure that
you always use the shrouded pin headers (there is an ad-
ditional 3×2 connector at thebottomwhich is just for de-
bugging the hardware).

If the M4 is the last controller in your chain, set the left
jumper to Last. If other controllers follow, connect the
next one to the OUT connector and remove the jumper or
set it to PARK.

TheM4 also needs a connection to the power of your Eu-
rorack modular case. It will not take the power from the
master (as the other controllers do). The reason is obvi-
ous: motor faders need a decent amount of power.

There are two more jumpers, labelled with +150mA and
+100mA. These jumpers configure the power manage-
ment. Read below for details and then decidewhich posi-
tion youwant to use. If you are unsure, put both jumpers
into the right position (+0mA). In that setting each M4
needs up to 350 mA from you 12 V rail.

After you switch on your rack you will see an LED anima-
tion on the M4. It starts with red, then gets yellow, then
green and finally the LEDs go off. This animation shows
you that the powermanagement of theM4 is charging its
gigantic capacitors in order to provide the full strength to
the motors later. During this charging phase the M4 will
not respond to anything that happens in your patch.

Similar – when you turn off your rack – the M4 needs to
discharge the capacitors for safety reasons. It does this
by running all motors at full speed down and also doing
an LED animation in white and blue. Just before the end
the LEDs just glim red, because the green and blue part of
the LEDs need a higher voltage and go off first.

Before unmounting theM4, switch of the rack andwait
until this animation has stopped completely. Then it is
save to remove and put away theM4.

DROIDmanual for blue-6 71 Table of contents at page 2

Using the faders in your patches

The traditionalwayof usingmotor faders is that youhave
several presets. Every preset holds a certain fader posi-
tion. With some other control, e.g. a button, you can
switch between presets and the new setting of the fader
becomes active immediately. This is the classical applica-
tion for mixing desks, where you can use presets for dif-
ferentmixes that you have prepared for differentmusical
situations. Youfindgeneral information about presets on
page 21.

There is a secondevenmore interesting application, how-
ever: You can assign multiple overlayed functions to one
fader. For example one single fader could control attack,
decay, sustain and release of an envelope. So just in or-
der to save rack space and money you use one input de-
vice for controlling several parameters. In this applica-
tion switching between the different functions does not
alter any value. It just gives you access to control another
parameter. And – as opposed to encoders – the motor
faders act as a display for showing you the current values
of the parameters.

The motor faders are designed to doboth applica-
tions: presets, overlayed functions and even both at the
same time, because it make absolutely sense.

A speciality of the M4 – however – are its capabilities for
force feedback. With the help of the motors it can sim-
ulate artifical notches or dents and thus convert a fader
into a linear switch with a specific number of fixed po-
sitions. You can really feel these notches and that way
easily switch between clock divisions, notes of a musical
scale andwhatever else you like –without theneedof any
display. It can also simulate something similar to a pitch
bend wheel, where the fader always wants to move back
into the center.

The most basic and elementary way to use faders in
your patch is using the motorfader (see page 311) cir-
cuit. When you are creating patches with banks of many
faders, please also have a look at faderbank (see page
220) and fadermatrix (see page 222). Those circuits
manage a collection of faders with a single circuit and
make your patches simpler.

In addition there is the motoquencer (see page 286) cir-
cuit which is a building block for simple and complex per-
formance sequencers based on motor faders and the ex-
perimental specialised firefacecontrol (see page 228),
which turns an RME Fireface audio interface into a mo-
torized mixing desk.

As a starting point for further reading I suggest starting
with the circuit motorfader (see page 311).

The touch plates

Beloweach fader theM4hasone touchplatewith an inte-
grated RGB LED. The touch plates are usable as buttons
in your patch. Whenever a finger is touching the plate,
the respective button registerBoutputs1, otherwise0. In
addition, the circuit motoquencer (see page 286) makes
implicit use of the touch plates (and maybe some future
circuits, too).

Unfortunately, however, touch plates don’t have twodef-
initemetal contacts like in the buttons of the P2B8, B4B2
and B32, but work by measuring the time an internal ca-
pacitor needs to load. If you lay your finger on a touch
plate, this time increases as some of the current is devi-
ated into your finger and thus the loading time increases.
Which means some inherent fuzziness and the touch
plates need some preconditions in order to work reliably.
If you experience your touch plates not to react properly
to your finger, check the following:

• The wetter your fingers are the better the plates
work.

• They also work better, if your power supply pro-
vides a ground connection to the 120 V/240 V net-
work.

• As a last resort touching some jacks of yourmodu-
lar with one handwhile using the touch plates with
the other hand will almost always work.

“Real” buttons would have been a better solution, but
alas – there is simply not enough space behind the face
plate for them. The motorized faders don’t come in
smaller sizes and we already have worked hard in mak-
ing touch plates and LEDs possible. Consider the touch
plates as a bonus add-on. If you don’t like them, use the
normal buttons in your controllers. Also, with the the
motoquencer (see page 286), you can use the faders as
an alternative for settings gates.

The LEDs

The LEDbelow the touch plates can be accessedwith an L
register – just like in theP2B8. In addition, there is aR reg-
ister that controls the color of the LED, similar to those
on themaster. If you just use the R registers, the LEDwill
light in full brightness. If you just use the L register, the
LED lights white in the brightness specified by the value
you feed into that register. UsingbothR andL at the same
time gives you control over brightness and color.

Registers

Here is the summary of all M4 registers, assuming that
[m4] is your first declaration in your patch:

DROIDmanual for blue-6 72 Table of contents at page 2

B1.1 ... B1.4 Touch plates

L1.1 ... L1.4 LED brightness

R1.1 ... R1.4 LED color

P1.1 ... P1.4 Current real physical fader values

Themotor faders

The M4 has four industrial classmotorized faders
with 60 mm action range from ALPS. They are a combi-
nation of normal linear potentiometer with an electrical
motor that can move that potentiometer. The motor is
not a step motor but runs continously. The M4 software
determines the current position of the fader by reading
out the value of the potentiometer and controls the mo-
tor to move to the desired position.

The motor control is done via pulse width modulation
(PWM), whose frequency is way beyond the audible
range.

Adapting the fader power

Using the circuit droid (see page 183) you can adapt the
motor power of the faders. There are two settings. One is
for the normal movement power (and hence speed). The
other one is for tuning the power of the haptic feedback
when youwork with notches. Trymapping both parame-
ters to pots and you can test their influence:

[droid]
m4faderspeed = P1.1
m4notchpower = P1.2

The powermanagement

Motor faders are nice but need lots of power. As amatter
of fact, one fader could use up to 800mA from your 12 V
rail when themotor is running at full power – if youwould
run it directly from the Eurorack power supply. So even a
single M4 would need 3.2 A for full operation. That’s a
lot more than a typical power supply provides. And it’s
just one module! That’s probably the main reason why
we haven’t see flying faders in Eurorack sooner.

We have solved the issue in the M4 by means of mod-
ern supercapacitors (supercaps). Those little miracles
can store up to 100 times more energy per volume than
than electrolytic capacitors and can accept and deliver
charge much faster than batteries. They also tolerate
many more charge and discharge cycles than recharge-
able batteries. The four supercaps of the M4 can deliver
3.2 A for the faders with ease – of course with the limita-
tion of doing it just for a short time. That’s not an issue
in a normal usage pattern of the faders, since they move
super fast and just for fractions of seconds.

When you power up yourM4, youwill notice that it takes
some time to become operational. That is because it
needs to load the supercaps before the show can begin.
That time is somewhere in the range of 60 to 90 seconds.
The current loading state is indicated by an LED travel-
ling from left to right again and again. The colors starts
red, goes yellow and gets green just before the module is
powered up.

Note: when you work with the faders and let them jump
back and forth very fast very often, it can be the case that
the supercaps run out of power. In that case the fader
motors will go off for a couple of seconds, the supercaps
recharge and the powerup LED animation is visible (with
green LEDs).

TheM4 has an intelligent chargingmechanism thatman-
ages the power of the supercaps and makes sure that
there is enough power for fadermovementswhile not ex-
ceeding a limit of current that is drawn from your Euro-
rack +12 V power rail. With two jumpers on the back of
themodule you can set themaximum charging current of
the M4:

• The minimum charging limit of the M4 is 350 mA.
• With the left jumper you can raise that by 150mA.
• With the right jumperyoucan raise thatby100mA.

That way you can choose between 350 mA, 450 mA,
500mA and 600mA. Themore power your allow theM4,
the faster it charges up and the more fader movements
per second it can do.

If you allow theM4 to draw toomuch current, your Euro-
rack power supply can overload. That might lead to vari-
ous problems:

• It could overheat.
• It could blow its fuse.
• It could trigger its short circuit detectionandswitch
off itself.

• The voltage of the 12 V rail could drop too much.

Please make sure that you use the M4 in a way that is
within the specification of your power supply.

The good new for last: once the M4 is charged up and
when you use the fader in a reasonable way, the power
consumption of theM4 ismuch lower than themaximum
limit. This is an important difference from modules like
those with vacuum tubes that need their heating power
all the time.

DROIDmanual for blue-6 73 Table of contents at page 2

Discharging

When you switch power off, the M4 still has lots of en-
ergy stored in its supercaps. For safety reasons, it will
discharge the supercaps as fast as possible as soon as
it detects main power off. Dischard is done by con-
stantly moving all fader motors downwards and lighting
the LEDs in which with the maximum brightness – with
one blue LED wandering from left to right.

At some point in time the voltage is not suffient to drive
the motors anymore. The LEDs are still animated. Later
they will get red and slowly fader out.

Donot unmount theM4 fromthe rackuntil all LEDs are
off!

This is important to avoid short circuits by accidentally
connecting the supercaps with metal of the case or the
like.

Software update for theM4

Because the M4 is much more complex than the other
controllers, it has a more complex software that might
need firmware updates from time to time.

The procedure is exactly the same as for the X7 (see page
85 with the following additional notes:

• The firmware file on the SD card must have the
name m4.fw.

• In the master’s maintainance menu the upgrade of
the M4 is on position 6 (not 8 as the X7). And its
color is yellow (not green).

• The M4 that you want to upgrade must be the
only module that is attached to the master! The
jumper on the lower edge of its backmust be set to
”Last”.

• The firmware upgrade does not work reliably over
a R2M/R2C bridge.

DROIDmanual for blue-6 74 Table of contents at page 2

7 The G8 expander

7.1 Introduction

The G8 expander gives you eight addi-
tional jacks, each of which can be used
as a gate or trigger input or output.
They are ideal for working with clocks,
gates and triggers, but can be used for
simple CV modulations, as well. There

are two hardware versions of the G8.
Version 2 was introduced 2023 and al-
lows you to chain up to four G8 ex-
panders to one master. For that pur-
pose it has two connectors on the back:
one to be connected to the master, one
for the next G8.

The original G8 version 1 has only one
connector. There is no need to be sad
if your G8 is version 1, since it still can
work in a chainwithmore G8s if it is the
last one. So if you want a second G8,
simply get a version 2 one and use the
old one as the second G8.

7.2 Installation

If you have just one G8 version 1, simply use the 8 pin rib-
bon cable that has been shipped with your G8 and con-
nect theG8 to the 8pin port of themaster as shown in the
following picture. Put the red stripe down in both mod-
ules.

The G8 version 2 has two connectors. Here use the right
one labelled “Master”:

DROIDmanual for blue-6 75 Table of contents at page 2

To create a chain,wire themaster to the “Master” input of
the first G8,whichmust be version 2. Thenwire the other
connector of this G8 to the “Master” input of the second
G8 and so on. No termination jumper is needed. The last
G8 in the chain can either be version 1 or version 2.

7.3 Using the G8 in patches

The name of the registers of the G8 jacks in your patch
depend on which master you use.

MASTER: You can access the jacks of the first G8with the
registers G1, G2 …G8. If you work with more than one G8,
you need to use a dot notation and write the number of
the G8 in the chain before the dot. So the gate 5 on ex-
pander 3 would be G3.5. If you want, you can use this
“dot notation” also for the first G8, hence G1.1 … G1.8.

MASTER18: Since this type of master has four gate out-
puts integrated, the gates of the G8 have to get other
numbers. So the first G8 has the eight registers G2.1 …
G2.8 and the fourth G8 would get G5.1 … G5.8.

This is how the gates on the G8 work:

• Each jack can either be used as input or as output.
• When used as input it will read a value of 1 at an
input voltage of approx 0.75V or above and 0 oth-
erwise (also for negative voltages).

• When used as an output, it outputs 5 V when you
send a value 0.1 or higher to its register, and 0 V
otherwise.

Why do the gates not output 10 V?Well, while this would
be more logical, but it was actually impossible to do in
hardware easily since the G8 needs a very special chip
that is able to switch between input and output via soft-
ware. This chip does not support 10 V.

99.9% of all Eurorack modules will happily accept 5 V as
a valid trigger. Some analog envelopes with vintage cir-
cuitry might need higher voltages. If you encounter such
a module, you can use one of the outputs of the master,
which is able to output 10 V.

The G8 also has eight multicolored LEDs. These indicate
inputs in blue lights and outputs in red, when high. You
can override the default function of LEDs in order to dis-
play something or your own liking. Use the registers R17
… R48 for that purpose.

There is nothing special to do in your droid.ini for set-
ting up the G8 expanders. They don’t need to be declared
like the controllers. Using the G registers enables the ex-
panders automatically. If you load a patch with G regis-
ters but don’t have a G8, nothing dangerous happens and
the rest of the patch will work normally.

DROIDmanual for blue-6 76 Table of contents at page 2

8 The X7 expander

8.1 Quick start

You already know what the X7 is all
about? Want to start immediately? Here
is a super short quick start guide for ex-
perienced users:

1. Wire theX7 to yourmaster just like
a controller. It must be the first in
the chain.

2. Use the MIDI functionality via
the circuits midiin (see page
260), midiout (page 268) and
midithrough (page 277).

3. Access the four gates via G9, G10,
G11 and G12

4. Connect the USB cable and set the
switch left for USB access to the
SD card. Set it back to the middle
position for disconnecting USB and
loading the patch.

8.2 General overview

Features and applications

Welcome to the X7 expander. The X7 gives you USB and
MIDI connectivity for your MASTER and also four gate
outputs with modular levels.

The X7 can also be used with the MASTER18 in order to
addmoreMIDI connectivityand the fouradditional gates,
even if the MASTER18 already has USB and MIDI inte-
grated.

You can process incoming and generate outgoing MIDI
streams, bothvia classicalDINcables andviaUSB.Both in
and out directions support polyphony with eight or even
more voices.

For size reasons the X7 uses 3.5 mm TRS jacks for MIDI
instead of the classical DIN jacks. But it comes with two
DIN↔ TRS adapters, so you are free to use either form
factor.

As a bonus feature, the X7 provides super fast loading of
patchesviaUSB–without anyneed for putting the

SD card in and out anymore.

Here are some examples of what you can do with the X7:

• Attach an external keyboard to your modular.
• Use an external hardware sequencer for playing
melodies and beats in your modular.

• Use an external MIDI controller to control your
patch.

• Do the same with a MIDI controller app on your
tablet or phone (via USB).

• Use yourmodular for playing polyphonicmusic and
beats on your hardware synths or software synth
plugins in your DAW, tablet or phone.

• Connect two DROIDs (both with X7) and exchange
values and triggers via CCs and notes.

• Use the four additional gate outputs on the X7 for
sending clocks, gates and triggers and free your
valuable CV outputs for other things.

• Access the SD card in your master just like a USB
thumbdrive for direct access to it via your PC,Mac,
phone or tablet.

• Alternatively load new patches to your master via
MIDI sysex from your PC – and get your new patch
ideas up and running in less than a second.

The switch

At the top the X7 has a switchwith three positions. This
switch selects the current function of the USB port:

left Activate USB access to the SD card

middle Don’t use the USB port

right Activate MIDI via USB

Beware: in the left position the master will not work as
usual and does not run your patch. See below for details.

The jacks

The X7 has the following jacks:

• One USB-C port for MIDI via USB and for access to

DROIDmanual for blue-6 77 Table of contents at page 2

the master’s SD card from your PC
• One 3.5 mm stereo jack (also called TRS, which
stands for “tip ring sleeve”) forMIDI input, with au-
tosensing for MIDI TRS type A and B

• One 3.5 mm stereo jack for MIDI output
• Four gate outputs for gate and trigger signals at
modular level

This sums up to a total of seven ports, hence the nameX7
(the original idea of naming it “U1M2G4” was soon aban-
doned, since thatwas too clumsy and alsowouldn’t fit on
the face plate).

The LEDs

Similar to the master, the face
plate hasmulticolor LEDs indicating
what’s going on at the seven ports:

• The top left LED shows the
current state of the SD card in
the master.

• The top right LED shows
what’s going on on the USB
MIDI connection.

• The LEDs in the second row
show incoming and outgoing
MIDI data at the TRS ports.

• The four LEDs labelled 9, 10,
11 and 12 show the current
state of the four gate outputs.

8.3 Installation

The installationof theX7 is very easy. These are the rules:

1. Wire the X7 to the shrouded 6-pin header on the
top right of themaster, just like P2B8, P10 or other
controllers.

2. There is no jumper. You don’t need one here.
3. Always install it as the firstmodule in the chain!
4. Make sure that the switch is in the middle position

when you start.
5. You can only attach one X7 to your master.

Just like all the controllers, theX7has an input connector,
which is at the top right side if you look from theback. On
the left side is the output connector. Connect the master
with the shipped 6 pin ribbon cable to the input connec-
tor. If you have any controllers, like P2B8, P10 and so on,
wire the first of these to the output connector of the X7.

That’s all. the X7 is powered from the master so there is
no dedicated power cable.

Note: You don’t need to change anything in your
patches for now. Even if the X7 is connected to the mas-
ter like a controller, it does not need to be declared. And
it also does not count when it comes to the numbering of
P1.1 and so on.

8.4 USB access to your SD card

The X7 can give you direct access to the SD card of the
master via USB. Start with the switch in its middle posi-
tion. Andmake sure themicro SD card is in its slot on the
master. The top left LED of the X7 always shows you dim
white light whenever a SD card is present.

Nowconnect theUSB-Cporton theX7withyourPC,Mac,
Linux, phone or tablet (I’ll just use “PC” for the rest of this
manual) and set the switch on the X7 to the left. This en-
ters “USB stick mode”.

Note: For a USB-C ↔ USB-C cable to work, your X7
must at least have hardware revision “Rev 1.5.1”. The
revision is printed on the back of the module top right.
Also you need at least the firmware “orange-912” on
your X7 (see below for firmware upgrades). If your X7
has“Rev1.3”or “Rev1.2”oryouhave“orange-911”or
earlier, the X7 needs a USB-A↔ USB-C cable. For that
reason such a cable is shipped together with the X7.

After a few seconds, your PC should detect a new stor-
age device with the exact contents of the micro SD card.
Since X7 is a “class compliant” mass storage device you
don’t need any driver on your PC.

If you work with the Forge, you should see the Save to
SD icon become active and you can use that to write your
patch to the SD card. Much faster is using MIDI Sysex,
however.

If you don’t like the Forge, you can edit droid.ini di-
rectly on the card or copy a patch from your PC to the
card, just as you are used to when you are working with
your SD card reader. The USB-Stick mode is also helpful

DROIDmanual for blue-6 78 Table of contents at page 2

for getting theERRORS.TXTorSTATES1.TXTfile fromyour
SD card, even if you work with the Forge.

Whenyouarefinished, eject the volume / disk onyour PC.
After that set the switch back to its middle position. This
will remove the USB connection and also automatically
launch the new patch. So you don’t need to press
the button on the master.

A few notes:

• If your patch has an error (blinking LEDs and stuff,
seepage48)put the switchback to the left,wait for
the SD card window to popup and look for the file
DROIDERR.TXT. Open it and you will see the exact
reason for the error.

• The access to the SD card via the X7 is slightly
slower than using an SD card reader on your PC
since it takes the extra miles via the X7

• If you need to re-format the card for some reason,
better do this in the micro SD card reader that was
shipped with your master. It’s much faster that
way.

• If you are working with Mac and experience that
the access is slow, check out disabling Spotlight on
the card. A script for that can be found on page
103.

8.5 MIDI

MIDI features overview

One key feature of the X7 is workingwithMIDI. The com-
binationof the masterwith theX7probably forms
themostflexible, comprehensive andpowerfulMIDI con-
verter in Eurorack land. Here are some of the key fea-
tures:

• Support for bothMIDI→ CV and CV→MIDI at the
same time.

• Unlimited polyphony (number of simultaneuous
notes) except that you run out of jacks.

• The MIDI streams of USB and TRS can be used in-
dependently in parallel, so you have two input and
two output streams.

• Flexible “MIDI through” routing while splicing in
and out events

• Comprehensive support and access to the vastma-
jority ofMIDI features such as CCs, clocks, the run-
ning state, pitch bend, all types of pedals andmuch
more.

• Automatic pitch stabilization detection in the
CV/gate → MIDI conversion, thus working pre-
cisely with Eurorack sequencers and quantizers.

• Super fast patch upload via USB-MIDI Sy-
sex.

And of course you benefit from ’s own flexibility
when it comes to quantization, LFOs, chord generators,
switches and all that stuff.

MIDI over DIN

For space reasons, the X7 uses 3.5mm stereo jacks (TRS)
for MIDI. But we ship two TRS to DIN adapters with the
X7. Use these for connecting classical DINMIDI devices.

Note: Whenyouuseoneof the shippedadapters for the
MIDI output via DIN, make sure that the switch at the
back of the X7 is set to position B (up).

MIDI over USB

The X7 supports MIDI over USB. Hereby it acts as a USB
device. This does notmean any limitation of being an in-
put or output device. It can be both. Even at the same
time. But the actual limitation is that the X7 cannot pro-
vide power to your MIDI devices and cannot be a USB
host.

Thatmeans thatMIDI devices that are USB devices them-
selves cannot be connected to the X7 via USB, even if you
haveamatching cable. Connect yourMIDI keyboards and
controllers with the TRS jack if USB doesn’t work for you
here.

But the USB port is perfectly suitable for connecting the
X7 to your PC,Mac, tablet or phone. TheMIDI implemen-
tation is “class compliant”. That means that you do not
need any driver software. Simply connect theX7with the
shipped (or any other) USB-C cable to your PC and set the
switch to the right. You should now see a new MIDI de-
vice, which can be selected as input or as output depend-
ing on what you are going to do.

Note: As of now the USB-MIDI standard has a concept of
up to 16 virtualMIDI “cables”. The X7 receives data on all
cables and always sends on cable 0. Future software up-
dates might make this more flexible, if there is demand.

DROIDmanual for blue-6 79 Table of contents at page 2

By the way: MIDI over USB is not restricted to the stan-
dard MIDI data rate of 31250 bits per second.

The LEDs

WhenworkingwithMIDI,watch the corresponding LEDs.
Here is what the colors mean:

black no data transmitted

dim white steady activity

green note on

red note off

blue some other MIDI event

The top right LED shows the status of USB-MIDI:

The third LED showsMIDI data via incoming TRS:

The fourth LED showsMIDI data via outgoing TRS:

MIDI to CV (MIDI input)

Themost common application forMIDI andmodular syn-
thesizers is converting MIDI note events to CV/gate sig-
nals. When you press a key on a MIDI keyboard or when
a MIDI sequencer starts playing a note, a MIDI “note on”
message is being sent over the wire. Likewise at the end
of the note a “note off” message is sent.

A typicalMIDI toCVmodule receives thesemessages and
feeds at least two jacks: one with the pitch of the cur-
rently played note in form of the typical 1 volt per octave

scheme. And one gate output which is high (e.g. at 5 V)
while the key is being hold.

Of course there is much more, like clock signals, con-
trollers and so on. This X7 can give you access to the vast
majority of MIDI features.

The hardware connection is done either with the 3.5 mm
TRS jack or via USB (or both at the same time). The X7
comeswith two identical TRS↔DINadapters, so you can
use themuchmorewide spread classicalMIDI cableswith
DIN plugs.

Even if you don’t use our adapters but use the 3.5 mm
jacks directly, you don’t need to care about MIDI “A and
B”. The X7 does autosensing at its input. Either way will
work. Justmake sure youuse stereo cables. Normalmod-
ular patch cables don’t work.

The basic operation is super simple. All is done with the
circuit midiin (see page 260). This example converts
MIDI to a pitch CV at output O1 and a gate at output O2:

[midiin]
pitch = O1
gate = O2

The source is the TRS jack. But you can easily select MIDI
via USB instead with the usb parameter:

[midiin]
usb = 1
pitch = O1
gate = O2

Per default, midiin processes notes from all 16 MIDI
channels. You can select one specific channel with the
channel jack:

DROIDmanual for blue-6 80 Table of contents at page 2

[midiin]
channel = 5
pitch = O1
gate = O2

Note: You can use up to 32 midiin circuits in your patch.
So you could add one circuit for each MIDI channel that
you want to process.

For polyphonic patches with more voices simply specify
more pairs of gate and CV. This example supports three
simultaneuous notes:

[midiin]
pitch1 = O1
pitch2 = O2
pitch3 = O3
gate1 = O5
gate2 = O6
gate3 = O7

If you have a G8 expander (see page 75), you can directly
control eight analog voices:

[midiin]
pitch1 = O1
pitch2 = O2
pitch3 = O3
pitch4 = O4
pitch5 = O5
pitch6 = O6
pitch7 = O7
pitch8 = O8
gate1 = G1
gate2 = G2
gate3 = G3
gate4 = G4
gate5 = G5
gate6 = G6

gate7 = G7
gate8 = G8

Notes have velocities, also there are MIDI controllers like
the volume, themodulationwheel ormore. These can di-
rectly be accessed via output parameters:

[midiin]
pitch = O1
gate = O2
volume = O3
modwheel = O4
ccnumber1 = 17 # get CC number 17
cc1 = O5 # output that on O5

Also you get simple access to variousMIDI clocks and the
start and stop status:

[midiin]
clock = G1
start = G2
stop = G3
running = G4 # alternative to start/stop

The MIDI notes needn’t be used for playing voices. The
following example uses the note for selecting a root note
for a minifonion (see page 279):

[midiin]
pitch = _PITCH

[minifonion]
root = _PITCH * 120

You even can useMIDI keys (maybe from controller pads)
as buttons.

[midiin]
note1 = 24 # MIDI note number of C-0
notegate1 = _KEY_C

[button]
button = _KEY_C
onvalue = 0.8
offvalue = 0.2
output = O1

This was just a quick overview and there are much more
inputs and outputs available. Please have a look at page
260 for more details on midiin.

CV toMIDI (MIDI output)

While MIDI to CV interfaces still are the vast majority of
MIDI modules, the other way round becomes more and
more interesting. With more and more complex quan-
tizers, sequencers and other fascinating and inspiring CV
modules people want to integrate existing hardware or
software synths into their modular systems for playing
melodies and beats that are generated by thesemodules.

For that task you need a CV toMIDI converter. That con-
verts pitch and gate information that are present in form
of CVs, into a streamofMIDI events and sends these over
DIN or USB to the sound modules.

Such CV to MIDI converters are still rare in Euroland and
many of the existing modules have severe restrictions or
instabilities. One crucial problem is thatmost sequencers
do not output gate and pitch information exactly syn-
chronously. Another is that you need to have high quality
jitter free AD converters for precisely catching your pitch
CVs.

The X7 aims to be the most precise, comprehensive and

DROIDmanual for blue-6 81 Table of contents at page 2

flexible CV→MIDI converter available and we are confi-
dent that it indeed is. It supports an unlimited number of
voices (even if yourmaster just has eight CV inputs,more
voices can be created internally with all your sequencer,
algoquencer, chord, arpeggio, minifonion and other
circuits). Also it gives you access to almost every con-
ceivable MIDI feature. And it benefits from the master’s
super precise and stable AD converters.

So let’s get started with the hardware. Just as with MIDI
IN, you can choose between USB and TRS. But here there
is a difference. The problem arises from the fact that the
mapping of theMIDI DIN plug to 3.5mm stereo jacks has
been – well – fucked up by the hardware vendors. Some
have chosen the tip of the plug to be the TX signal, others
have found the ring to be more suitable. So two incom-
patible “standards” haven arisen, which were later called
MIDI “type A” andMIDI “type B”.

While at the input there is an autosensing, at the output
side this is not possible. So this time you need to get it
right. For that reason on the back side of the X7 there is
a small switch where you can select either type A or type
B for your TRS output. If you are unsure which one is the
correct one for your specific device, simply try both.

Note: For our shipped adapters set the switch in posi-
tion B!

Using the CV→ MIDI feature of the X7 is easy. Use the

circuit midiout (see page 268) for that purpose. Here is
an example for a monophonic patch with just one voice.
The pitch input is read from I1, the gate from I2:

[midiout]
pitch = I1
gate = I2

Per default, X7 sends on MIDI channel 1 on TRS. You can
change both with the parameters usb and channel:

[midiout]
usb = 1
channel = 7
pitch = I1
gate = I2

To create a polyphonic patch simply add more pitch/gate
pairs:

[midiout]
pitch1 = I1
pitch2 = I2
pitch3 = I3
gate1 = I5
gate2 = I6
gate3 = I7

Of course you can use internally generated or shaped
pitch information, as well. In this example the pitch in-
put from I1 is quantized to C minor before sending it to
MIDI (see page 279 for details on the minifonion circuit):

[minifonion]
input = I1
degree = 7

output = _PITCH

[midiout]
pitch = _PTICH
gate = I2

You can even create a MIDI to MIDI quantizer – without
any further eurorack module:

[midiin]
pitch = _INPITCH
gate = _GATE

[minifonion]
input = _INPITCH
degree = 7
output = _OUTPITCH

[midiout]
pitch = _OUTPITCH
gate = _GATE

Of course you can also access all the CCs and other con-
trollers, such as velocity, aftertouch, and polyphonic key
pressure. Also you can send yourmodular clock and reset
signals viaMIDI. Please see page 268 for all details on the
midiout circuit.

And by the way: as always, all parameters are CV con-
trollable and can be changed on the fly – even things like
channel and usb.

I think you can guess the flexibility of this approach!

8.6 MIDI through

The X7 can forward MIDI data, that are incoming via TRS
or USB, to one of its two outputs (TRS / USB), while still

DROIDmanual for blue-6 82 Table of contents at page 2

being able to “feed in” additional events into the same
output (using midiout (see page 268)) or processing the
events (using midiin (see page 260)).

Use the midithrough (see page 277) circuit for forward-
ing data from an input to an output. Here is an example:

[midithrough]
fromusb = 1
tousb = 0 # means TRS jack for output

This will forward MIDI events from the USB port to the
TRS output. Note: All midiin and midiout circuits still
work, so the output streamon the TRS jackwill both con-
tain the original events from MIDI-USB and the events
you create with your midiout circuits.

midithrough cannot do any filter or processing on the
fly. But if it would become an issue, we might add use-
ful feature here in future.

8.7 Four gate outputs

The X7 has four gate outputs. These are easy to use and
also not very thrilling. But useful. Each of these can out-
put modular level triggers or gates of 5 V.

For using the gates, refer to themas G9, G10, G11 and G12.
Why not starting at G1? Well, the gates G1 ... G8 are re-
served for the first G8 expander (see page 75), even you
don’t useone. Note: thegateson theX7areonlyoutputs,
whereas the G8 can also use them as inputs.

Of course you can use the gates in combination with
MIDI. Here is an example for outputting three different
MIDI clocks as well as a reset signal at the gates:

[midiin]
clock = G9 # 16th notes
clock8 = G10 # 8th notes
clock4 = G11 # quarter notes
start = G12 # trigger at MIDI start message

8.8 Eightmulti color LEDs

Just as with the master and the G8, you can override
the functions of the eight LEDs on the X7 with your own
choice of colors. Use the registers R49 through R56 for
that purpose.

Here is an example for changing the LED color with a pot:

[p2b8]
[copy]

input = P1.1
output = R49

8.9 Fast patch upload via Sysex

MIDI defines a type of event that is called “Sysex”, which
is an abbreviation for “MIDI System Exclusive Message”.

These are portions of data bytes that just have a mean-
ing to certain types of devices and are not standardized
byMIDI. Thesemessages canmean anything to a device.
In fact one of the original ideas was to load “patches” to
and from a hardware synth.

And exactly that original application is implemented by
theX7: You canupload patches to yourmaster via
MIDI sysex. Why would you do that, if you could simply
use “USB stick mode”? Well, there are a couple of advan-
tages:

• The upload via sysex is really super fast.
• Your does not stop playing music for more
than a fraction of a second.

• You don’t need to touch the switch nor the button
of the master. So it’s a complete remote control.

• You don’t need to do this cumbersome “eject” of
the USB drive.

If you use the Forge, using Sysex works just out of the
box. Put the X7 switch to the right. Let it there. At any
time you can upload your current patch just by clicking
the Activate! icon in the toolbar!

If you don’t use the Forge, it’s a bit more complicated to
setup, since you need a software for sending patches via
Sysex. But if anything goes wrong you can always fall
back to USB stick mode.

Patch upload via sysex on Linux

The best way to setup the patch upload via sysex de-
pends on which operating system you use. Let’s start
with Linux, just because it’s the easiest. On any decent
regular Linux installation there usually is a tool called
amidi. It’s part of the sound driver (ALSA), so it’s usually
already installed. amidi can sendanyMIDI commands in-

DROIDmanual for blue-6 83 Table of contents at page 2

cluding sysex.

Now in the Firmware ZIP-file that you find for
download on your shop, you find the directory
utilities/sysex/linux and in there the script
droidpatch. Copy that script to /usr/local/bin and
make sure it is executable.

Now you can upload a patch file by calling droidpatch
with the name of your patch file. It needn’t be called
droid.ini:

user:~ $ droidpatch mypatch.ini

Of course the switch on the X7 needs be on the right
(MIDI). That’s it.

Patch upload via sysex onMac

Now let’s look at the Mac. It’s basically the same pro-
cedure as on Linux just with one change. Mac does not
haveamidi. Insteadyouneedanother tool for doingMIDI
on the command line. I recommend to use sendmidi.
This has several advantages overmore complex software
suites:

• It is small.
• It is free.
• It is command line based and thus good for au-
tomating things.

You can get sendmidi here: https://github.com/
gbevin/SendMIDI/releases. Choose your operating
system and download and unpack it. Basically there is no
installation necessary since this tool really just consists
of one single file, which is called sendmidi. I suggest that
you copy that file to /usr/local/bin, so that it is always
ready for you to use.

Just as with Linux, in the Firmware ZIP-file you find the
directory utilities/sysex/mac and in there the script
droidpatch. Copy that script to /usr/local/bin and
make sure it is executable. Put the X7 switch to the
right and you can send patches with the new command
droidpatch:

user:~ $ droidpatch mypatch.ini

One side note: sendmidi on Mac sometimes has a prob-
lem that every 256th byte is lost. The problem seems to
lie deep in the API of Mac itself. If you run into that prob-
lem, you can try to enter a space into your patch file at
the right position. Or youmight consider using the Droid
Forge instead of the command line.

Patch upload via sysex onWindows

Just as with Mac, the first step is to install sendmidi.
You can get it here: https://github.com/gbevin/
SendMIDI/releases. There is no real “installation”. Just
take the program sendmidi.exe and copy that to the di-
rectory where you keep your patches. If you have
none, it’s a good time to create one now.

Open a terminal window, go to the directory with cd and
try it out by simply calling that program. It should outupt
a version number:

C:\Users\dmmdm\patches> sendmidi
sendmidi v1.0.15
https://github.com/gbevin/SendMIDI

Usage: sendmidi [commands] [programfile]...

Now connect your X7 with USB to your computer. And
put the X7’s switch to the right. Then check if sendmidi
detects the X7, by adding the word list:

C:\Users\dmmdm\patches> sendmidi list
Microsoft GS Wavetable Synth
DROID X7 MIDI

Here it is! Now for every subsequent call to sendmidi add
dev x7 in order to select the X7 as output devices.

Now let’s try the MIDI connection by sending a note
event. This small tool is really cool. In fact you can send
all sorts of MIDI events. You can even create sequences
with lots of notes events and pauses in between. It’s kind
of really low level MIDI sequencing. So let’s play a C2 at
full velocity (value 127):

C:patches> sendmidi dev x7 on c2 127

If everything goes well, you should see the LED 2 on the
X7 shortly flash green:

If this works, you know that the USB-MIDI connection is
working and sendmidi is also ready. The next step is to
convert your patches into MIDI sysex files. To do
this you just need to add a sequence of five specific bytes
at the beginning, then add the patch and one final special
byte at the end.

DROIDmanual for blue-6 84 Table of contents at page 2

https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases

With the X7 software releases there are the files
sysexhead.txt and sysextail.txt in the subdirec-
tory utilities/sysex/windows. These need to be glued to
the beginning and the tail of the patch in order to form a
MIDI sysex file. I recommand that you copy them to your
patch directory.

Note: For this all to work it is very important that your
patch files don’t contain non-ascii characters. So don’t
use German umlauts or any other special character that’s
not part of the English language (you would do that just
in comments anyway).

On the command line you can use the command copy for
gluing together the head, the patch and the tail. Use a
plus sign between the file names like this:

C:patches> copy sysexhead.txt + yourpatch.ini
+ sysextail.txt yourpatch.syx

Write this in one line. This will convert yourpatch.ini
into a new file called yourpatch.syx. That file can easily
be sent via sendmidi:

C:patches> sendmidi dev x7 syf yourpatch.syx

That’s all! Your master should now load the patch, show
a very short restart animation and your patch is up and
running.

8.10 Software update for the X7

Unlike the simple expanders like the P2B8 or the P10, the
X7 has a rather sophisticated software. Somebugsmight
be found. And new feature ideaswill be implemented. So
The X7 has a software update procedure.

When you start the X7, it shows its current sofware ver-
sion in the 2x2 LED field of the gates. The first released
version is called orange-9 and is indicated by the G9 LED
shining orange:

In order to make things as easy as possible for you, the
software update for the X7 is done by the master. You
don’t need to change anything in your cabling for that.
Leave the X7 attached as the first expander on the mas-
ter. The firmware upgrade does not work reliably over a
R2M/R2C bridge!

First you need the new firmware file. This is con-
tained in the software release package (ZIP
file) in the subdirectory firmwares. It is called like
x7-orange-1012.fw. Copy this firmware file to the SD
card in themasterand rename it tox7.fw. Put theSDcard
back into your master. The next steps are dependent on
the type of master that you use.

X7 upgrade with theMASTER

Here are the next steps for an X7 firmware upgrade if you
have anMASTER:

1. Bring the master into the maintenance mode (see

page 100 for details). Long things short: this is
done by a very long button press.

2. Yourmaintenancemenushould showagreenmenu
item at position 8 (if not, the SD card or the file
x7.fw on it is missing):

3. Now press the button a couple of times until the
blinking cursor is at position 8.

4. Press the button longer in order to start the update
procedure.

If everythinggoeswell, you seeakindof progress bar run-
ning through all 16 master LEDs, while the X7 does the
same kind of animation with its 8 LEDs.

In case of an error, all 16 LEDs blink in one color. If all
LEDs blink yellow, the firmware file is missing (which is

DROIDmanual for blue-6 85 Table of contents at page 2

strange, because it was there at the beginning):

All blinkingbluemeansan invalid sizeof thefirmwarefile:

Andorangemeans that thefile could not be read fromthe
SD card:

After the upgrade, you need to leave the maintenance
menu on your master. Do this by navigating the blink-
ing cursor to the white LED 1 and press the button a bit
longer:

X7 upgrade with theMASTER18

The MASTER18 does not have LEDs and also no mainte-
nance menu. The procedure here is in fact simpler. You
just need to power off and on your master.

If the MASTER18 detects the file x7.fw on the SD card
while starting, it will automatically go into firmware up-
grade mode. If you have visual access to the four diag-

nostic LEDs on the back of the module, you will see a
pulsating white “dot” moving in circles through the four
LEDs. This indicates that the master is ready for the up-
date. Also theLED in thebuttonblinks slowly (oncea sec-
ond).

As soon as the X7 is attached (which might be immedi-
ately if it was already attached when you powered up),
the X7 fetches the firmware file and loads it into its inter-
nal flash memory. While this is ongoing, the button LED
is lit permanently.

If everything goes well, the four diagnostic LEDs on the
MASTER18 show a green “progress bar” and the eight
LEDs on the X7 do the same with the same color. Then
the X7 restarts and does it’s usual small LED start anima-
tion and should display the new version number.

Now the button of the master flashes fast. You can now
press the button to repeat the upgrade procedure or up-
date another X7.

Note: When you are finishedwith the update, you need
to remove the file x7.fw from the master’s SD card.
Otherwise the master will enter the procedure again
and again!

Hint: if enter USB-Stick mode, the upgrade procedure is
aborted, too, and you can easily remove the firmware file
from the SD card without having the remove it from the
master.

8.11 Some technical details

Are you interested in the technical issues of the X7? Here
are some details.

The X7 uses the same micro controller (MCU) as the

DROIDmanual for blue-6 86 Table of contents at page 2

master: The STM32F446RET6. It is running at
180 MHz and has a 32-bit hardware floating point unit.
It’s a very powerful processor and hard to get these days
(chip crisis). But it’s worth it for short latencies and high
data rates.

The communication between the master and the X7 is
running at amuch higher bit rate than is used for the con-

troller communication. It’s using 1MBit/sec, whereas the
controller bus is running just at about 50 Kbit/sec. This is
the reasonwhy the X7 needs to be attached as first mod-
ule directly to the master. This higher bitrate allows for
transferring MIDI data with low latency – while the con-
trollers are still being process at the same speed as with-
out the X7.

When you switch to “USB stickmode” (switch to the left),
the bit rate is even increased to 2 MBit/sec in order to
make the access to your micro SD card as fast as possi-
ble.

The auto sensing of the MIDI TRS input is done with a
bridge rectifier, four diodes, so the polarity of the input
is ignored.

DROIDmanual for blue-6 87 Table of contents at page 2

9 TheMASTER18

9.1 Introduction

You can think of the MASTER18
as a smaller and cheaper version
of theMASTERwithout CV inputs
and LEDs, but with an integrated
USB and MIDI. Also it as six addi-
tional gate jacks, two of which are
inputs and four are outputs.

And it comes with two interesting
bonus features:

• It can be connected to the
Sinfonion as a follower of
theHarmonic Sync.

• It has an integrated tuning
device for VCOs (can mea-
sure their frequency).

The MASTER18 is a good choice if
you are intend to just create CVs
and not need to process incoming
CVs. It’s perfect for building se-
quencers andMIDI to CV convert-
ers.

9.2 Using the Forge

If you are working with the Droid Forge, you need to se-
lect your type ofmaster in themenu Rack. There you find
the itemMastermodulewhereyou can select eitherMAS-
TER or MASTER18. Your selection is saved as a comment
in the patch, so next time you load it, the selection is al-
ready done for you.

If you load a patch that has been built for a MASTER, it
might or might not work with theMASTER18, depending
on the features thathavebeenused. Ingeneral,whenyou
switch to a different master in theMaster modulemenu,
some new patch problemsmight be shown, othersmight
vanish.

9.3 The switch

Below the button of theMASTER18 there is a switchwith
three positions. It selects the current function of the USB
port:

left Activate USB access to the SD card

middle Don’t use the USB port

right Activate MIDI via USB

Beware: in the left position the master will not work as
usual and does not run your patch. See below for details.

9.4 USB access to your SD card

TheMASTER18 can give you direct access to its micro SD
card via USB. This is useful for fast patch upload, access
to the DROIDERR.TXT and STATES1.TXT files and more.

For this you need to bring theMASTER18 into “USB-stick
mode”. This mode is entered if three conditions are met:

1. The MASTER18 is connected to your Mac or PC.
2. The switch is at its left position.
3. The SD card is present in its slot.

During USB-stick mode the LED of the MASTER18’s but-
ton flashes twice a second. During disk operation it is lit,
in addition.

Moving back the switch to the middle is like ejecting the
USB stick. So you probably want to eject the card on your
Mac / PC first in order to avoid data loss.

After you move the switch back to the middle position,
your Droid patch droid.ini on the card is automatically
reloaded.

Notes:

• If your patch has an error (the button blinks five
times in a row), put the switch back to the left, wait
for the SD card window to popup and look for the
file DROIDERR.TXT. Open it and you will see the ex-
act reason for the error.

• If you need to re-format the card for some reason,
better do this in the micro SD card reader that was
shipped with your master. It’s much faster that
way.

• If you are working with Mac and experience that

DROIDmanual for blue-6 88 Table of contents at page 2

the access is slow, check out disabling Spotlight on
the card. A script for that can be found on page
103.

9.5 MIDI

MIDI features overview

The MASTER18 has integrated MIDI connectivity. It can
do six independend streams of MIDI data:

1. USBMIDI input
2. USBMIDI output
3. MIDI 1 input
4. MIDI 1 output
5. MIDI 2 input
6. MIDI 2 output

If that is not enough for your application, you can even
add an X7 expander to get another USB port and another
MIDI in/out connection.

Here are some of the key features:

• You can create powerful MIDI→ CV converters.
• Unlimited polyphony (number of simultaneous
notes) except that you run out of jacks.

• Flexible “MIDI through” routing while splicing in
and out events

• Comprehensive support and access to the vastma-
jority ofMIDI features such as CCs, clocks, the run-
ning state, pitch bend, all types of pedals andmuch
more.

• Fast patch upload via USB-MIDI Sysex.

And of course you benefit from ’s own flexibility
when it comes to quantization, LFOs, chord generators,
switches and all that stuff.

For examples of how to use MIDI, have a look at the
chapter about the X7 (see page 77) and also at the cir-
cuits midiin (see page 260), midiout (see page 268) and
midithrough (see page 277).

MIDI over TRS/DIN

The TRS output ports (TRS stands for 3.5 mm tip / ring /
sleeve connector) are of type B (there is no switch like in
theX7, sorry). The inputs do autosensing so you canused
either typeAor typeB. TheMIDI↔TRS adapters shipped
with your MASTER18 are of type B.

MIDI over USB

The MASTER18 supports MIDI over USB. Hereby it acts
as a USB device. This does notmean any limitation of be-
ing an input or output device. It can be both. Even at
the same time. But the actual limitation is that theMAS-
TER18 cannot provide power to your MIDI devices and
cannot be a USB host.

This means thatMIDI devices that are USB devices them-
selves cannot be connected to the X7 via USB, even if you
haveamatching cable. Connect yourMIDI keyboards and
controllers with the TRS jack if USB doesn’t work for you
here. Another way is to buy a MIDI/USB adapter.

The MIDI implementation of the MASTER18 is “class
compliant”. This means that you do not need any driver
software. Simply connect it with the shipped (or any
other) USB cable to your PC and set the switch to the
right. You should now see a new MIDI device, which can
be selectedas an inputor as anoutput dependingonwhat
you are going to do.

Notes:

1. The USB-MIDI standard has a concept of up to 16
virtualMIDI “cables”. TheMASTER18 receives data
on all cables and always sends on cable 0. Future
software updates might make this more flexible, if
there is demand.

2. You will see the MASTER18 USB device named as
“DROID X7” on yourMac/PC. Don’t be confused by
that. That’s right. It is because it’s does exactly the
same as the X7 and is compatible with that.

3. Turning on or off the USB connection with the
switch or plugging or unplugging the cable can
cause a short freeze of the master. This lasts less
than a second but it may lead to audible effects in
your music.

9.6 Sinfonion link

The ACL Sinfonion has a feature called Harmonic Sync.
If you are as lucky as to own a Sinfonion, you can attach
any number of MASTER18 as receiver of harmonic sync.
Thus they share the current harmonic situation such as
the root note, the scale and much more.

All you need is a normal patch cable from your Sinfo-
nion to the I1 input of our MASTER18. See that circuit
sinfonionlink (see page 353) for details and examples.

9.7 VCO tuner

TheMASTER18has abuitin veryprecise frequencyprobe.
This can measure the frequency of basic waveforms like
square wave, triangle, sine, sawtooth and so on. This
does not only give you access to the exact frequency but
you can build your own tuner for exactly tuning your VCO
to a reference note or just the nearest semitone.

DROIDmanual for blue-6 89 Table of contents at page 2

To do this, connect a basic waveform output of your VCO
to the input I1 and use the circuit vcotuner (see page
374) to access all information about the current tuning.
You find all details and examples there.

Note: Since both the Sinfonion link and the tuner use I1,
you cannot use both in the same Droid patch currently.
Future firmware versions might change this.

9.8 Gate inputs and outputs

The jacks labelled I1 and I2 are not full featured CV in-
puts, but gate inputs. They can just be used for clocks,
gates, triggers and similar signals.

The jacks labelled G1 through G4 are gate outputs. They
either output 0 V or 5 V – nothing in between.

9.9 Diagnostic LEDs

The MASTER18 has four LEDs on its back that give you
some feedback of what’s going on – just in case you are
lost. Of course you need to unmount themodule in order
to see them, but it’s better than nothing and on the front

side there simply was not enough space left.

Here is an overview over all the different blinking pat-
terns that these can show:

Firmware version: When you power up the module, the
LEDsshowyouwhichfirmwareyouare currently running.
LD4 blinks a number of times in a certain color. If it blinks
four times in blue color, you have BLUE-4. If the version
number is greater than nine, LD3 shows the tens. So for
MAGENTA-24, LD3 blinks two times inmagenta and LD4
blinks four times – both starting at the same time.

Patch reload: If you load a new patch, LD1 through LD4
flash shortly one after another in the colors blue, gree,
yellow and red.

Global patch error: If LD1 blinks six times in a row after
a patch reload, your patch has some global problem, like
you exceeded the maximum amount of RAM. The color
indicates the cause of the error. You find a list of all col-

ors on page 50.

Patch error in some line: If LD2 blinks six times in a row
after a patch reload, your patch has an error in a specific
line. Thenumberof the line is not indicatedhere. Youfind
it in the file DROIDERR.TXT on the SD card. But the color
indicates the cause of the error. Youfind a list of all colors
on page 50.

Factory reset: When you hold the button in order to do a
factory reset, LD1 through LD4 light up one after another
in blue – like a progress bar.

Controller update: While the MASTER18 is waiting for
the update to start (is ready to be contacted by the con-
troller), one white LEDmoves along LD1, LD2, LD3, LD4
and over again to LD1 and so on. During the firmware
upgrade of a controller or the X7, the four LEDs show a
progress bar from LD1 to LD4 in a color depending on the
controller you update.

Firmware upgrade: During the firmware upgrade of the
MASTER18, the four LEDs show a progress bar in cyan
color. If the firmware file is invalid, all LEDs flash ma-
genta a couple of times. If the upgrade failed, the LEDs
flash red. And if it’s successfully completed, the LEDs
flash cyan.

DROIDmanual for blue-6 90 Table of contents at page 2

10 The R2M/R2C controller bridge

10.1 Introduction

TheR2M/R2C is a pair of two2HPmodules that allowyou
to connect a chain of controllers to your master through
a standard 3.5 mm stereo cable (sometimes also called
aux-cable). The usual idea is that you put all your Droid
controllers into a skiff case and mount your master, X7
andG8 into another case, togetherwith all your fancy Eu-
rorack sound modules.

While you could do this with the typical 6-pin ribbon con-
nector (e.g. the 80 cm version that we offer), using the
R2M/R2C combination has some serious advantages:

The connection cable can be almost arbitrary long (20 m
have been tested andworks perfectly). Since the connec-
tion is done on the front of the modules, you can quickly
disconnect your skiff for the purpose of travelling to a
gig. You can use a standard 3.5 mm stereo TRS cable for
the connection. These modules are not just passive con-
nectors but contain special driver ICs that transform the
electronic voltage levels, which run in the 6-pin ribbon, to
something more stable and reliable that is fit for longer
distances in a more hostile environment.

The controllers do not receive their power from the mas-
ter but from the R2Cmodule, which has a power connec-
tor and a voltage regulator for that purpose. Each chain
of the R2C module provides the same power to its con-
troller chain as the master does (it contains the identical
voltage regulator). That means that you can connect up
to 32 controllers (!) to one R2C.

Another nice thing: The R2M/R2C combination allows
for two of these master / controller connections in par-
allel. That means that you can have two masters being

attached to their individual controller chains. That does
not mean, that each of the masters can access each of
the controllers at the same time, however. Both master /
controller connections work completely separately.

10.2 Setup with onemaster

First let’s assume that your have just one master. On the
back of the R2M (Mstands for ”master”) youwill find two
6-pin shrouded connectors. These are labelled 1 and 2.
Connect connector number 1 with the 6-pin ribbon cable
to that output of the master that is usually used for the
Droid controllers.

Mount the R2M next to your master. Mount the R2C (C
stands for ”controller”) intoyour skiff anduse the shipped
10-pin power cable for powering it with Eurorack power
(red stripe down). Otherwise the controllers won’t work.
The R2C has two 6-pin connectors on the back, as well.
Connect the first controller of your chain to the connec-
tor labelled 1.

Now plug one of the shipped 3.5mm stereo aux cables to
jack 1 of the R2M to jack 1 of the R2C. Or use your own
3.5 mm stereo cable for that purpose.

You don’t need any changes in your Droid patch.

OUT

IN

DROID
MASTER R2M

DROID

1

2

R2C
DROID

1

2

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

max 20m

10.3 X7 connected to themaster

If you have an X7, connect the R2M to the X7, so that the
order ismaster / X7 / R2M.Mount theX7next to themas-
ter. Connect the R2M to the controller output of the X7.

OUT

IN

DROID
MASTER R2M

DROID

1

2

R2C
DROID

1

2

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

X7
DROID

GATES

IN MIDI OUT

max 20m

DROIDmanual for blue-6 91 Table of contents at page 2

10.4 X7 in the skiff

You canmove theX7 to the “other side” of the connection
by connecting the R2M directly to the master and using
the X7 as the first module after the R2C. If you do this,
themaximumdistance that you can bridge is smaller, but
2 m should always be possible. This should be sufficient
for almost any case.

OUT

IN

DROID
MASTER R2M

DROID

1

2

R2C
DROID

1

2

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

X7
DROID

GATES

IN MIDI OUT

max 2m

10.5 Controllers before the R2M/C bridge

You can put the R2M/C bridge at any position in your con-
troller chain that you like. So it’s possible to have some
controllers directly connected to themaster. Simply wire

the last of these to the R2M.

OUT

IN

DROID
MASTER R2M

DROID

1

2

R2C
DROID

1

2

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

10.6 More than one bridge

If you have lots of controllers and put them in two skiffs,
you can even use two R2M/C bridges and put a second
bridge somewhere later in the chain of controllers.

OUT

IN

DROID
MASTER R2M

DROID

1

2

R2C
DROID

1

2

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

R2M
DROID

1

2

R2C
DROID

1

2

10.7 Setup with twomasters

As states above, the R2C/M is dual channel. You can cre-
ate a secondmaster / controller bridgewith the same pair
of R2 modules. Connect the second master to connector
2 of the R2M and its conntrollers to connector 2 of the
R2C. Note: both master / controller chains are separated
and cannot interact with each other.

OUT

IN

DROID
MASTER

OUT

IN

DROID
MASTER R2M

DROID

1

2

R2C
DROID

1

2

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

P2B8
DROID

3 4

5 6

7 8

2

10

10

DROIDmanual for blue-6 92 Table of contents at page 2

11 Droid under the hood

11.1 How themodule’s state is saved

If youaskpeoplewhat’s thenumberoneannoyancewhen
using a module, most will answer this: When a module
is losing its state when you power cycle your modular.
That’s also the number one reason for people running
their system the whole night through.

Therefore the – of course – will save it’s state al-
ways automatically. But what do I mean with “state” in
the first place? It’s very simple: If you have defined a
button, remembers wether it is currently on or
off. If it is on now, so will it be after a power cycle of your
system or a restart of themodule (the same holds for off,
of course).

Other ciruits have states as well, for example the
algoquencer (state of the step buttons, the accents, the
pattern length), the matrixmixer (state of allmatrix but-
tons), the calibrator (state of the calibration adaption)
and so on.

Only the result ofmanual interaction is saved, not for ex-
ample the contents of the cvlooper or the current phase
of an lfo.

All these states are saved to the micro SD card into a file
with the name DROIDSTA.BIN. This file is created with a
fixed size of 128 KB when your starts. All man-
ual changes to your circuits are saved there after a short
delay of about 1.5 seconds. Alsowhen you press the but-
ton for loading a new patch, the states are saved imme-
diately, even if the last change was less than 1.5 seconds
ago.

This has the following implications:

• When no memory card is in the , no states
will be saved. But you can always put one there
even if the module is already running for some
time. It will be detected automatically and all
states will be saved after a second or two.

• When you move the SD card from one
to another, the current circuit states will also be
moved.

• If you want to erase all your settings, you can do
this by starting the without and SD card
and inserting it later. The settings file will only be
loaded right at the beginning. If it’s not present, all
circuits start with their default settings.

The format of the file is binary and looks chaotic. You
cannot open or edit it with any software. But the format
is very efficient, so the ongoing saving of states doesn’t
have any impact on the precise timing or performance of
the .

Note: If you forget to have the SD card inserted when
you power up your , it will run with default states.
Inserting the SD card afterwards will not load the saved
settings but the other way round! It will save the cur-
rent states on the card. This way you lose your original
settings. So if you have forgotten to start with the card,
power off themodule, then insert the card, then power
it on again. That way you won’t lose your settings.

You might ask what happens if you change a patch? The
state of the circuits of the previous patch was saved to
the SD card. How can that saved state be loaded into a
new patch that might have a different structure?

The rule is this: Droid numbers all circuits of the same
type, starting from 1 – according to their appearance in
the patch. So there is button 1, button 2, etc. And there
is buttongroup 1, buttongroup 2 and so on. When you
press a button, writes to the SD card something
like “This is the new state of button 2.”.

When that state is loaded later intoanewpatch, themap-
ping of the loaded states to the circuits uses that same
numbering. So the saved state of button 2 is loaded as
start state for the second button in the new patch.

From this follows that:

• If your new patch has less buttons than your pre-
vious one, some of the saved states are ignored,
since the matching buttons don’t exist anymore.

• If your new patch has more buttons than your pre-
vious one, the exceeding buttons start in the de-
fault state.

• If you change the order of the circuits in your patch,
circuits will get the “wrong” states when you first
start it.

Note: There is only one state file on the SD card. If you
swap patches back and forth, youwill alwaysmix up your
state if the patches have different structures. You might
want to get a separate SD card for every patch, if swap-
ping and not losing your state is crucial.

Sometimes you don’t want a circuit to save its state. You
want a fresh start every time you start your . Or
you missused a circuit that’s ment for manual operation
(e.g. nudge (see page 320)) for some automatic changes

DROIDmanual for blue-6 93 Table of contents at page 2

that happen very frequent and you don’t want to flood
your SD card with new useless states.

All circuits that save states have an input dontsave. Set
this to 1 to prevent the state from being saved (and
loaded):

[nudge]
dontsave = 1 # prevent loading/saving
...

11.2 The order of the circuits

Youmight ask yourself what role the order of the circuits
plays in your patch file. Well – in most cases it doesn’t
matter at all, in some cases, however, it might cause very
subtle timing differences in the range of a couple of hun-
dred µs. In order to understand this, we need to have a
closer look at how the DROID works:

The basic working process of your DROID is a simple loop
that is repeating over and over again – at a speed of ap-
proximately 180 µs per cycle, which means that it is run-
ning at approximately 5.5 kHz! In each cycle of the loop
the following things happen:

• The current values of all inputs, gates, buttons and
pots are read in and stored in the I, G, B and P reg-
isters.

• Each circuit creates a new value for each of its out-
puts. Thatmight includewriting new values into O,
G, L or R registers.

• The contents of the O and G registers are converted

into voltages for their respective output jacks. The
contents of the L and R registers are translated into
brightness and color of the according LEDs.

Now let’s look at two circuits that are internally wired:

[bernoulli]
input = G1
distribution = P1.1
output1 = _TRIGGER

[contour]
trigger = _TRIGGER
output = O1

Here an external trigger at G1 (on the G8 expander) is be-
ing used to trigger an envelope randomly, which is then
sent to O1. Here – because of the order of the circuits –
the envelope will start in the same loop cycle in which the
trigger is seen at G1.

Now let’s change the order:

[contour]
trigger = _TRIGGER
output = O1

[bernoulli]
input = G1
distribution = P1.1
output1 = _TRIGGER

Now it is different. In the cycle in that the trigger is de-
tected at G1, the envelope has already been processed. It
gets its trigger through the internalwire_TRIGGERnotbe-
fore the next cycle. This introduces a short delay of up to
160µs. This is not very long, but it can easily be avoided.

Note: However, when your patch contains quite a lot of
circuits, the loop time gets longer. Even then, it is likely
to stay below 500 µs.

11.3 Displaying the value of a register

In the section about finding errors in your patches we al-
ready talked about the status dump file (see page 96).
That showsyou the exact value of every single input, out-
put, potentiomenter and other register.

On theMASTER there is anotherwayof showingacurrent
value from within your patch, and that live. This can be
useful, for example, if you want to spare a potentiome-
ters and use a fixed value instead but first need to find
out which value fits best. Maybe you need a simple en-

velope with a fixed non-zero attack value. You could try
out different values by changing your patch over andover
again. But that’s quite annoying.

Here the experimental X1 register helps. It’s an output

DROIDmanual for blue-6 94 Table of contents at page 2

register. When you send a value there, all the LEDs of the
front panel will show that value in a way similar to the
line-error-encoding of the patch parser. Here is an exam-
ple:

[p2b8]

[contour]
attack = P1.1
release = P1.2
trigger = B1.1
output = O1

[copy]
input = P1.1
output = X1

Now turn the knob P1.1 for setting some nice attack
value. As soon as you remove that from its zero-position,
all LEDs will move around in red and white and show the
current value of P1.1with three digits. Input LEDs are lit
white and red. White digits account for 0.1 and red digits
for 0.01. The red digits at the outputs account for 0.001.
Here is how the value 0.148 looks like:

The digit 9 will be displayed as 8 + 1. So here is 0.951:

A zero digit means of course that no LED is lit in the ac-
cording section. Here is 0.950:

Butwhat if digits in the input section collided? E.g. 0.550
would need the LED of input 5 to be red and white at the
same time. Well, then itwill blink betweenwhite and red:

Theupper scheme justworks for numbers in the range0.0
... 1.0. But there are different color schemes for the non-
white LED that enable showing other ranges:

• Numbers in the range -1.0 ... 0.0 (excluding zero)
are shown with blue LEDs.

• Integer numbers in the range 2 ... 1000 are shown
in orange color, with factor of 1000 applied.

• Integer numbers in the range -1000 ... -2 are shown
in cyan color, with factor of -1000 applied.

Example: this is the pattern for the number 148:

Once you have found a nice value, simply replace P1.1
with that fixed value and your pot is free for something
else!

DROIDmanual for blue-6 95 Table of contents at page 2

11.4 Displaying current values

There is an easymethod for getting the current value of all registers! Simply double press
the master’s button – just similar to a mouse double click. If you do this, all LEDs will
flash white once. And on the SD card a file with the name STATES1.TXT is being created.
This file will not only show you the current value of all registers but also the values of all
internal patch cable (see page 56).

When you do this again, a STATES2.TXT and so on is created. When STATES99.TXT is
reached, it starts over again from STATES1.TXT. When you create the first dump file af-
ter the has started, all old files from the previous run are automatically deleted.

Here is what such a file looks like:

DROID status

Firmware version: blue-6
Running since: 10.385 sec
Average loop cycle: 0.043 ms
Unique constants: 15 (60 bytes)
Unique cables: 0 (0 bytes)
Parameter values: 124 bytes
Free RAM: 107247 bytes (94.908%)
Size of patch: 163 bytes (0.254%)

Inputs:
I1: 0.3201 I2: 0.8210 I3: 0.0000 I4: 0.0000
I5: 0.0000 I6: 0.0000 I7: 0.0000 I8: 0.0000

Normalizations:
N1: 0.0000 N2: 0.0000 N3: 0.0000 N4: 0.0000
N5: 0.0000 N6: 0.0000 N7: 0.0000 N8: 0.0000

Outputs:
O1: 1.0000 O2: 0.2000 O3: 0.3333 O4: 0.0000
O5: 0.0000 O6: 0.0000 O7: 0.0000 O8: 0.0000

RGB-LEDs:
R1: 0.000 R2: 0.000 R3: 0.000 R4: 0.000
R5: 0.000 R6: 0.000 R7: 0.000 R8: 0.000
R9: 0.000 R10: 0.000 R11: 0.000 R12: 0.000
R13: 0.000 R14: 0.000 R15: 0.000 R16: 0.000

Controller 1 [p2b8]:
B1.1: 0 B1.2: 0 B1.3: 0 B1.4: 0
B1.5: 0 B1.6: 0 B1.7: 0 B1.8: 1
L1.1: 0.000 L1.2: 0.000 L1.3: 0.000 L1.4: 0.000
L1.5: 0.000 L1.6: 0.000 L1.7: 0.000 L1.8: 0.000
P1.1: 0.77631 P1.2: 1.00000

Internal patch cables:
_CLOCK: 1.00000
_PITCH: 0.23430
_RELEASE: 0.30000

DROIDmanual for blue-6 96 Table of contents at page 2

11.5 Controller latency

As stated above, you can attach up to 16 controllers to
one master. These controllers are connected via a
ribbon cable with six wires. Four of these wires comprise
a power supply for the controllerswith 5V (except for the
M4 –Motor Fader Unit, which has its own power supply).
The remaining two wires form a digital serial connection
between the modules. The master sends data to the first
controller, the first controller to the second and so on un-
til the last controller sends all collected data back to the

master.

This serial line sends approximately 7200 bytes per sec-
ond. Every controller needs a different number of bytes
per update and for the P2B8 it’s 11 bytes. So if you have
just one P2B8, you get 7200

11 = 654 updates per second.
That’s roughly one update per 1.5 ms – which is pretty
fast. That means that a button press is registered by the
master after 1.5msplus some internal computation time.

If you have the maximum of 16 controllers (which would
be 80 HP of controllers), things slow down a bit, of
course, since now every controller get’s just 1

16 of the
data in the serial connection. In that case a button press
would need about 25ms to be registered. This is still way
fast enough for the typical switching tasks that you typ-
ically do with the . However, playing live drums
with the buttons would not be very tight (I wouldn’t sug-
gest that anyway).

DROIDmanual for blue-6 97 Table of contents at page 2

12 Firmware upgrade

12.1 Why upgrading the firmware?

is an active project, new features are being added,
bugs are beingfixed. Alsonewcontrollermodules require
changes in the software of the master module. All these
things are reasons why, from time to time, we release a
new firmware (software) version for the master.

If youwant touse thenewfeaturesorhave thebugsfixed,
you can update your firmware. You find the newest re-
lease always on our download page and also in our Dis-
cord community .

Unless most other software, uses a combination
of a color and a number in order to name a software ver-
sion. For example the version this manual is written for
is called blue-6.

Note: Some of the expanders and controllers also have
firmwares that you can update. Please see page 85 for
the X7, page 74 for the M4 and 70 for the E4.

12.2 Checking your version on theMASTER

When your MASTER starts, you can see your current ver-
sion in a short LED animation. Look at the first two rows
of LEDs (which normally show the inputs) and their num-
bers from 1 to 8. One or more of them will light up in a
color. Read these as a number and add the color and you
have the firmware version. The other two lines show a
rainbow animation and are not important.

This is how the version green-8 is being shown:

If two numbers light up, don’t add them but read them as
a number, for example this is blue-13 (not 4!):

12.3 Checking your version on theMASTER18

TheMASTER18 das not have LEDs on the front panel, but
it has four diagnostic LEDs on the back:

When you power up the module, the LEDs show you
which firmware you are currently running. LD4 blinks a
number of times in a certain color. If it blinks four times
in blue color, you have BLUE-4. If the version number is
greater thannine, LD3 shows the tens. So forMAGENTA-
24, LD3 blinks two times in magenta and LD4 blinks four

times – both starting at the same time.

12.4 Normal update procedure

Here is how you upgrade the firmware of your :

1. Download the most current firmware pack-
age from the ’s homepage at
https://shop.dermannmitdermaschine.de/droid.

2. Unzip that file and go to the folder firmwares.
There youfind all firmwarefiles for themasters, X7
and controllers.

3. Copy the firmware file for your type of master to
your micro SD card:

• For a MASTER the file is called like
droid-blue-4.fw. Rename it to droid.fw.

• For a MASTER18 the file is called like
master18-blue-4.fw. Rename it to
master18.fw.

4. Insert themicro SD card into yourmaster and press
the button, or power your master on while the SD
card is inserted.

When the master starts, it checks for a firmware file on
the SD card and automatically updates itself – if that
firmware is different from the one it’s currently running.

When the update is running, the 16 LEDs on the front of
you MASTER, or the 4 LEDs on the back of your MAS-
TER18 show a “progess bar” in dark cyan color. If every-
thing goes well then at the end all LEDs flash a couple of
times and the master starts into normal mode.

Here are some things that could possibly go wrong:

DROIDmanual for blue-6 98 Table of contents at page 2

https://shop.dermannmitdermaschine.de/pages/downloads
https://discord.com/invite/9TUcRmH
https://discord.com/invite/9TUcRmH
https://shop.dermannmitdermaschine.de/droid

Missing firmware file

If you have not copied the file droid.fw or missspelled it
or it cannot be found for some other reason like a defunct
SD card then simply nothing happens. The master starts
like usual.

Invalid firmware file

A magenta blink code means that your firmware file
droid.fw is somehow not valid. It has the wrong size.
This usually has one of two reasons:

• You copied to wrong file to droid.fw or
master18.fw.

• You try to update to a blue version on a MASTER
that currently has a green version. If you want to
switch to blue, you need one extra step. Please see
on the next page in the sectionUpgrade fromgreen
to blue for details.

Fail to program

If there is someerrorwhenprogramming thefile intoyour
masters’s memory, all LEDs blink dark red. Retry down-
loading and upgrading the firmware again!

Firmware already up-to-date

If the firmware in the file droid.fw or master18.fw al-
ready has been flashed successfully in a previous update,
nothing happens. The master automatically detects this
and skips the update. So it is save to leave the SD card
with droid.fw in the SD card slot.

12.5 Upgrade aMASTER from green to blue

After the firmware version green-8 there is a bigger
change. So the next version is not green-9 but blue-
1. The main difference is that blue firmwares are larger
and allow for more cool circuits and other stuff in your

.

In order to make that possible we needed to change the
firmware format. For that reason – if your has a
green firmware installed – you need to update your boot-
loader first. The bootloader is that part of the software
that does the actual firmware upgrade. If your master
came already shipped with a blue firmware, everything
is fine and you can stop reading here.

With the bootloader from the green firmware youwill get
all LEDsflashingmagenta if youwant to update toblue-2
(or any other blue firmware). So in this case you need to
do the following steps:

1. Update to green-8. This is important since only
this firmware has a menu entry for updating the
bootloader.

2. Use the maintenance menu to update the boot-
loader. After which you are on green-8.

3. Update toblue-2 or any other blue firmware just as
described on the pages before.

Here is how step 2works in detail. Do the following steps
for this:

First make sure that you have the firmware file of green-
8 on your SD card. This is probably the case anyway if
you just updated to green-8. Now press the button long
in order to enter themaintenancemenu (see page 100 for
details).

If everything goes well, LED 7 must show a new blue

menu entry:

If the bluemenu entry does not appear, it’s for one of the
following reasons:

• The file droid.fw does not match the firmware
that is currently running (update your firmware
first)

• Your bootloader is already uptodate (identical with
the one in droid.fw).

• The file droid.fw is missing on the card.
• The file droid.fw is damaged.
• Thefile droid.fw cannot be read from the card (try
reformatting the card with a FAT filesystem in that
case).

• The SD card is not readable.
• No SD card is present.

Now use short button presses in order tomove the blink-
ing cursor to LED7. There press the button long. Thiswill
start the update. A blue LED will run one cycle around,
the DROID will restart and your are done. This whole
thing should last just a few seconds.

IMPORTANT: Do not switch off your DROID until the
procedure isfinished!!! Doing sowillmake it completely
unusable. It has the be reprogrammed in our labs if that
happens.

DROIDmanual for blue-6 99 Table of contents at page 2

13 Calibration, factory reset and othermaintainance stuff

13.1 Themaintenancemode of theMASTER

TheMASTER has a special mode for variousmaintenance
tasks. This mode is a bit “hidden” so that you do not en-
ter it accidentally. You enter the maintenance mode by
holding the button on themaster for a couple of seconds.
After 1.5 seconds of holding the button, an animation of
light blue LEDs going from O8 over to I1 starts:

When the blue LEDs reach I1, continue holding the but-
ton. DROID restarts. Still hold the button. Now the ani-
mation of the blue LEDs starts in the opposite direction:

When the end is reached – this time at O8 – and you now
release the button, the enters the maintenance
mode. If you let go the button before this you go back
into normal operation.

In maintenance mode you will see a white “cursor” blink-
ing at the LED for I1. Cell I3 is red, Cell I4 is magenta:

The four positions I1 ... I4 represent four different menu
options:

1. WHITE (I1): leave the maintenance mode and
restart the .

2. black: currently unused.
3. RED (I3): reset the to factory mode (but

keep calibration).
4. MAGENTA (I4): start the procedure of calibrating

the voltage of the eight outputs.

A short press of the button moves the cursor to the next
cell. Pressing three times brings you to cell 4:

A long press of the button selects the item the cursor is
currently at. It starts an animation on the LEDs of O1 …
O8 in the same color as the selected item (in this case cal-
ibration mode):

When the animation reaches O8, the item is being se-
lected.

DROIDmanual for blue-6 100 Table of contents at page 2

13.2 Factory reset on theMASTER

The factory reset can help in situations where – due to
some software problem, maybe in a beta or testing ver-
sion – the is stuck and does not want to run
again. The problem might be triggered by the current
saved states of the circuits or by the currently loaded
patch.

Youdoa factory reset in themaintenancemenuby select-
ing position I3 (red).

All circuit states are erased. Also the current patch is
erased from the internal flash memory of the master.

Note: If the patch is still on the SD card, it will immedi-
ately be reloaded after the reset, so if you want to avoid

this, put either a different patch on the card or remove
the card while doing the factory reset.

The calibration of the voltages of the outputs is not lost,
when youmake a factory reset!

NOTE: If due to some unexpected bug or other strange
behaviour your MASTER does not respond to the but-
ton anymore, switch off your rack and hold the button
while switching itonagain. Nowhold ituntil all 16LEDs
are violet and release it. This brings you directly to the
maintenancemode even before your patch has started.

13.3 Factory reset on theMASTER18

TheMASTER18 does not have LEDs and nomaintenance
menu. But you can do a factory reset as well:

Press and hold the button for at least four seconds. It
starts blinking fast. Now release it. This triggers the fac-
tory reset. TheMASTER18 resets after that and comes to

live without any patch loaded. Press the button to load
the patch on the SD card.

NOTE: If due to some unexpected bug or other strange
behaviour your MASTER18 does not respond to the
button anymore, switch off your rack and hold the but-

tonwhile switch iton. Nowhold it for four secondsuntil
it begins flashing fast. Release it. This procedure does a
factory resetmode even before your patch has started.
Make sure that the SD card is either removed or con-
tains the new patch that you want to try, since it will
be loaded immediately after the factory reset.

13.4 Calibration of the outputs of theMASTER

The MASTER comes with 8 high precision DA converters
(DACs) that produce highly accurate voltages for the out-
put jacks. These need to be calibrated in order to match
their designed precision. Calibration of the DACs is done
in our labs before we ship the units to you.

There is a super tiny chance that your calibration get’s
lost: When you switch of your rack just in that fraction of
a second when you load a new patch by pressing the but-

ton and at the same time deleting the calibration backup
file on your SD card! However unlikely: if your
does not start with its usual rainbow animation but with
a white LED animation, your DACs are not calibrated an
not very precise anymore. In that case do as described
here.

Otherwise you probably never will need to calibrate your
outputs. If you want to do so anyway, please make sure

that your has warmed up before you start. That
gives the best precision. Calibration is easy and you just
need a patch cable. As a preparation unplug all jacks be-
fore you start.

Now enter maintenance mode and select cell number 4
(magenta):

DROIDmanual for blue-6 101 Table of contents at page 2

After entering the calibration mode, the top 8 LEDs are
black and the bottom 8 LEDs are cyan – with the excep-
tion of input 1 blinking magenta and output 1 blinking
cyan.

Now use a patch cable and connect input 1 to output 1.
now tries out different output voltages and mea-

sures thembymeansof theprecisionADCof input1. This
information is being used for the exact calibration. The
result of the calibration is saved to the ’s internal
flash memory.

As soon as channel 1 is calibrated the LED O1 changes to
green. The cursor moves to the next channel:

Now proceed to the second pair of jacks and connect in-
put 2 to output 2. Do this until all eight channels are
green. will then automatically end calibration
and start normal operation.

If one of the channels will not go green in spite of having
a proper connection between the relevant input and out-
put you might have a hardware problem. Please contact
us.

Hint: If you like you can use eight patch cables and patch
all eight connections at once. Then you just have to wait
for a couple of seconds until everything is calibrated.

By the way: If you are looking onto your SD card, youwill
find a file with the name DROIDCAL.BIN. This is a backup
of your DAC calibration. Don’t touch it. Just leave it
there. If you delete it, it will automatically reappear any-
way. If your looses it’s calibration for some rea-
son (currently there is none I can think of...), starting the

with a cardwith this filewill automatically restore
the DAC calibration.

13.5 Calibration of the outputs of theMASTER18

Just as the MASTER, the MASTER18 has eight precision
CV outputs that need to be calibrated. The calibration is
done in our labs with a professional voltmeter from Ro-
hde & Schwarz.

If for any reason you believe that you need to recal-
ibrate your outputs, you can do this with the special
circuit outputcalibrator (see page 326). There is an
example patch in the firmware package with the name
m18calibration.ini. It uses anE4 controller for the cal-
ibration.

The procedure is like this:

1. Select the output you which to calibrate with en-
coder 1.

2. Select the target voltage to calibrate with encoder
2. Turn left for 0 V and right for 5 V.

3. Check the actual voltage on the output with your
voltmeter.

4. Turn encoder 3 left or right to adapt the voltage un-
til it matches exactly 0 V or 5 V.

5. Repeat this step for all relevant outputs and target

voltages
6. Press the push button in encoder 4 to save the cal-

ibration.

Beware: the calibration cannot be undone. It is very
likely that younever need to calibrate yourMASTER18.
Before you do the calibrationfirst check if your outputs
are really unprecise.

Especially, the output calibration is a bad idea for com-
pensating badly tracking VCOs. For that rather use the
circuit calibrator (see page 150).

DROIDmanual for blue-6 102 Table of contents at page 2

13.6 Using your own SD card

Formatting amicro SD card

comes shipped with amicro SD card ready to use,
but you can use your own card if you like. Usually when
you buy a card it should work out of the box. If not, you
might need to reformat it. The followingfilesystem types

are supported:

• FAT 12
• FAT 16

• FAT 32

Exfat is not supported. Also the cluster size (sector size)
needs to be 512 Bytes.

Speed up cards onMac

The AppleMac automatically creates several files and di-
rectories on every storage device it finds, in order to sup-
port spotlight search and a trash bin. Both ofwhich is not
needed for your and substantially slows down the
card access when you use it with the X7.

The card that comes with your master has been prepared
by us in a way that avoids these special Mac features – if
your master came shipped with at least version blue-1. If
you create your own card, or if yours came shipped with

an older firmware version, you can prepare it yourself.

This can be done by the following commands that you
need to enter on the terminal while the card is inserted
into your Mac. Hereby we assume that the name of you
card is Untitled. If not, please adapt the commands to
your name:

mdutil -i off /Volumes/Untitled
cd /Volumes/Untitled

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Please double check what you are typing. Especially the
rm command is very dangerous if you are not in the right
directory or havemistyped one of the dots or curly brack-
ets!

DROIDmanual for blue-6 103 Table of contents at page 2

14 Hardware

Notes

Thepower consumptionhasbeenmeasuredunder theas-
sumption that there is no short circuit. If you set 10 V to
an output of amastermodule and patch the to a different
output at 0 V (or even -10 V), or you touch ground with
the tip of the patch cable, the power consumption goes
up by 10-20 mA (per output).

The consumption is the maximum under normal condi-
tions. If you don’t use all features of the module (like
LEDs at full brightness, MIDI outputs, CV outputs, etc.)
the power draw is less.

For the controllers that do not have their own power con-
nection but are powered by the master, also for the G8
and X7, the power consumption displayed here is mea-
sured as the raise of the power consumption of the mas-
ter module.

MASTER

Doepfer A-100 compatible “Eurorack” module with 8 HP

• STM32F446Micro controller running at 180MHz
• 8 CV input jacks with a voltage range from -10 V to
+10V, driven by highly accurate low jitter 16 bit AD
converters

• 8 CV output jacks with a voltage range from -10 V
to +10 V, driven by highly accurate low jitter 16 bit
DA converters

• 16 full color LEDs
• MicroSD card reader
• Button for reloading the MicroSD card
• Expansion port for up to four G8 expanders
• Expansion port for up to 16 controllers

Power consumption:

+12 V rail: 154 mA
-12 V rail: 15 mA

MASTER18

Doepfer A-100 compatible “Eurorack” module with 6 HP

• STM32F446Micro controller running at 180MHz
• 8 CV output jacks with a voltage range from -10 V
to +10 V, driven by highly accurate low jitter 16 bit
DA converters

• 2 gate inputs switching at 0.1 V, with option for
VCO tuning and Sinfonion link

• 4 gate ouputs switching between 0 V and 5 V
• MicroSD card reader
• Button for reloading the MicroSD card
• Expansion port for up to four G8 expanders
• Expansion port for up to 16 controllers

Power consumption:

+12 V rail: 73 mA
-12 V rail: 7 mA

G8 Expander

Eurorack compatible expander for the DROID master,
with 4 HP

• 8 tristate gate/trigger-jacks that can each be used
either as an input or an output

• 8 full color LEDs

Power consumption:

+12 V rail: 41 mA
-12 V rail: 0 mA

X7 Expander

Expander with USB, MIDI TRS in/out, four gates, with
4 HP

• STM32F446Micro controller running at 180MHz
• USB-C connector supporting USB 2.0 device mode
• Four gate outputs with 0 V or 5 V
• Switch for USBmodewithwith three positions: SD
/ off / MIDI

• 8 full color LEDs
• Port for connection to the master
• Expansion port for connection to the controllers

Power consumption:

+12 V rail: 94 mA
-12 V rail: 0 mA

DROIDmanual for blue-6 104 Table of contents at page 2

P2B8 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

• STM32F030Micro controller running at 48MHz
• 2 potentiometers
• 8 buttons with LEDs

Power consumption:

+12 V rail: 12 mA
-12 V rail: 0 mA

P4B2 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

• STM32F030Micro controller running at 48MHz
• 4 potentiometers
• 2 buttons with LEDs

Power consumption:

+12 V rail: 11 mA
-12 V rail: 0 mA

B32 Controller

Eurorack compatible expander for the DROID master,
with 10 HP

• STM32F030Micro controller running at 48MHz
• 32 buttons with LEDs

Power consumption:

+12 V rail: 24 mA
-12 V rail: 0 mA

P10 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

• STM32F030Micro controller running at 48MHz
• 2 large potentiometers
• 8 small potentiometers

Power consumption:

+12 V rail: 10 mA
-12 V rail: 0 mA

S10 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

• STM32F030Micro controller running at 48MHz
• 2 switches with 8 positions each
• 8 small switches with 3 positions each

Power consumption:

+12 V rail: 10 mA
-12 V rail: 0 mA

P8S8 Controller

Eurorack compatible expander for the DROID master,
with 8 HP

• STM32F030Micro controller running at 48MHz
• 8 sliders with amber LEDs, moving range 20 mm
• 8 toggle switches with 3 positions each

Power consumption:

+12 V rail: 20 mA
-12 V rail: 0 mA

M4Controller

Eurorack compatible expander for the DROID master,
with 14 HP

• STM32F030Micro controller running at 48MHz
• 4 Alpsmotorized faderswith a faderway of 60mm
• 4 RGBmulticolor LEDs
• 4 touch sensitive plates

Power consumption:

+12 V rail: 350 mA – 600mA (configurable)
-12 V rail: 0 mA

E4 Controller

Eurorack compatible expander for the DROID master,
with 6 HP

• STM32F030Micro controller running at 48MHz
• 4 Bourns encoders with 96 steps per rotation
• 4 integrated push buttons
• 128 RGBmulticolor LEDs

Power consumption:

+12 V rail: 220 mA (all LEDs white)
+12 V rail: 53 mA (LEDs used as encoder display)
-12 V rail: 0 mA

DROIDmanual for blue-6 105 Table of contents at page 2

R2MController bridge, part 1

This module creates – together with R2C – a remote
bridge to Droid controllers in another skiff, using a stan-
dard 3.5mm stereo patch cable. It is attached to the con-
troller ports of up to twomaster modules.

• 2 serial line drivers for realiable data transmission

Power consumption:

+12 V rail: 3 mA
-12 V rail: 0 mA

R2C Controller bridge, part 2

This module is put into a skiff and wired with a standard
3.5mmstereopatch cable to theR2M.Twochains of con-
trollers can be attached.

• 2 serial line drivers for realiable data transmission
• 2 power regulators with 5V, 1000 mA

Power consumption (without controllers):

+12 V rail: 2 mA
-12 V rail: 0 mA

DROIDmanual for blue-6 106 Table of contents at page 2

15 Musical scales

Here your find all possible 108 values that you can use in the degree input of various circuits like minifonion (see page 279) or chord (see page 154). This table might indeed look
strange. The reason is that it reflects the internal scale structure of the Sinfonion. Every 12 scales refer to one mode of the Sinfonion. This is also the reason why some scale appear
twice. All scales are noted in the assumption that root is set to 0, which is a C.

Nr Scale I II III IV V VI VII fill1 fill2 fill3 fill4 fill5

0 C Lydian C D E F♯ G A B C♯ D♯ F G♯ A♯

1 C Ionian C D E F G A B C♯ D♯ F♯ G♯ A♯

2 CMixolydian C D E F G A A♯ C♯ D♯ F♯ G♯ B

3 CMixolydian sus4 C D F E G A A♯ C♯ D♯ F♯ G♯ B

4 C Altered C C♯ E D♯ G♯ F♯ A♯ D F G A B

5 C Spanish C C♯ E F G G♯ A♯ D D♯ F♯ A B

6 C Dorian C D D♯ F G A A♯ C♯ E F♯ G♯ B

7 C Aeolian C D D♯ F G G♯ A♯ C♯ E F♯ A B

8 C Harmonic major C D D♯ F G G♯ B C♯ E F♯ A A♯

9 C Phrygian C C♯ D♯ F G G♯ A♯ D E F♯ A B

10 C Diminished C D D♯ F F♯ G♯ A B C♯ E G A♯

11 C Augmented C D E F♯ G♯ C♯ A♯ D♯ F G A B

12 CMixolydian with ♯ 11 C D E F♯ G A A♯ C♯ D♯ F G♯ B

13 CMixolydian with ♯ 11 C D E F♯ G A A♯ C♯ D♯ F G♯ B

14 CMixolydian with ♭ 13 C D E F G G♯ A♯ C♯ D♯ F♯ A B

15 CMixolydian with ♭ 13 C D E F G G♯ A♯ C♯ D♯ F♯ A B

16 CMixo sus 4 ♭9 C C♯ F E G A A♯ D D♯ F♯ G♯ B

17 CMixo sus 4 ♭9 C C♯ F E G A A♯ D D♯ F♯ G♯ B

18 CMixolydian with ♭9 C C♯ E D♯ G F♯ A♯ A D F G♯ B

19 CMixolydian with ♭9 C C♯ E D♯ G F♯ A♯ A D F G♯ B

20 CMelodic minor C D D♯ F G A B C♯ E F♯ G♯ A♯

21 CMelodic minor C D D♯ F G A B C♯ E F♯ G♯ A♯

22 CMajor 7 ♯5 ♯11 C D E F♯ G♯ A B C♯ D♯ F G A♯

23 C Locrian C C♯ D♯ F F♯ G♯ A♯ D E G A B

Nr Scale I II III IV V VI VII fill1 fill2 fill3 fill4 fill5

24 Slashchord D♭♯11/C C D♯ C♯ G F A♯ G♯ D E F♯ A B

25 Slashchord D/C C E D G F♯ B A C♯ D♯ F G♯ A♯

26 Slashchord E♭/C C D D♯ F G G♯ A♯ C♯ E F♯ A B

27 Slashchord E♭♯11/C C D D♯ F G A A♯ C♯ E F♯ G♯ B

28 Slashchord E/C C D E F G♯ A B C♯ D♯ F♯ G A♯

29 Slashchord G/C C F G A B E D C♯ D♯ F♯ G♯ A♯

30 Slashchord B♭/C C A A♯ E D G F C♯ D♯ F♯ G♯ B

31 Slashchord Dminor/C C E D G F A♯ A C♯ D♯ F♯ G♯ B

32 Slashchord E♭minor/C C C♯ D♯ F F♯ G♯ A♯ D E G A B

33 Slashchord E minor/C C D E F G A B C♯ D♯ F♯ G♯ A♯

34 Slashchord Gminor/C C F G A A♯ E D C♯ D♯ F♯ G♯ B

35 Slashchord B♭ aug / C C A A♯ E D G F♯ C♯ D♯ F G♯ B

36 CMajor C D E F G A B C♯ D♯ F♯ G♯ A♯

37 C♯Major C♯ D♯ F G G♯ A♯ C D E F♯ A B

38 D Dorian minor D E F G A B C D♯ F♯ G♯ A♯ C♯

39 E♭Mixolydian D♯ F G G♯ A♯ C C♯ E F♯ A B D

40 E Phrygian minor E F G A B C D F♯ G♯ A♯ C♯ D♯

41 F Lydian major F G A B C D E F♯ G♯ A♯ C♯ D♯

42 F♯ Altered F♯ G A♯ A D C E G♯ B C♯ D♯ F

43 GMixolydian G A B C D E F G♯ A♯ C♯ D♯ F♯

44 G♯ Altered G♯ A C B E D F♯ A♯ C♯ D♯ F G

45 A Aeolian minor A B C D E F G A♯ C♯ D♯ F♯ G♯

46 B♭Major A♯ C D E F G A B C♯ D♯ F♯ G♯

47 B Locrian B C D E F G A C♯ D♯ F♯ G♯ A♯

DROIDmanual for blue-6 107 Table of contents at page 2

Nr Scale I II III IV V VI VII fill1 fill2 fill3 fill4 fill5

48 CMinor from I C D D♯ F G G♯ A♯ C♯ E F♯ A B

49 C♯Minor from I C♯ D♯ F G G♯ A♯ C D E F♯ A B

50 CMinor from II D D♯ F G G♯ A♯ C E F♯ A B C♯

51 CMinor from III D♯ F G G♯ A♯ C D E F♯ A B C♯

52 E major E F♯ G♯ A♯ B C♯ D♯ F G A C D

53 CMinor from IV F G G♯ A♯ C D D♯ F♯ A B C♯ E

54 F♯ Altered F♯ G A♯ A D C E G♯ B C♯ D♯ F

55 CMinor from V G G♯ B C D D♯ F A A♯ C♯ E F♯

56 CMinor from VI G♯ A♯ C D D♯ F G A B C♯ E F♯

57 A Altered A A♯ C♯ C F D♯ G B D E F♯ G♯

58 CMinor from VII A♯ C D D♯ F G G♯ B C♯ E F♯ A

59 B diminished B C♯ D E F G G♯ C D♯ F♯ A A♯

60 CMelodic minor from I C D D♯ F G A B C♯ E F♯ G♯ A♯

61 C♯ Altered C♯ D F E A G B D♯ F♯ G♯ A♯ C

62 CMelodic minor from II D D♯ F G A B C E F♯ G♯ A♯ C♯

63 CMelodic minor from III D♯ F G A B C D E F♯ G♯ A♯ C♯

64 E major E F♯ G♯ A♯ B C♯ D♯ F G A C D

65 CMelodic minor from IV F G A B C D D♯ F♯ G♯ A♯ C♯ E

66 F♯ Altered F♯ G A♯ A D C E G♯ B C♯ D♯ F

67 CMelodic minor from V G A B C D D♯ F G♯ A♯ C♯ E F♯

68 CMinor from VI G♯ A♯ C D D♯ F G A B C♯ E F♯

69 CMelodic minor from VI A B C D D♯ F G A♯ C♯ E F♯ G♯

70 CMinor from VII A♯ C D D♯ F G G♯ B C♯ E F♯ A

71 CMelodic minor from VII B C D D♯ F G A C♯ E F♯ G♯ A♯

Nr Scale I II III IV V VI VII fill1 fill2 fill3 fill4 fill5

72 C Harmonic minor from I C D D♯ F G G♯ B C♯ E F♯ A A♯

73 C♯ Altered C♯ D F E A G B D♯ F♯ G♯ A♯ C

74 C Harmonic minor from II D D♯ F G G♯ B C E F♯ A A♯ C♯

75 C Harmonic minor from III D♯ F G G♯ B C D E F♯ A A♯ C♯

76 E major E F♯ G♯ A♯ B C♯ D♯ F G A C D

77 C Harmonic minor from IV F G G♯ B C D D♯ F♯ A A♯ C♯ E

78 F♯ Altered F♯ G A♯ A D C E G♯ B C♯ D♯ F

79 C Harmonic minor from V G G♯ B C D D♯ F A A♯ C♯ E F♯

80 C Harmonic minor from VI G♯ B C D D♯ F G A A♯ C♯ E F♯

81 A Altered A A♯ C♯ C F D♯ G B D E F♯ G♯

82 CMinor from VII A♯ C D D♯ F G G♯ B C♯ E F♯ A

83 C Harmonic minor from VII B C D D♯ F G G♯ C♯ E F♯ A A♯

84 C Harmonic major from I C D E F G G♯ B C♯ D♯ F♯ A A♯

85 C♯Major C♯ D♯ F G G♯ A♯ C D E F♯ A B

86 C Harmonic major from II D E F G G♯ B C D♯ F♯ A A♯ C♯

87 C Harmonic minor from III D♯ F G G♯ B C D E F♯ A A♯ C♯

88 C Harmonic major from III E F G G♯ B C D F♯ A A♯ C♯ D♯

89 C Harmonic major from IV F G G♯ B C D E F♯ A A♯ C♯ D♯

90 F♯ Altered F♯ G A♯ A D C E G♯ B C♯ D♯ F

91 C Harmonic major from V G G♯ B C D E F A A♯ C♯ D♯ F♯

92 C Harmonic major from VI G♯ B C D E F G A♯ C♯ D♯ F♯ A

93 A Aeolian minor A B C D E F G A♯ C♯ D♯ F♯ G♯

94 B♭Major A♯ C D E F G A B C♯ D♯ F♯ G♯

95 C Harmonic major from VII B C D E F G G♯ C♯ D♯ F♯ A A♯

DROIDmanual for blue-6 108 Table of contents at page 2

Nr Scale I II III IV V VI VII fill1 fill2 fill3 fill4 fill5

96 C Double harmonic major from I C C♯ E F G G♯ B D D♯ F♯ A A♯

97 C Double harmonic major from II C♯ E F G G♯ B C D D♯ F♯ A A♯

98 C♯ Double harmonic major from II D E F G G♯ B C D♯ F♯ A A♯ C♯

99 B Double harmonic major from III D♯ F G G♯ B C C♯ E F♯ A A♯ D

100 C Double harmonic major from III E F G G♯ B C C♯ F♯ A A♯ D D♯

101 C Double harmonic major from IV F G G♯ B C C♯ E F♯ A A♯ D D♯

102 B Double harmonic major from V F♯ G♯ B C C♯ E F G A A♯ D D♯

103 C Double harmonic major from V G G♯ B C C♯ E F A A♯ D D♯ F♯

104 C Double harmonic major from VI G♯ B C C♯ E F G A A♯ D D♯ F♯

105 C♯ Double harmonic major from VI A B C C♯ E F G A♯ D D♯ F♯ G♯

106 B Double harmonic major from VII A♯ C C♯ E F G G♯ B D D♯ F♯ A

107 C Double harmonic major from VII B C C♯ E F G G♯ D D♯ F♯ A A♯

DROIDmanual for blue-6 109 Table of contents at page 2

16 Reference of all circuits

This is a reference of all circuits that are supported byfirmware version blue-6of . The description of each circuit ismadeof twoparts: a general introductionwith someexamples
and a table of all input and output jacks that the circuit offers.

Just like real synth modules the input and output jacks of ’s circuits have different characteristics, which are denoted by one of seven symbols in the reference:

Jacks with the symbol work with continous CVs in the full voltage range from -10 V to +10 V.

� 1V
Oct This symbol denotes jacks that work on a precise “one volt per octave” base. Such outputs can be patched to the V/Oct inputs of VCOs. Inputs with this symbol expect pitch

information e.g. from sequencers or musical quantizers.

0 1 This jack has a range from 0.0 to 1.0. Input values greater than 1.0 are truncated to 1.0, values below zero are set to 0.0. This input can be seen as a fraction or percentage.
When you use fixed values you can write percentages, for example 55% instead of 0.55. Since potentiometers yield values in exactly that range you can directly assign one
to such a CV. If you control that CV with an external voltage, the range is 0 V … 10 V.

0.50 1 This jack is very similar to that of type 0 1 , but its neutral value is in themiddle position – at 0.5 or 50% or 5 V. An example is the jack distribution of the algoquencer
circuit: At themiddle position beats are distributed evenly in the bar. Left or right of the center the beats aremore oriented to the first or second half of the bar, respectively.
If you assign a pot, the center position of the pot is the neutral position.Values out of the range 0.0 … 1.0 are truncated into that range. Hint: The input notch of the pot
circuit at page 329 helps you exactly centering a pot at 0.5. The range for external voltages is 0 V ... 10 V.

1 2 3 This jack operateswith integer numbers such as 1, 2, 3 and so on. An example is the length input of the euklid circuit. For some jacks 0 can be allowed aswell. One example
is the inputoffset jack of the switch circuit. Any non-integer number will be rounded to the nearest integer. So a value of 0.6 will be interpreted as 1. Wiring an external
input directly to such a jack does not make much sense, since the range 0 V ... 10 V just maps to 0 ... 1. For a 2 you would need 20 V. So you need to add some scaling, for
example somejack = I1 * 10, which converts an external 2 V to the number 2.

This denotes a stepped voltage. This is one that only appears in discrete steps. An example of a stepped output CV is the pitch output of the sequencer circuit.

Jacks with this symbol just know 0 and 1 or on and off. These are things like a gate from an envelope, where the length of the input counts. Some circuits also have switch
inputs or settings of that type that enable features like “looping on”. Also all inputs that are meant to be wired to buttons like B1.1 are of that type, since buttons output
exactly such gate signals. Output jacks of that type always either send 0.0 (0 V) or 1.0 (10 V). Using G1 … G8 for these is also fine, but they output 5 V instead of 10 V.When
you you wire an external input to such a jack, it will see a 1 at a voltage of at least 1 V and and 0 otherwise.

These jacks are trigger inputs or outputs. A trigger input just is interested about points in time where the voltage changes from 0 to some positive value above roughly 1 V.
The duration of the time where the voltage is not zero is not interesting here. A typical use are clock or reset inputs. When the outputs a trigger, is it sends a signal
of 10 V for a duration of 10 ms. Using G1 … G8 from the G8 expander for these is just fine, but the output voltage will be 5 V in that case. For external input voltages use any
regular clock/trigger/gate signal from your system.

The column Default shows the value a parameter has if you don’t patch anything into it. Here the special symbol+ denotes a certain “intelligent” behaviour when this jack is not
used. Please read the description for details.

DROIDmanual for blue-6 110 Table of contents at page 2

Memory consumption

Nothing in the world is for free. And also using circuits has a price: memory. Every circuit you use need its share of RAM. Your has about 110.000 bytes of RAM free to be used
by circuits. Every circuit needs a certain amount of RAM – plus some extra bytes for every used parameter.

The following table shows the RAM usage of each of the circuits:

adc 56
algoquencer 880
arpeggio 144
bernoulli 32
burst 40
button 96
buttongroup 440
calibrator 224
case 88
chord 136
clocktool 96
compare 32
contour 112
copy 24
crossfader 40
cvlooper 17336
dac 56
delay 1672
detune 56
droid 72
encoder 184
encoderbank 736
encoquencer 1336
euklid 48
explin 32

faderbank 616
fadermatrix 640
firefacecontrol 1088
flipflop 40
fold 32
fourstatebutton 40
gatetool 56
ifequal 32
lfo 216
logic 56
math 64
matrixmixer 176
midifileplayer 6384
midiin 560
midiout 664
midithrough 240
minifonion 112
mixer 48
motoquencer 1168
motorfader 112
multicompare 56
noop 16
notchedpot 40
notebuttons 128
nudge 144

octave 32
once 24
outputcalibrator 40
polytool 240
pot 120
quantizer 48
queue 312
random 32
recorder 1712
sample 40
select 24
sequencer 168
sinfonionlink 56
slew 48
spring 56
superjust 64
switch 104
switchedpot 88
timing 56
togglebutton 48
transient 56
triggerdelay 248
unusedfaders 32

In addition each used input or output parameter need somememory, depending on its type:

• Normal inputs need 12 bytes.
• Trigger inputs need 16 bytes.
• Tap tempo inputs need 30 bytes.

DROIDmanual for blue-6 111 Table of contents at page 2

• Normal outputs need 4 bytes.
• Trigger outputs need 8 bytes.

In addition each internal patch cable and each unique constant (like 1.5 or -12) needs 8 bytes. Note: If you are using the Droid Forge for creating your patches, you don’t need to do
any computations yourself. The Forge will always show you the exact memory consumption of your patch.

DROIDmanual for blue-6 112 Table of contents at page 2

16.1 adc – AD Converter with 12 bits

This circuit converts an input value into
a binary representation of up to 12 bits.
Consider the following example:

[adc]
input = I1
bit1 = O1
bit2 = O2
bit3 = O3

In this example three bits are being used.
Three bits can represent a number from 0
to 7. These aremapped to the input range from 0 to 1 (or
0 V to 10 V) in the following way:

input bit1 bit2 bit3 bit value

−∞ ... 0.125 0 0 0 0

0.125 ... 0.250 0 0 1 1

0.250 ... 0.375 0 1 0 2

0.375 ... 0.500 0 1 1 3

0.500 ... 0.625 1 0 0 4

0.625 ... 0.750 1 0 1 5

0.750 ... 0.875 1 1 0 6

0.875 ... ∞ 1 1 1 7

Values lower than 0 are treated as 0. Values higher than
1 are treated as one.

In other words: this circuit will convert an analog input
value into three different gate outputs.

The expected range of the input value is from 0 to 1 per
default, but you can change that with the parameters
minimum and maximum. For example you could have just
the range of 0.1 to 0.5 mapped to the three bits:

[adc]
input = I1
minimum = 0.1 # 1V
maximum = 0.5 # 4V
bit1 = O1
bit2 = O2
bit3 = O3

Now the table looks like this:

input bit1 bit2 bit3 bit value

−∞ ... 0.15 0 0 0 0

0.15 ... 0.20 0 0 1 1

0.20 ... 0.25 0 1 0 2

0.25 ... 0.30 0 1 1 3

0.30 ... 0.35 1 0 0 4

0.35 ... 0.40 1 0 1 5

0.40 ... 0.45 1 1 0 6

0.45 ... ∞ 1 1 1 7

If you use more of the bit-outputs you get more resolu-
tion. For example if you use bit1 ... bit8, the total range
will be divided into 256 equal pieces. Since bit 1 is the
most significant bit, adding more and more bits will not
change the way bit 1 is behaving.

The applications of this circuit are various and often sur-
prising. For example using different LFO wave forms as
inputs (other than square) and you will get slower and
faster gate patterns.

Please also have a look at the dac (see page 177), which
does the exact opposite!

DROIDmanual for blue-6 113 Table of contents at page 2

Input Type Default Description

input (i) 0.0 Input signal to convert to binary representation.

minimum (m) 0.0 The lowest assumed input value. This value and all lower values will be converted to the bit sequence 000000000000.

maximum (x) 1.0 The highest assumed input value. This value and all higher valueswill be converted to the bit sequence 111111111111.

Output Type Description

bit1 ... bit12 (b) The 12 bit outputs. bit1 is theMSB – themost significant bit. The LSB (least significant bit) is the highest output that
you actually patch. If you do not need the full resolution of 12 bits, simply just use the first couple of outputs.

DROIDmanual for blue-6 114 Table of contents at page 2

16.2 algoquencer – Algorithmic sequencer

TheAlgoquencer is a versatile performance
sequencer, that implements a completely
new approach: It combines a classical trig-
ger sequencer with a turing machine and
other algorithms in order to create a very
hands on pattern generator for live improvisation. It’s
main tasks are:

• trigger sequencer for drum voices
• pitch sequencer
• melody generator
• generator of repeating random CVs

It can also be used as a simple random number generator
– may it be totally chaotic random numbers or self simi-
lar patterns like those generated by the so called “Turing
Machine”.

There are lots of interesting high-level parameters that
you can easily map to pots on your controllers – such as
Activity, Variation, Déjà-vu and many more. With a turn
of a knob you can instantly increase or decrease the den-
sity or complexity or your patterns in various ways.

Here are some of the features:

• Up to 16 step buttons
• change the pattern length on the fly
• manually editable accents for each step
• ratchets and drum rolls
• fills
• deterministic and chaotic randomization
• simple muting
• fractal sequencing

If you use the Algoquencer for drumming, each
algoquencer circuit plays just one voice – e.g. a snare
drum. For orchestrating a whole drum kit simply use

more Algoquencers with possibly different parameters.
It totally makes sense to use some of the pots and but-
tons with all drum instruments – e.g. a pot for Déjà-vu –
and others on a per-instrument base, like Activity.

Here are some examples of how to use the Algoquencer
circuit.

Pseudo random voltages / Turingmachine

Without any inputs other than clock the algorithmic se-
quencer creates a sequence of random numbers that re-
peat over and over every 16 steps. This is much like the
“TuringMachine”. The voltage range of the pitch output
defaults to 0 V ... 3 V:

[algoquencer]
clock = G1
pitch = O1

You can change the length to any other value up to 64 by
using the length parameter:

[algoquencer]
clock = G1
pitch = O1
length = 12

If youdonot like thedefault output voltage range you can
adjust that with the inputs pitchlow and pitchhigh:

[algoquencer]
clock = G1
pitchlow = 1V

pitchhigh = 4V
pitch = O1

dejavu controls the randomness – or to be more precise
how random values are picked. It has a default of 1.0.
This means that once a random decision has been made
for a certain stepof thepattern itwill be thatway for ever.
The same random pattern will repeat again and again.
Making dejavu smallerwill convert someof the decisions
to be random while others still repeat unchanged over
and over again.

You want to change the entire pattern? You can choose
another one by setting pattern to an arbitrary integer
number:

[algoquencer]
clock = G1
pitch = O1
length = 12
pattern = 5

Another way to change the pattern is to send a trigger to
nextpattern, for example with a button:

[algoquencer]
clock = G1
pitch = O1
length = 12
dejavu = 1
nextpattern = B1.1

Do you like slowly evolving patterns (which is a feature
from the “Turing Machine”)? The morphs parameter –
which is usually 0.0 – will introduce random changes to
the repeating pattern in a very controlled way:

DROIDmanual for blue-6 115 Table of contents at page 2

• Changes (aka morphs) are introduced each time
the pattern starts (again) – never in-between

• The exact number of changes is controlledwith the
morphs parameter and is not random.

• The steps where these changes happen and the
changes itself are random.

morphs takes a number between 0.0 and 1.0. At 0.0 no
morphs happen. At 1.0 every stepwill bemorphed – thus
completely changing the pattern every time it would re-
peat. Here is a table of howexactly the parameter affects
the number of morphs per 64 steps. It is done in a way
that is very suitable for mapping it directly to a pot and
gives a very fine resolution at the left half of the pot:

morphs morphs per 100 steps

0.0 nomorphs

0.1 1

0.2 4

0.3 9

0.4 16

0.5 25

0.6 36

0.7 49

0.8 64

0.9 81

1.0 100

As you can see the smallest number ofmorphs – if you set
morphs just a little above 0 – is one per 64 steps.

Note: If you are curious whether morphs are happening
you can wire the output morphled to some LED. It will

flash whenever morphs happen.

Dejavu ormorphs?

Did you get the difference between dejavu and morphs?
Here once again:

• dejavu controls, whether to use just complete
random values (dejavu = 0) or repeating pseudo-
random sequences (dejavu = 1).

• morphs comes into play, when dejavu is > 0 and
modifies the pseudo-random sequences from time
to time a bit so they won’t get boring.

True random voltages

If you do not want the random pitches to repeat you
can set the dejavu parameter to 0. This transforms the
algoquencer into a simple random number generator:

[algoquencer]
clock = G1
pitch = O1
dejavu = 0

It canbevery interesting tomapdejavu tooneof thepots
of your controllers. That way you can change on-the-fly
between structured melodies and complete randomness
– or anything between!

Using the Algoquencer as drum sequencer

This is how you setup the Algoquencer for use as a drum
sequencer. Like in the previous examples you need a
clock signal. Also using a reset input helps you to sync

your drums with some external stuff. A trigger here re-
sets the pattern to the first step:

[algoquencer]
clock = G1
reset = G2

A trigger into clockwill move to the next step of the pat-
tern. One into reset resets back to the first step.

Algoquencer supportsup to16buttons (aka stepbuttons)
for manually setting up a trigger pattern. If you assign
less than 16 buttons then your patterns will be shorter.
Youprobablywant toassign these tobuttonsof your con-
trollers, e.g.

button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4

In order for the LEDs in these buttons to work you also
need to assign the led... outputs:

led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

Please make sure that there is no “hole” in your defi-
nitions. You cannot use button8 if you not also use
button1 through button7.

Note: You can use Algoquencer even without step but-
tons. This is like having an empty pattern, but activity
will still work and create artifical beats if it is not zero.

Last but not least wire the output trigger to the trigger
input of some drum voice.

DROIDmanual for blue-6 116 Table of contents at page 2

trigger = O1

For a simple “normal” trigger sequencer this is enough.
I’d suggest you setup this small example first and once it
is up and running you investigate further features of Al-
goquencer. Here is the example once again complete for
usagewhile we assume that you have an P2B8 controller:

[p2b8]

[algoquencer]
clock = I1
reset = I2
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
trigger = O1

Accents

Algoquencer supports setting or not setting an accent for
each of the steps. For this there is a “second page” of
the buttons where you can edit these accents. In order
to access that accent page you need to wire the input
accentbutton to one of your buttons (e.g. B1.5). Also
wire the output accent to some external output jack and
patch that to the accent input of your drum voice:

accentbutton = B1.5
accent = O3

Now while you hold the accent button the step buttons
will switch over to showing the accents intead of the nor-
mal beats. And you can set and remove accents now.

Note: if you do not want to be forced to hold the button
while editing accents you can convert it into toggle but-
ton using the [button] circuit:

[button]
button = B1.5
led = L1.5
output = _ACCENTS

[algoquencer]
... the other stuff
accentbutton = _ACCENTS
accent = O3

Alternate steps

The Algoquencer just supports 16 steps, but there is a
greatway toextendyourpattern to32ormore steps. The
concept for this is a bit unusual, but all the more musical
and hands on. It goes like this:

There is an alternate page of another 16 buttons. These
are like a third layer of buttons (if youaccount theaccents
for the second layer). Just like with the accents you de-
fine a button for bringing up that layer, for example:

alternatebutton = B1.7

While you hold that button you edit the alternate page
instead of the normal steps.

Now: every active step in the alternate page will flip the
according step in the normal page for every second bar.

That way you can have a variation of the pattern every
second bar but you just edit the differences to the normal
pattern. So adding or removing one beat every second
bar can be done by activating exactly one step in the al-
ternate page.

You are not limited to a pattern of two bars. By setting
alternatebars to another value you can change the fre-
quency of the alternate bar:

alternatebutton = B1.7
alternatebars = 4

Nowbars 1 - 3 areplayednormally andevery forthbar the
alternate page is applied. That basically forms a pattern
of 64 steps.

Pattern length and bars

As you have at most 16 buttons one pattern can have a
length of at most 16 steps. The length of the pattern can
be set in various ways:

• If youwire at least one button1 then the length de-
faults to the number of wired buttons.

• This can be overridden by setting length to any
value (e.g. length = 7).

• If you use the lengthbutton then you can interac-
tively change the pattern length during your per-
formance. This will always override the length in-
put.

Add the button for changing the length is easy:

lengthbutton = B1.6

One bar usually has the same number of steps as your
pattern. But if you set repeats = 2, one bar will consist

DROIDmanual for blue-6 117 Table of contents at page 2

of two times the pattern (and thus lasts twice as long).
Bars are useful when you use fills or branches.

Playing fills

Fills are additional beats the Algoquencer adds at the end
of certain bars in order to play amusically interesting fill.
In order to use this first wire fills to some CV or most
likely to a pot:

fills = P1.1

Now if you crank up that pot clockwise then more and
more beats will be added – with a tendency to the end
of the bar. In music – however – playing a fill each bar is
not very interesting. By setting fillorder to 1, 2 or 3 (or
even a higher number) will make the fills assume a cycle
of 2, 4 or 8 or move bars. Please see below for details.

Activity and random

Four inputs are key features of Algoquencer, since they
extend it fromaplain old trigger sequencer to an algorith-
mic drummer. These are variation, activity, dejavu
and morphs. The latter two already have been discussed
whenusingAlgoquencer as randomgenerator. Theyhave
the same effect here.

The default value of variation is 0.0. That means that
Algoquencer will exactly play the pattern as you have di-
alled it in with your step buttons. If you increase that
value (a pot is handy for doing this, of course) then ran-
domly someof thebeatswillmove toother steps. Setting
various to 1.0 will completely alter your pattern. The
number of beats will stay the same!

activity will change exactly that: the number of trig-
gered beats in one bar. The default value is 0.5 – which
is the center position if assigned to a pot. Here the num-
ber of played beats is exactly the same as you have set in
your pattern. Turn it left to remove (randomly) some of
the beats. Turn it right to add some. At 0.0 no beats are
triggered, at 1.0 there is a beat for every clock cycle.

The activity also has an effect when you create ran-
dom voltages. Here the voltage only changes when a
“beat” happens at that step, even if you are not using the
trigger output.

Further nifty parameters

There are some more interesting parameters like rolls,
offbeats, distribution and branches. Please look at
the table of inputs for more details.

Presets

The algoquencer supports up to 16 presets. Each preset
comprises all settings that can be interactively changed,
i.e. the activated steps, accents, alternate steps, the
manually changed length, the state of the mute button
and also the current random seed (which was modified
by nextpattern, prevpattern or reroll).

There are three ways of switching between presets. The
first way is easy to implement. Simply send the number
of the current preset to the input preset. It has to be a
number from 0 to 15. You can for example use a pot if
you multiply it with 15:

[algoquencer]
preset = P1.1 * 15
...

Now any change you make will immediately be saved to
that current preset. If you change the preset number
by turning the pot, another preset will immediately be
loaded and activated.

The second – more sophisticated – way is to use triggers
for loading and saving. These could be buttons, e.g.:

[algoquencer]
preset = P1.1 * 15
loadpreset = B1.1
savepreset = B1.2
...

Now turning the knob does not load or save any preset.
The input preset is just evaluated when you press B1.1
or B1.2:

• A trigger to savepreset will save the current set-
tings into the preset that is selected with the
preset input.

• A trigger to loadpreset will copy the contents of
the preset selected by preset into the current set-
tings.

Note: In the second mode you effectively have 17 pre-
sets, since the ”current settings” could also be considered
to be a preset. The advantage of this mode is that play-
ing around with the settings of the algoquencer does not
immediately effect any of the presets.

Hint: In order to avoid saving or loading presets by mis-
take, have a look at the button (see page 141) circuit and
the longpress output. It sends a triggerwhen a button is
pressed and hold for a certain time.

The third way is a combination of the first two ways.
Here you work with triggers, as well. But these triggers
at the same time hold the number of the preset to load or
to save. Thismakes situations easierwhere you have one

DROIDmanual for blue-6 118 Table of contents at page 2

button per preset

[mixer]
input1 = B1.1 * 1
input2 = B1.2 * 2
input2 = B1.3 * 3
output = _LOAD_PRESET

[mixer]
input1 = B1.4 * 1
input2 = B1.5 * 2
input2 = B1.6 * 3
output = _SAVE_PRESET

[algoquencer]
loadpreset = _LOAD_PRESET
savepreset = _SAVE_PRESET

This means that if the trigger CV has the value 2 when it
is non-zero, it load preset number 2. This mode is auto-
matically active, if you don’t patch the preset input.

There is one drawback of this method: you cannot eas-
ily access preset number 0 that way, since the CV 0 is not
sufficient for triggering the input. The trick is sending a
value larger than 0.1 (which is the threshold for boolean
“true” values) and less than 0.5 (whichwould be rounded
to 1). So for example send a trigger with the value 0.3 to
load or save preset number 0.

Sharing buttons betweenmultiple algoquencers

The buttons on your controllers are a valuable ressources
and not to be wasted lightheartedly. And especially the
algoquencer uses quite a lot of buttons. But the good
news is: you can share most of these buttons with other
instances of algoquencer, to create a multi-track se-
quencer with just one set of buttons. You can even share
the buttons with completely other circuits.

The key to this is the select input. If you patch it, all
buttons and LEDs will just be used by this instance of
algoquencer as long as select gets a high gate signal.
Here is an example (which is just a sketch and not com-
plete):

[algoquencer]
select = _SELECT_1
button1 = B1.1
button2 = B1.2
...
led1 = L1.1
led2 = L1.2
...

[algoquencer]
select = _SELECT_2
button1 = B1.1
button2 = B1.2
...
led1 = L1.1
led2 = L1.2
...

Now you need to make sure that at any given time ei-
ther _SELECT_1 or _SELECT_2 is active. The easiest way
is with a buttongroup, because here you can add more
andmore tracks if you like. Let’s assume that for switch-
ingbetween tracks youuse thebuttonsB2.7 (track1) and
B2.8 (track 2). This would look like this:

[buttongroup]
button1 = B2.7 # select track 1
button2 = B2.8 # select track 2
led1 = L2.7
led2 = L2.8

[algoquencer]
select = L2.7 # becomes 1 if B2.7 is selected
button1 = B1.1
button2 = B1.2
...

led1 = L1.1
led2 = L1.2
...

[algoquencer]
select = L2.8 # becomes 1 if B2.8 is selected
button1 = B1.1
button2 = B1.2
...
led1 = L1.1
led2 = L1.2
...

Please note: the buttons mutebutton and unmutebutton
and their according LEDs are not handled by the select
jack. The idea is that they always get their own dedicated
buttons. This allows you to quickly mute or unmute sev-
eral tracks at once.

How the LEDs work at a reset

The LEDs in the buttons do not only show the enabled
steps, but also – with 50 % brightness – the current po-
sition of the step counter. The be precise, the LED al-
ways shows the step that has been playedmost recently.
If the counter highlights the first step, that step has al-
ready been played and the next clock tickwill trigger step
number two.

This is quite natural and seems easy to understand. Un-
less you think of what happens after a reset. If you send a
trigger to thereset input, the sequence is reset to its first
step. But of course you expect the next step to be played
to be the first step.

Thismeans that the first step cannot be the one indicated
by the step counter LED – because that always shows a
step that has been played already. For that reason, af-
ter a reset, the step LED is turned off until the next clock
cycle.

DROIDmanual for blue-6 119 Table of contents at page 2

Input Type Default Description

clock (c) Clock input. This is mandatory. For each clock pulse the sequencer is advanced by one step.

reset (r) Reset input. A trigger here switches back to step 1.

button1 ... button16 (b) 1st ... 16th step button. Assign these buttons to buttons on your controllers.

length (l) 1 2 3 + Sets the length of the pattern. Note: if you use lengthbutton, this input is ignored as soon as the length button
has been used for the first time. If you have assigned at least one button, the default value of length is the number
of buttons you have assigned. Otherwise it defaults to 16. The maximum length is 64. Any larger number will be
truncated to 64.

pattern (pt) 1 2 3 0 Selects a pattern of pseudo random values. If you set dejavu to 1, all “random” decision are deterministic and repeat
again and again. If you do not like these choices, you can choose a different pattern, just by setting this input to any
integer number you like. The default pattern is 0. If you patch a pot here, simplymultiply it by the number of different
patterns you want to select, e.g. pattern = P1.1 * 10. This will allow you to select one of the pattern 0, 1, ... 10.

You can use pattern in combinationwith nextpattern, prevpattern and reroll. These three inputs create an offset
to the chosen pattern. E.g. if you set pattern = 5 and send one trigger to nextpattern, the actually used pattern is
6.

nextpattern (np) Switches forward to the next pseudo random pattern.

prevpattern (pp) Switches back to the previous pseudo random pattern.

reroll (rr) Select one of the pseudo random patterns completely by random.

clearpage (cp) A trigger here unselects all step buttons in the currently active page (normal, alternate, accent).

pitchlow (pl) 0.0 This set a lower voltage boundary for the pitch output for notes that are randomized.

pitchhigh (ph) 0.3 This set an upper voltage boundary for the pitch output for notes that are randomized.

pitchresolution (pre) 1 2 3 0 If this is non-zero, it make the pitch output adopt that number of possible discrete values. E.g. if you set it to 2, only
the values set by pitchlow and pitchhigh are possible. A value of 3will allow an additional value in the middle, and
so on.

gatelength (gl) 0.1 The gate length in input clock cycles. A value of 0.5 (5 V) thusmeans half a clock cycle. A steady input clock is needed
for this to work. Please note that if the gate length is >= 1.0, two succeeding notes will get a steady gate, which
essentially means legato.

When playing rolls, i.e. more than one beat per step, the gate length is divided by the number of rolls. That way the
gates get shorter and even at a gatelength close to 1.0 the gates are still audible and do not merge together.

DROIDmanual for blue-6 120 Table of contents at page 2

Input Type Default Description

lengthbutton (lb) Map this to a button like B1.1. While you press and hold this button the sequencer switches to change length mode.
While in this mode a press of one of the step buttons will change the length of the pattern. Also while in this mode the
LEDs of the step buttons will show the current length. If you do not like to hold the button but switch it on and off,
you can create a toggle button with [button] and send its output here.

repeats (rp) 1 2 3 1 Usually one bar has the length of one pattern. Setting this to 2 will consider one bar as a run of two times through
the pattern. So if you have 8 buttons and bars = 2, one bar will be 16 steps, where the 1st and 9th step are set by
button1, 2nd and 10th by button2 and so on.

Why should that be useful? Well – the difference showsupwhenyouuse fills, or branchesorworkwith thealternate
pattern. These three algorithms work based on bars. And repeats = 2makes one bar have 16 steps, even if you just
have eight buttons.

alternaterepeats (arp) 1 2 3 + If you are use using repeats and alternatebars / alternatebutton at the same time, with this input you can specify
a different value for repeats when it comes to selecting the alternate button page.

Assume you have eight buttons and repeats = 2 and alternatebars = 2. Then Algoquencer will play two times
your 8-step pattern normally and two times alternated (since two times the 8 steps form one bar). This results in a
form of A A B B.

If you want your form rather to be A B A B, set alternaterepeats = 1. This way, when it comes to alteration, the
length of one bar is just normal length (8 steps here).

branches (bs) 1 2 3 0 Enables the branching feature (sometimes also called fractal sequencing. When branches = 1, then every second bar
will be using other random values – giving a sequence of the bars A B .

With branches = 2 you get a sequence of the form A B A C .

A value of 3 creates an even longer sequence that repeats itself after eight bars: A B A C A B A D .

Note: this only takes effect when you set dejavu> 0. The largest effect is when it is set to 1. And the you need to use
either variation or set activity to a value greater than 0.5. Because otherwise Algoquencer will strictly play the
gates that you’ve set with your buttons and then every bar will be the same, of course.

mutebutton (mb) Wire this to a button like B1.2. When you press the button once, all triggers aremuted. Pressing again unmutes them.
So this behaves like a toggle [button] in itself. You probably want to wire muteled to the LED in that button, e.g.
L1.2. It show themute state. Themute buttonworks together with the unmute button (see below). Note: even if you
use the select jack in order to overlay your buttons with several algoquencers, the mutebuttonwill always be active.
The idea is to always have direct access to this button.

DROIDmanual for blue-6 121 Table of contents at page 2

Input Type Default Description

unmutebutton (ub) A trigger to this jack resets themute button exactly at the beginning of the next bar. While waiting for that to happen,
the output unmuteled will blink. Wire this to the LED in the button. Note: even if you use the select jack in order
to overlay your buttons with several algoquencers, the mutebutton will always be active. The idea is to always have
direct access to this button.

accentbutton (ab) While this input is high you are in accent editing mode. This is very similar to the mode where you set the length. But
now for each step you edit whether this step is outputting an accent when triggered. You might want to use a toggle
button for this function, so you can operate without holding down the button all the time.

alternatebutton (alb) If this input is high, you are in alternate editingmode. EveryAlgoquencer has an alternate set of steps. Each step that is
currenty activated toggles the state of the normal step, but only for each even bar. This allows to introduce variations
of the pattern that occur every second bar.

alternatebars (aba) 1 2 3 2 With this input you can change the influenceof thealternatebutton. Per default thepattern alternation is done every
second bar. You can change this to any number you like with this input. Values less than 1will be considered as one –
which means that every bar is alternated.

accentlow (al) 0.0 This value is output at accentwhen a note without an accent is being triggered or when no note is triggered at all.

accenthigh (ah) 1.0 This value is output at accent while a note with an accent is triggered. The value will be kept for the full time of the
clock cycle.

activity (a) 0.50 1 + This is themost important parameter and youwill probablywire it to a pot like P1.1. The activity controls, how “busy”
the sequencer is playing, or in other words how often a step gets an active gate (und thus a changing output pitch).

Let’s first assume that variation is set to 0.0 (which is the default). Then at a value of 0.5 (or pot at 12’clock) Algo-
quencerwill exactly play that pattern that youhave setwith the step buttons. Turning the knobCCWwill removemore
andmore beats from the pattern until it is completely silent at a value of 0.0 (or pot fully CCW). But if you turn up the
knob above the middle position then more andmore additional beats will be placed into you pattern in a randomway
until – at 1.0 – a trigger will happen at every beat.

Note: If you do not use step buttons, this parameter behaves slightly different: A value of 0.5 thenmeans an activity
of 50%, which means that exactly the half of the steps will get an event. This is different from a situation where you
have defined buttons but all are deselected. In that case 0.5means that exactly the number of beats of your pattern
are being played, which is zero in that case.

DROIDmanual for blue-6 122 Table of contents at page 2

Input Type Default Description

variation (v) 0 1 0.0 The variation controls how strictly Algoquencer will stick to the pattern that you have set with your step buttons. You
probably want to wire this to a knob. A value of 0.0 (or the knob fully CCW) will allow no variations. Your pattern
will be played exactly as it is. If the activity goes beyond 0.5, additional beats will be placed, of course. And these are
random.

If you increase the variation, more andmore beats of your pattern are being replaced with other beats – while keeping
the total number of beats the same. If you set variation to 1.0 (or the pot fully CW) then your pattern is completely
ignored except for the actual number of beats it contains.

dejavu (d) 0 1 1.0 Thedejavuparameter controlswhat random shouldmean. Ifdejavu = 0.0, then all randomdecisions are completely
chaotic – and every time a decision is taken the dice are being rolled again.

At dejavu = 1.0 on the other hand – once a random decision has been taken for a certain step in a certain bar, it
will stay always the same from now on. This will lead to repeating exactly the pattern bars over and over again. We
sometimes call this random to be “deterministic”.

Any position in between will choose some of the steps as chaotic random and some of the steps as deterministic.

morphs (m) 0 1 0.0 This parameter will introduce changes in formerly taken random decisions from time to time. If you set it above zero,
at every start of a bar some of the deterministic random decisions will be remade. Setting morphs = 1will essentially
disable dejavu, since all decisions are redone every bar anyway then.

If you know the Turing Machine: In principle that has the same idea, but Algoquencer has a few improvements:

• The number of random changes is exactly controlled by the setting. At each specific setting of morphs the same
number of changes will be done at each bar.

• Changes only appear at the beginning of each bar. If you use branches, theywill appear whenever you sequence
is over.

• Small settings will introduce just one morph each 64th step.

offbeats (ob) 0.50 1 0.5 Whenever random beats are being placed then this setting controlls whether downbeats or offbeats should be pre-
ferred. At at setting of 0.5 there will be no difference. If you increase the value then more and more offbeats will
appear. Offbeats are steps with an even number, like 2, 4, 6 and so on. Value smaller than 0.5will prefer downbeats.

Offbeats sound more “complex” and downbeats more simple or “down to earth”.

distribution (di) 0.50 1 0.5 This is very similar to offbeats, but this time you decide whether beats should be placed rather in the first half of the
bar or in the second half.

DROIDmanual for blue-6 123 Table of contents at page 2

Input Type Default Description

fills (f) 0 1 0.0 When this parameter is set above 0.0, additional beats will be placed in order to make the beat more “active”. This
happens atmusically useful times controlled by fillorder (see below). The additional beats within the bar are placed
in away that prefers the end of the bar. If there are already toomany beats in the bar then the fill will remove or change
some instead.

fillorder (fo) 1 2 3 0 This integer number controls how fills are being placed:

0 every bar

1 every second bar

2 small fill in bar 2, big fill in bar 4

3 tiny fill in bar 2 and 6, medium fill in bar 4, big fill in bar 8

rolls (rl) 0 1 0.0 This parameter controls if drum rolls (or ratchets as you might call it) are being created. At 0.0 no rolls are being
created. At 1.0 every beat will be converted into a roll. Rolls always happen before the actual beat, they lead to it. If
you using this feature for snare rolls youmightwant to use the output rollvelocity for controlling the snare volume.

rollcount (rc) 1 2 3 1 Number of additional beats for playing the roll. Setting rollcount = 0 would disable rolls. All these beats are dis-
tributed in the clock tick before the beat the roll is leading to. The first beat of the roll is exactly one tick before that
beat – or more if you increase rollsteps.

rollsteps (rs) 1 2 3 1 Length of the roll in clock ticks (steps). The total number of additional beats is thus rollcount× rollsteps

rollstartvelo (rsv) 0.5 Rolls can be played with an increasing velocity. This first beat starts with the velocity set with this parameter. Then
every beat gets a bit louder until the last beat is played with velocity 1.0. The velocity for rolls is output at the jack
rollvelocity.

pitch1 ... pitch16 (p) + You can use these inputs, if youwant the pitches of the pitch output play a certainmelody. That way the Algoquencer
behaves like a normal melody sequencer – but all the algorithmic parameters will be applied. For example variation
will also be applied to these notes. Note: If length is larger than 16, these pitch inputs will be cycled through, so step
17 uses pitch1, step 18 uses pitch2 and so on.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

DROIDmanual for blue-6 124 Table of contents at page 2

Input Type Default Description

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

trigger (t) Here comes the trigger output. Patch this to the trigger input of your drum or synth voice.

gate (g) The gate output is alternative to the trigger and has a variable length. It is useful whenAlgoquencer is used for creating
melodies. Patch the gate input of an envelope or something similar here.

pitch (p) Outputs the (pseudo-)randomvoltage (unquantized) at each stepwith an active gate. This honors all the settings that
control the randomness and variation, like dejavu, variation, fills and branches.

accent (ac) Whenever a beat with an accent is being played, the value set by accenthigh is sent here, otherwise accentlow. If
you are wiring this to one of the jacks of the G8 expander then that will output just 0V and 5V of course.

led1 ... led16 (l) 1st ... 16th LEDs of the step buttons. Assign these to the LEDs in the step buttons.

barled1 ... barled4 (bl) Patch these output to some LEDs in order to show you the current bar in the sequence.

rollvelocity (rv) If you enable rolls, then the velocity of the roll beats will be output here. For normal beats this will always be 1.0.

startofbar (sb) At the beginning of every bar a trigger is output here.

muteled (ml) Wire this to the LED in your mute button. It will then be lit while the voice is muted.

unmuteled (ul) Wire this to the LED in your unmute button (if used). It will blink while the unmute is waiting for the start of the next
bar.

DROIDmanual for blue-6 125 Table of contents at page 2

Output Type Description

morphled (mol) This output will get a trigger every time a morph happens. It is intended to be wired to an LED.

fillsled (fl) This output will get a trigger every time a fill beat is being played. Wire this to some LED if you like.

branch (br) 1 2 3 This output will output the current branch number, e.g. 1, 2, 3 and so on. If you do not use branches then it is always
1.

lengthoutput (lo) 1 2 3 Outputs the currently selected length. This is useful if you are using the lengthbutton for interactively changing the
length of the pattern and want to share that setting with other circuits.

DROIDmanual for blue-6 126 Table of contents at page 2

16.3 arpeggio – Arpeggiator – pattern basedmelody generator

This circuit creates melodic patterns based
on simple rules and many interesting con-
figuration settings, which can lead to very
simple but also most complex patterns.

Introduction

In order to better understand, how the arpeggiator
works, let’s compare four different ways for constructing
melodies:

Sequencer manually composed melodies

Random generator completely chaotic sequences

Turing machine,
Algoquencer

pseudo-random melodies,
which repeat themselves

Arpeggiator melodies constructed from
rules

The rules for the arpeggiator can be as simple as on each
clock tick play the next note in the C minor scale. Addi-
tional parametes are for example the pitch range, i.e. the
start and the end note.

The arpeggiator shares root, scale and interval selection
with chord (see page 154) and minifonion (see page
279). If you own a Sinfonion: the arpeggiator in the
DROID is working a bit differently and ismore about gen-
eral principles than about preprogrammedpatterns. That
makes it more flexible and powerful.

The simplest possible example

As always, we start with the simplest possible example.
And it is simple, indeed, since each of the many parame-

ters has a useful default value. The only input the arpeg-
giator always needs is a clock input. The word “clock”
is probably a bit misleading since it doesn’t need to be a
steady clock signal. It can be any rhythmic pattern you
like. Each clock tick advances themelody to thenextnote
and a new pitch CVwill be presented at output, which is,
of course, in the typical 1V/oct scheme.

[arpeggio]
clock = I1
output = O1

PatchI1 to anexternal clock andO1 to the1V/oct of some
synth voice. The easiest way is to use the same clock also
for triggering the voice’s envelope.

Now you will hear a C major scale (lydian) being played
step by step in a range from 0 V to 2 V. This makes 15
notes, since the scale consists of the seven notes C, D, E,
F♯, G, A and B and is repeated over two octaves, but the
C is here three times: at the beginning, in the middle and
at the end:

��� ��� �
�� ����� � ��� � � ��� �

When it reaches the end it immediately starts over again.
So the second “bar” is really just 7 eights here!

Root, scale and interval selection

You probably don’t like lydian C major. Changing that is
easywith the inputs root and degree. Please have a look

at the minifonion circuit (see page 279) for an explana-
tion of these parameters. You find the complete table of
all 108 scales on page 107.

Let’s go for a Dminor (natural) scale as an example:

[arpeggio]
clock = I1
output = O1
root = 2
degree = 7

Nowwe get:

��� � �� �
�� ����� � ��� � � �� ��

Stop! At this point you probably will complain about the
fact that the arpeggio still begins with C and not with D!
But this is really the intended behaviour!

The understanding to this lies in the parameters pitch
and range. These parameters set the pitch range within
which the arpeggio travels. The default is to start at 0 V
(pitch = 0) and go two octaves up (range = 2V). But
0 V corresponds to a C!

In otherwords: specifying a D (root = 2) as the root just
selects the collection of notes to use – not where to start.

You still want to start at D? No problem, just start the
pitch range at D. This is done by using the pitch of D as
the lowest pitch. A D is two semitones above C, so we
need 2 × 1

12 V, which is 2/120 in DROID language. Let’s
also set the range to one octave (1V):

DROIDmanual for blue-6 127 Table of contents at page 2

[arpeggio]
clock = I1
output = O1
root = 2
degree = 7
pitch = 2/120
range = 1V

And voilà: here you get the Dminor scale arpeggiated:

��� ��� ���� � � �

Patterns

This “go through the scale” mode is just one of sev-
eral possible patterns. The pattern is selected with the
pattern input. And the default value of 0 produces the
resultwe just have seen. Let’s lookatpattern1. This goes
two steps forward and one step backward in the scale:

[arpeggio]
clock = I1
output = O1
root = 2
degree = 7
pitch = 2/120
range = 1V
pattern = 1

Since pattern 1 repeats its structure every three notes it’s
best to display it in a metric that is divisible by three:

������ �� �� ���� � � ��
pattern 1

� 86 ���

Pattern 2 is similar, but makes one double step forward
instead of two single steps:

������ �� � ��� �� ��
pattern 2

� � � � ��� �

Pattern 3 goes a double step forward, a double step back-
ward and a single step forward:

������ � �� � � ��� � ��
pattern 3

� 86 �� �
Pattern 4 is even more sophisticated. It goes a double
step forward, a single step forward, a double step back-
ward and again a single step forward:

����� ��� � ��� �� ��
pattern 4

� � � �����
Pattern 5 is a bit different since for each note it flips a coin
for deciding whether to go one step up or down.

And Pattern 6 simply randomly chooses one of the possi-
ble notes. So strictly spoken this has nothing to do with
“arpeggiation”, but it’s fun, so what?

Note: it’s not entirely impossible that future versions of
the arpeggiator introduce new patterns. So better do not
yet rely on these numbers to be fixed forever.

The range

Perdefault thepattern is played ina rangeof twooctaves.
But that can be set easilywith twoparameters. pitchde-
fines the lowest possible pitch of a note. The arpeggiator

will chose the start note such that it is in the scale and just
at or above this pitch.

And range defines the voltage range the pattern is being
played upwards until it starts again. So if range is 2 V,
you get a range of two octaves. A range of 0 will deform
the pattern into one single note.

For interactive playing,mapping pitch and range to pots
is fun:

[p2b8]

[arpeggio]
clock = I1
output = O1
pitch = P1.1
range = P1.2

Changing the playing direction

So far all patternwheregoingmoreor less upwards. From
lower notes to higher notes. This can be changed by set-
ting direction to 1. Now the arpeggiator starts with the
highest allowed note and reverses the pattern for going
downwards. Why not map this setting to a nice toggle
button?

[p2b8]

[button]
button = B1.1
led = L1.1
output = _DIRECTION

[arpeggio]
clock = I1
output = O1

DROIDmanual for blue-6 128 Table of contents at page 2

pitch = P1.1
range = P1.2
direction = _DIRECTION

Another setting that influences the direction is the
pingpong parameter. This is a binary (gate) input, too.
If it is set to 1 the direction of the pattern changes into
the opposite once the end of the range has been reached.
Check this example...

[arpeggio]
clock = I1
output = O1
pingpong = 1
pitch = 0
range = 7/120

... will create the following melody:

������ ���� � � �
Why is that? Well – 7

120 is the same as 7×
1
12V , which is

7 semitones, which is in turn one fifth. Since no root and
degreearedefinedwearebackatCmajor lydian. Thepat-
tern is 0 (default) – hence the simple note-by-note scale.
And pingpong = 1makes the pattern going down again
after having reached the upper limit.

Octaves up and down

The nice thing about all these parameter is that you can
combine them all. They interact with each other and
most combinationsdouseful things (well,whenusing the
“random” pattern, the direction and pingpong are with-
out effect, of course). And there is one more fun setting:
octaves. This can be 0 (default) or 1 or 2.

When octaves is 1, each note is directly followed by the
same note one octave above. That octave note is ignor-
ing the range-parameter. It is always in addition to the
selected range. Here is an example:

[arpeggio]
clock = I1
output = O1
range = 1V
octaves = 1

And here is the pattern this creates:

��� �� � �
��� �� ��

octaves = 1

� � � �� �
� �

Set octaves = 2 and you get the same but the octaves
go down instead:

��� ��
� � ���

�
�
��

octaves = 2� �
�

�� �� �

Dropping

The drop input lets you select different schemes of leav-
ing out notes from the original line of scale notes. For ex-
ample drop = 1will leave out every second note. Here is
an example:

[arpeggio]
clock = I1
output = O1
drop = 1

This will create the following melody:

����� �
�� � � � �

If you have a closer look, you will see that in the upper
octave other notes are being played than in the lower oc-
tave. This can sound very interesting!

Droppingcan, of course, be combinedwithotherpatterns
as well. Let’s see the line for pattern 1:

[arpeggio]
clock = I1
output = O1
drop = 1
pattern = 1

����� � �� � � ��
� � ��� 86 ���

There are more dropping-schemes. Please have a look
into the table of input parameters down below.

Note selection

The most important thing comes last. For didactical rea-
sons! What really makes this arpeggiator so musically
versatile is its interval selection. This is the same as for
the minifonion (see page 279) and the chord generator
(page 154).

The point is that you are not restricted to the seven
notes of a scale. For this there are seven inputs select1,
select3, ... select13 that select the notes of the
current scale and another five inputs selectfill1 ...
selectfill5 that select the notes not in the current

DROIDmanual for blue-6 129 Table of contents at page 2

scale. These 12 inputs are binary inputs that expect ei-
ther 0 or one 1. Each of them selects one of the seven
intervals of the scale for being part of the chord. Here is
a table of all these inputs and the notes theywould select
in a C major or C minor scale:

Input interval step Cmaj Cmin

select1 root I C C

select3 3rd III E E♭

select5 5th V G G

select7 7th VII B B♭

select9 9th = 2nd II D D

select11 11th = 4th IV F F

select13 13th = 6th VI A A♭

Let’s make a simple example: The arpeggio of a C major
triad over two octaves going up and down again:

[arpeggio]
clock = I1
output = O1
select1 = 1
select3 = 1
select5 = 1
pingpong = 1

And here is the result:

��� ��
��

�
� �86� �

�� �

One typical way to select these notes is with seven tog-
gle buttons. Much like the Sinfonion. Assign the output
of each of the seven buttons to one of these functions:

[p2b8]

[button]
button = B1.1
led = L1.1

[button]
button = B1.2
led = L1.2

[button]
button = B1.3
led = L1.3

[button]
button = B1.4
led = L1.4

[button]
button = B1.5
led = L1.5

[button]
button = B1.6
led = L1.6

[button]
button = B1.7
led = L1.7

[arpeggio]
clock = I1
select1 = L1.1
select3 = L1.2
select5 = L1.3
select7 = L1.4
select9 = L1.5
select11 = L1.6
select13 = L1.7
output = O1

Now you can switch on and off scale notes for being part
of the patterns. Have fun!

DROIDmanual for blue-6 130 Table of contents at page 2

Input Type Default Description

pitch (p) � 1V
Oct 0V Sets the base pitch of the arpeggio. The first note of the patternwill be the nearest selected note just above that pitch.

range (ra) � 1V
Oct 2V Selects the range between the lowest and highest note of the arpeggio. A range of 0means that there is just one single

note possible and the arpeggio will stick to that note. A value of 1 V (or 0.1) means that the arpeggio will run over one
octave. The maximum allowed range is 0.8 (8 octaves). Higher values will be capped to that.

clock (c) This input is vital: each trigger heremake the arpeggiomove forward by one step and adapt the pitch output. Without
a clock the arpeggio will do nothing but stick to the same note all the time.

reset (r) Resets the arpeggio to the first step of the current pattern.

pattern (pt) 1 2 3 0 Selects one of a list of arpeggio pattern. The following patterns are available:

0 step forward through the allowed notes →

1 two steps forward, one step backward →→←

2 double step forward, one step backward ⇒←

3 double step forward, double step backward, single step forward ⇒⇐→

4 double step forward, single step forward, double step backward, single step forward ⇒→⇐→

5 random single step forward or backward ↔

6 random jump to any allowed (other) note ⇕

direction (d) 0 Sets the general direction in which the pattern moves. 0means upwards and 1means downwards.

pingpong (pp) 0 If set to 1, the pattern will reverse its direction once it has reached the end of the range. Otherwise it restarts from the
beginning. So enabling pingpong is a bit like a triangle wave, whereas otherwise it’s more like a sawtooth.

butterfly (by) 0 If set to 1, every second note in the range of selected notes will be mirrored. So for example you have selected the
notes 1 - 10, the new order will be 1, 10, 2, 9, 3, 8, 4, 7, 5, 6

drop (dr) 1 2 3 0 Selects a scheme of skipping some of the allowed scale notes. Four different values are allowed:

0 Do not skip any notes Ê Ë Ì Í Î Ï

1 Skip every second selected note Ê Á Ì Ã Î Å

2 Skip every third selected note Ê Ë Â Í Î Å

3 Skip the 2nd and 3rd note of each group of three Ê Á Â Í Ä Å

DROIDmanual for blue-6 131 Table of contents at page 2

Input Type Default Description

octaves (oc) 0 When this is set to 1 or 2, each notewill be followed by the samenote one octave up (for 1) or down (for 2) respectively.
These additional octave notes are in addition to the selected range.

0 Don’t play octaves

1 Each note is followed by the same note one octave up

2 Each note is followed by the same note one octave down

startnote (sn) 1 2 3 0 When startnote is set to non-zero, it will force the pattern to begin with a certain scale note regardless of the current
note selection. 1 will select the first note of the scale (root), 2 the second and so on until 7, which selects the 7th as
start note.

Using startnote effectively reduces the range of notes. Instead of the the full range of pitch … pitch + range a
reduced range is played, since some of the lower notes are skipped, if the direction is upwards, and some of the upper
notes, if the direction is downwards.

The start note is used in all situations where the pattern is reset to its beginning. This is after an external reset or if the
pattern has reached the end of the range. Note: If you have set pingpong = 1, the pattern is never reset by itself, so
startnote is just used after an external reset, here.

Don’t mess up the start note with the lowest note in the arpeggio. If want to control the lowest note, used pitch
instead of startnote. Sometimes this has a similar effect, but not always.

autoreset (ar) 1 2 3 0 When autoreset a non-zero number, the arpeggio melody will be reset to the start after that number of clock ticks.
For example if you set autoreset = 5, and the pattern would play 7 notes until it loops back to its start, after the 5th

step a restart is forced. That’s also true if the pattern is shorter. If autoreset = 5 and the melody already loops after
3 steps, it is played once in full (3 steps) and once just the first 2 steps, since then the auto reset happens.

A trigger to resetmakes autoreset set it’s internal counter to 0.

Autoreset gives you direct control over the rhythmic feel that your arpeggio melodies have.

DROIDmanual for blue-6 132 Table of contents at page 2

Input Type Default Description

root (ro) 1 2 3 0 Set the root note here. 0means C, 1meansC♯, 2meansD and so on. If youmultiply the value of an input like I1with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0 C

1 C♯

2 D

3 D♯

4 E

5 F

6 F♯

7 G

8 G♯

9 A

10 A♯

11 B

12 C

DROIDmanual for blue-6 133 Table of contents at page 2

Input Type Default Description

degree (dg) 1 2 3 0 Set the musical scale. This is a number from 0 to 107. Below are the first 12 andmost important scales. You find a list
of all 108 scales on page 107.

0 lyd – Lydian major scale (it has a ♯4)

1 maj – Normal major scale (ionian)

2 X7 – Mixolydian (dominant seven chords)

3 sus – mixolydian with 3rd/4th swapped

4 alt – Altered scale

5 hm5 – Harmonic minor scale from the 5th

6 dor – Dorian minor (minor with ♯13)

7 min – Natural minor (aeolian)

8 hm – Harmonic minor (♭6 but ♯7)

9 phr – Phrygian minor scale (with ♭9)

10 dim – Diminished scale (whole/half tone)

11 aug – Augmented scale (just whole tones)

Note: Alltogether there are 108 scales. Please see page 107 for a complete list

select1 (s1) + Gate input for selecting the root note as being an allowed interval. When youwant to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. select1 ...
select13will be set to one.

select3 (s3) + Gate input for selecting the 3rd.

select5 (s5) + Gate input for selecting the 5th.

select7 (s7) + Gate input for selecting the 7th.

select9 (s9) + Gate input for selecting the 9th (which is the same as the 2nd).

select11 (s11) + Gate input for selecting the 11th (which is the same as the 4th).

select13 (s13) + Gate input for selecting the 13th (which is the same as the 6th).

DROIDmanual for blue-6 134 Table of contents at page 2

Input Type Default Description

selectfill1 (sf1) off Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 (sf2) off Selects the alternative 3rd (i.e. the 3rd that is not in the scale).

selectfill3 (sf3) off Selects the alternative 4th or 5th. In most cases this is the diminished 5th.

selectfill4 (sf4) off Selects the alternative 13th (i.e. the 13th that is not in the scale).

selectfill5 (sf5) off Selects the alternative 7th (i.e. the 7th that is not in the scale).

DROIDmanual for blue-6 135 Table of contents at page 2

Input Type Default Description

harmonicshift (has) 1 2 3 0 This input can reduce harmonic complexity by disabling some of the scale or non-scale notes. It is an idea first found
in the Sinfonion and also provided by the circuit sinfonionlink (see page 353).

harmonicshift is staged after the select... inputs and further filters out (disables) notes based on their relation to
the current scale. This means that first the 12 select... inputs select a subset of the 12 possible notes. After that
harmonicshift can reduce this set further (it will never add notes).

If harmonicshift is not zero, depending on its value some or more of the scale notes are disabled, even if they would
be allowed by select.... Or in other words: the harmonic material is reduced.

You also can use negative values. These create rather strange sounds by removing the simple chord functions instead
of the complex ones first.

Here are the possible values:

0 off – all selected notes are allowed

1 disable all fill notes (non-scale notes)

2 disable fills and 11th

3 disable fills, 11thand 13th

4 disable fills, 11th, 13thand 9th

5 disable fills, 11th, 13th, 9th and 7th

6 disable fills, 11th, 13th, 9th, 7th and 3rd

7 disable fills, 11th, 13th, 9th, 7th, 3rd and 5th

-1 disable the root note

-2 disable the root note and the 5th

-3 disable root, 3rd, 5th

-4 disable root, 3rd, 5th, 7th

-5 disable root, 3rd, 5th, 7th, 9th

-6 disable root, 3rd, 5th, 7th, 9th and 13th

-7 disable all scale notes (fill notes untouched)

DROIDmanual for blue-6 136 Table of contents at page 2

Input Type Default Description

noteshift (nos) 1 2 3 0 Shifts the resulting output note(s) by this number of scale notes up or down (if negative). So the output note still is
part of the scale butmay be a note that is none of the selected ones. Themaximum shift range is limited to -24 … +24.

selectnoteshift (sns) 1 2 3 0 Shifts the output note by this number of selected scale notes up or down (if negative). If you use noteshift at the
same time, first selectnoteshift is applied, then noteshift. The maximum shift range is limited to -24 … +24.

tuningmode (tm) off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch (tp) � 1V
Oct 0V This pitch CV will be output while the tuning mode is active.

transpose (tr) � 1V
Oct 0V This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or

adding a vibrato.

Output Type Description

output (o) � 1V
Oct This is what it’s all about: here comes the pitch CV for the current arpeggio note.

DROIDmanual for blue-6 137 Table of contents at page 2

16.4 bernoulli – Random gate distributor

This circuit implements a “bernoulli
gate”. For each gate or trigger received
at input there is made a random deci-
sion of whether to forward that gate to
output1 or output2. The probability for
each of the outputs can be shifted with the parameter
distribution. It determines the probability of a gate
signal to go to output1.

Example:

[bernoulli]
input = G1
distribution = P1.1
output1 = G2
output2 = G4

Note: each time a positive trigger edge is seen at input
a new random decision is made for which output to use.
From now on that chosen output gets an exact copy of
the input signal – even if it is not a simple trigger signal
but somethingmore complex like an envelope. The other
output will send 0 V.

Input Type Default Description

input (i) 0 Send gate or trigger signals here.

distribution (di) 0.50 1 0.5 This controls the probability of a gate to be forwarded to output1. A value of 0.5means 50%.

Output Type Description

output1 (o1) Gates from input are forwarded here if the random decision was in favour of output 1.

output2 (o2) Gates from input are forwarded here if the random decision was in favour of output 2.

DROIDmanual for blue-6 138 Table of contents at page 2

16.5 burst – Generate burst of pulses

This circuit produces – when triggered – a
number of pulses. It canbeused for solving
various musical or technical tasks. Look at
this example:

[burst]
trigger = I1
hz = 10
count = 5
output = O1

When a trigger arrives at I1, the output O1
will send five triggers in a row, with a distance of 0.1 sec-
onds (thus 10 Hz). The gate length is fixed to half of the
cycle (thus here 0.05 seconds). Thismeans that the pulse
width is 50% – or in other words – the faster the burst the
shorter the outgoing triggers.

Note: When a new trigger arrives while the current burst
is still ongoing, it will not be finished but restarted from
the beginning immediately.

If you want the bursts to be synchronized to a musical
clock, you can use the taptempo input (here I2):

[burst]
taptempo = I2
count = 4
trigger = I1
output = O1

Similar to the circuitlfo (seepage239), there is a third in-
put for selecting the speed: rate. Thisworks on a1V/Oct
base, so here is an example for outputting the bursts at
half of the clock speed (-1 V pitches down one octave,
which is the same as half of the speed):

[burst]
taptempo = I2
rate = -1V
count = 4
trigger = I1
output = O1

burst can also be used for very fast switching through
things like presets in external gear. Here you might want
fast updates. Simply set a very high frequency. Burst
makes sure that the actual output rate is limited to the
maximum the DROID hardware can do, so not one single
burst can get lost. Also you might want to use the skip
input, which skips a certain number of ticks before start-
ing. This canbeused to sendout a reset signal to some in-
put and after that sending a couple of skip forward trig-
gers to some other input:

[burst]
hz = 5000
skip = 5
count = 3
trigger = I1
output = O1

Another very simple yet useful application of burst is
converting a gate signal into a short trigger. Thatwayyou
can for example convert a running state fromMIDI into a
reset trigger. Since count defaults to 1, you don’t need
any parameters except the input and output:

[burst]
trigger = _MIDI_RUNNING
output = _RESET

In this example the trigger is emitted when the running
state goes from 0 to 1.

Simple clocked trigger delay

Another application of burst is a clocked trigger delay.
Consider the following patch:

[burst]
taptempo = I1
trigger = I2
skip = 7
output = O1

A trigger at I2will be delayed by 7 clock cycles.

Note: This simple trigger delay has no memory of more
than one trigger. Any ongoing trigger currently being de-
layed is overridden and forgotten as soon as the next trig-
ger arrives. If that is what youwant, fine. If you are look-
ing for a more complex trigger delay, you find one in the
circuit triggerdelay (see page 371) circuit.

DROIDmanual for blue-6 139 Table of contents at page 2

Input Type Default Description

rate (ra) 0.0 Frequency control: The default frequency of the burst rate is 1 Hz (one trigger per second or 60 BPM if you like). Each
volt doubles the frequency. So an input of 1 V (a number of 0.1) speeds up to two triggers per second (120 BPM), 2 V
(0.2) creates triggers at 4 Hz (240 BPM) and so on. On the other hand negative voltages reduce the speed, so -1 V
(-0.1) will give 0.5 Hz (30 BPM) and so on.

taptempo (tt) Feed a reference clock here and the burstwill run at the speed of that clock – albeit optionallymodified by rate. Please
see page 23 for details on using taptempo inputs.

hz () 1.0 Set the frequency in Hz directly by setting a number here. This is exclusive to taptempo, but will work in combination
with rate.

trigger (t) Send a trigger here in order to start the bursts

reset (r) Send a trigger here to immediately stop any ongoing burst.

count (c) 1 2 3 1 Number of triggers to send in one burst.

skip (s) 1 2 3 0 Number of time slots to wait before starting with the burst.

Output Type Description

output (o) The triggers are output here.

DROIDmanual for blue-6 140 Table of contents at page 2

16.6 button – Does all sorts of useful things with buttons

This is a utility circuit for efficiently work-
ing with the buttons of your controllers.
It can implement toggle buttons (that do
on/off) or even have three or four states.
It can detect long presses and double clicks
and also helps you to overload one button with several
switchable functions. Note: If you just need a plain mo-
mentary button without any of these or other nifty fea-
tures, you can use the register B1.1, B1.2, etc. directly
and do not need this circuit.

Note: don’t forget to declare your controllers at the top
of your patch with lines like [p2b8] or [b32]. In the be-
low examples I’ve omitted these declarations for sake of
simplicity.

This circuit is designed to build user interfaces. It is exe-
cuted at a lower speed. Don’t use it for other purposes.

Toggle buttons

Themost commonuseofbutton is to implement a toggle
button. That’s a button that changes from on to off and
back at each press of the button. The current state of the
button will persist on your SD card so you don’t lose your
state if you switch off your rack.

Typically you will wire the button input to one of your
controller’s buttons like B1.1 and led to the LED in that
button (L1.1). LED will then always visualise the current
state of the button. As a side effect the LED register L1.1
will store the button state as a value 0 or 1 and hence can
be used by some other circuit as an input.

Here is a typical example. The button is being used for
enabling the loop in a CV looper:

[button]
button = B1.4
led = L1.4

[cvlooper]
loop = L1.4

If you do not want the state of the button to be persisted
on the SD card, use dontsave = 1. This make sense for
the CV looper since the loop is apparently empty anyway
when your starts.

[button]
button = B1.4
led = L1.4
dontsave = 1

[cvlooper]
loop = L1.4

Usually the button switches between the two values 0
and 1. Sometimes, however, you need different values.
For this purpose there are the two inputs offvalue and
onvalue. They set twoalternativevalues for the ”off” and
”on” states. And the output output outputs the selected
value (led still goes to 0 and 1). Here is an example for
a toggle button that switches a clock divider between 2
and 4:

[button]
button = B1.4
led = L1.4
offvalue = 2
onvalue = 4
output = _CLOCK_DIV

[clocktool]
input = G1 # external clock
output = G2
divide = _CLOCK_DIV

Of course offvalue and onvalue are CV controllable.
How can this make sense? Well – as they can take vari-
able inputs you canuse a button for directly switching be-
tween two different input CV signals. The following ex-
ample will use a button to switch between two different
wave forms of an LFO (see page 239). The button B3.1
switches between sawtooth and sine and sends the result
to O1.

[lfo]
hz = 2
sawtooth = _SAWTOOTH
sine = _SINE

[button]
button = B3.1
led = L3.1
offvalue = _SAWTOOTH
onvalue = _SINE
output = O1

Buttons with three or four states

Sometime you might want more than just two values.
button supports switching between up to four values.
Use the states input and set it to 3 or 4. In the following
examples outputwill go through the values 0, 1, 2 and 3:

[button]
button = B1.1

DROIDmanual for blue-6 141 Table of contents at page 2

led = L1.1
states = 4
output = _SOMETHING

If you don’t like the default values, use the inputs value1
through value4 for setting the four values. In fact
offvalue is the same as value1 and onvalue as value2.
If you specify value3 or value3, states is automatically
set accordingly and you can simply omit it .The following
example switches between four different wave forms of
an LFO:

[lfo]
hz = 2
sawtooth = _SAWTOOTH
sine = _SINE
square = _SQUARE
triangle = _TRIANGLE

[button]
button = B3.1
led = L3.1
value1 = _SAWTOOTH
value2 = _SINE
value3 = _SQUARE
value4 = _TRIANGLE
output = O1

If you have three or four states, the LEDwill use different
brightness levels for indicating the current state.

Momentary buttons

If you just need amomentary button (one that just lights
upwhile youhold it down), strictly spokenyoudon’t need
a button circuit. You can directly use the B register, like
in this example:

[algoquencer]
nextpattern = B1.1

Sometimes, however, youmaywant tomakeuseof some
of the features of the button circuit without creating a
toggle button. This is easily done by setting states = 1:

[button]
states = 1
button = B1.1
led = L1.1

[algoquencer]
nextpattern = L1.1

Now you are ready for adding some fun stuff like over-
laying one button with multiple functions (see below) or
using the longpress output.

Long and short presses

When creating patches, you will constantly run out of
buttons. One way to increase the effective number of
buttons is to map two different actions on a button de-
pending on wether it is pressed long or short. For this
purpose there is the longpress output. Consider the fol-
lowing example:

[button]
button = B1.1
led = L1.1
output = _SOME_STATE
longpress = _LONG

A button press with a duration below 1.5 secs will toggle
the LED L1.1 as usual. If you hold the button longer than

1.5 seconds, the output longpresswill get high until you
release the button. And the state of L1.1 does not tog-
gle.

If you don’t want the button to toggle any state, but just
distinguish between long and short presses, you can use
the shortpress output:

[button]
button = B1.1
longpress = _LONG
shortpress = _SHORT

Note: The output led is not usedhere sinceweare just in-
terested in the presses and you cannot really see the LED
anywaywhile you finger is on the button. If youwant the
LED anyway, set states = 1 so it won’t toggle:

[button]
button = B1.1
led = L1.1
states = 1
longpress = _LONG
shortpress = _SHORT

Using output does not do the same as shortpress: it al-
ways is high as long as your finger is on the button (and
the button is selected).

Sharing buttons

You can never have too many buttons! It’s more likely
that you have too few. So you want to overlay one or
more buttons with multiple functions.

They key to this is the select input of the button circuit.
If you patch this, the circuit will only interact with the ac-
tual button and LED if select is active (e.g. set to 1).

DROIDmanual for blue-6 142 Table of contents at page 2

Otherwise it will continue to output its current value to
output and leave the control of the button and the LED
to some other circuit.

The following example uses the button B1.1, (which is
not overloaded!) for switching between two ”layers” or
”banks” of buttons. And in each bank the button has a
differentmeaning. Note how I use the negated output of
the button. That is 0 if the normal output is 1 and vice
versa.

In order to keep things short, the bank just consists of the
single button B1.2. Of course in practice this wouldn’t
make sense since you wouldn’t actually save a button,
but you get the idea...

[button]
button = B1.1
led = L1.1
output = _BANK1
negated = _BANK2

[button]
select = _BANK1
button = B3.1
led = L3.1
output = _VIRTUAL_BUTTON_1

[button]
select = _BANK2
button = B3.1
led = L3.1
output = _VIRTUAL_BUTTON_2

Note: If you needmore than two banks, consider switch-
ing with a buttongroup (see page 146).

Buttons as logic gates

Here is an important caveat for all you hardcore hackers
out there: Thebutton circuit is designed to interfacewith
real buttons that real users press. You canmisuse a but-
ton as a kind of logic gate, for example for inverting a sig-
nal or even build a super fast oscillator.

Don’t do this. Have a look at flipflop (see page 231)
instead.

Why? In order to optimize the execution speed of your
patch, several user interface circuits are executed at just
12.5% of the normal speed. This saves valuable time for
the execution of more time critical circuits. So instead of
checking buttons at sub-millisecond intervals, your mas-
ter rather spends its time in executing your sequencers
with a timing as precise as possible.

This means, that button, buttongroup, pot and similar
circuits are executed just every 8th loop cycle.

If you experience any trouble with this “UI slowdown”,
you can disable it by using a droid (see page 183) circuit:

[droid]
uislowdown = 0

DROIDmanual for blue-6 143 Table of contents at page 2

Input Type Default Description

button (b) The actual push button. Usually you want to wire this to B1.1, B1.2 and so on: to one of the push buttons of your
controllers. Each time that input goes from low to high, the state of the push button will toggle.

onvalue (ov) 1.0 Value sent to outputwhen the push button is on. You can also use a dynamic signal here. This is an alternative name
for the input value1.

offvalue (fv) 0.0 Value sent to outputwhen the push button is off. This is an alternative name for the input value2.

value1 ... value4 (v) The up to four values to output at outputwhen the button is on the according state. value1 is the same as offvalue
and value2 is the same as onvalue. The default values of these four inputs are 0, 1, 2 and 3, so inmany cases you don’t
need to specify them.

doubleclickmode (dm) off This input can enable a double clickmodewhen set to 1. In thatmode the button only toggles it’s constant state if you
double press it in a short time. Otherwise it behaves like a momentary button, that inverts the persisted state (which
you toggle with the double click). Note: The double clock mode is only makes sense if the number of states is 2.

longpresstime (lt) 1.5 The number of seconds after which a button press is considered as a long press.

states (st) 1 2 3 2 Number of states this button can have. The default value is 2, which creates a toggle button which changes between
on and off at each press. A value of 1 creates a momentary button. Note: If you just need a plain momentary button,
you can directly use B1.1, B1.2 and so on. You don’t need an extra circuit. But if youwant things like overloading (with
select) or the longpress output, this does make sense. Themaximum number of states is 4. When the button has 3
or 4 states, every press will switch to the next state and then back to the first state again.

startvalue (sv) 1 2 3 0 State of the push button when you switch on your system or on a trigger to clear. If you have three states, the start
value needs to be 0, 1 or 2. With four states, it can also be 3.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

DROIDmanual for blue-6 144 Table of contents at page 2

Input Type Default Description

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

led (l) When the button state is on, a value of 1.0 will be sent to that output – regardless of the values in onvalue and
offvalue. If the number of states is 3 or 4 the output get’s intermediate values so the attached LED will be dimmed
into different brightness levels. Usually you wire that output to a LED register, e.g. to L1.1, L1.2 and so on.

output (o) Thisoutputwill output thecurrentbuttonstates. This is usually0 foroff and1 foron. Ifstates is 3or4, thevalues2or3
are output for the additional states. You canmodify all four valueswith the inputsoffvalue/value1, onvalue/value2,
value3andvalue4. Note: if youhaven’t changedanyof these inputs andstates is unchangedor 1or 2, theledoutput
will output the same values.

inverted (iv) The same as output, but sends onvaluewhen the button is off and offvaluewhen the button is on. If states is 3 or
4, the order of the four output values will be mirrored (probably a feature that is rarely of any use).

negated (n) Similar to inverted, but always sends 1when the button is off and 0when the button is on – independent of the values
of onvalue and offvalue. When states is 3 or 4, this outputwill be 1 if the button is off and 0 in the other three states.

longpress (lop) Goes from 0 to 1, when the button is pressed and hold for at least 1.5 seconds. If this output is used, the effect of tog-
gling the button’s state is delayed until the button is released. When it’s released after 1.5 secs, no toggling happens.
This will avoid double actions for long presses.

shortpress (shp) Emits a trigger, when the button is pressed, regardless of the settings of states. If at the same time longpress is used
(which is the whole point in this output), the trigger is delayed until the button is released and only sent, if it was not
a long press.

DROIDmanual for blue-6 145 Table of contents at page 2

16.7 buttongroup – Connected buttons

This utility circuit combines a number of
push buttons into a group that behave as
a unit. One classic operation is to form a
group of “radio buttons”. This means that
at any time just one of these buttons is on
and all others are off.

This circuit is designed to build user interfaces. It is exe-
cuted at a lower speed. Don’t use it for other purposes.

The following example uses four buttons for selecting
one of the voltages 0 V, 1V, 2V and -1V. This voltage is
then being sent to the output jack. This could be used
as an octave switch or the like. The four buttons B2.1
... B2.4 are grouped in a way that just one button is on
and the others are off. The four selectable voltages are
assigned to one button each. The value of the currently
active button is being sent to the output. The outputs
output1 ... output4 will be set to 1 if their correspond-
ing button is active and are used for controlling the LEDs
within the buttons.

[buttongroup]
button1 = B2.1
button2 = B2.2
button3 = B2.3
button4 = B2.4
led1 = L2.1 # LED in button 2.1
led2 = L2.2
led3 = L2.3
led4 = L2.4
value1 = 0V
value2 = 1V
value3 = 2V
value4 = -1V
output = O1

If you set maxactive to a number greater than one, more

than one button can be active at the same time. If this
is the case then the sum of the values of all active but-
tonswill be sent to theoutput. Here is an example,where
three buttons are being used for selecting a number be-
tween 0 and 7 by selecting any combination of the but-
tons “1”, “2”, and “4”.

[buttongroup]
button1 = B2.1
button2 = B2.2
button3 = B2.3
led1 = L2.1 # LED in button 2.1
led2 = L2.2
led3 = L2.3
value1 = 1
value2 = 2
value3 = 4
minactive = 0 # allow all buttons to be off
maxactive = 3 # allow all buttons to be on
output = O1

Overlaying buttons

When youmakemore complex patches, it’s likely
that youmight run out of buttons. In such a situation you
canoverlaybuttonswithmultiple functionsanduseother
buttons to switch between these layers.

Consider the following example: We have one P2B8 con-
troller. The buttons 1 and 2 should switch between the
layers root note and scale. We do this with a simple but-
ton group (you could also use a button circuit and save
one button, but for simplicity we allow us two here):

[p2b8]

[buttongroup]
button1 = B1.1
button2 = B1.2
led1 = L1.1
led2 = L1.2

The remaining six buttons select either oneof six possible
root notes or one of six possible scales (adhering to the
scheme of the minifonion circuit, see page 279). Please
note how we have added a select input at each of both
circuits to make sure that at any given time exactly one
of the two groups is selected:

[buttongroup]
select = L1.1 # be active only when L1.1 is active
button1 = B1.3
button2 = B1.4
button3 = B1.5
button4 = B1.6
button5 = B1.7
button6 = B1.8
led1 = L1.3
led2 = L1.4
led3 = L1.5
led4 = L1.6
led5 = L1.7
led6 = L1.8
value1 = 0 # C
value2 = 2 # D
value3 = 5 # F
value4 = 7 # G
value5 = 9 # A
value6 = 10 # Bb
output = _ROOT

DROIDmanual for blue-6 146 Table of contents at page 2

[buttongroup]
select = L1.2 # be active only when L1.2 is active
button1 = B1.3
button2 = B1.4
button3 = B1.5
button4 = B1.6
button5 = B1.7
button6 = B1.8
led1 = L1.3
led2 = L1.4
led3 = L1.5

led4 = L1.6
led5 = L1.7
led6 = L1.8
value1 = 1 # major
value2 = 6 # dorian minor
value3 = 7 # natural minor
value4 = 9 # phrygian minor
value5 = 10 # diminished scale
value6 = 2 # mixolydian
output = _DEGREE

Here you can patch _ROOT and _SCALE to some
minifonion, arpeggio or other circuit that works with
scales.

Now, with the top buttons you can switch between root
and scale selection andwith the remaining six buttons se-
lect either the root or the scale.

Input Type Default Description

minactive (ma) 1 2 3 1 Minimum number of active buttons. If you set this to 2, then it is guaranteed that at least 2 buttons are active. If you
set this to 0, then it is possible to switch off all buttons. The outputwill be set to 0.0 in that case.

maxactive (xa) 1 2 3 1 Maximum number of active buttons. It is an error to set this to 0, since this would make this circuit useless.

longpresstime (lt) 1.5 The number of seconds after which a button press is considered as a long press.

button1 ... button32 (b) 1st ... 32nd button of the group. Any positive trigger seen here will toggle this button. And another button might go
on or off in order to make sure that the number of active buttons is withing the allowed range.

value1 ... value32 (v) + Value that will be sent to the output if the 1st ... 32nd button is active. These inputs default to 0 for value1, 1 for
value2 and so on and 31 for value32.

startbutton (sb) 1 2 3 1 If you set this parameter to the number of a button, that button will be selected (and all other deselected) at the start
when no state is loaded or at a trigger to clear. This allows you to set useful default values for your button groups.
Note: this only makes sense if maxactive is not 0.

if minactive = 0, you also can set startbutton = 0. Then a clearwill clear all buttons.

If you set startbutton = -1, the maximum number of allowed buttons will be set. This is useful in situations where
maxactive is greater than 1. If maxactive is less than the number of buttons, the selected buttons are filled from the
start.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

DROIDmanual for blue-6 147 Table of contents at page 2

Input Type Default Description

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

led1 ... led32 (l) This output will be on / 1.0, whenever the 1st ... 32nd button is active and off / 0.0 otherwise. Wire this to the LED in
thebutton. If youhavewiredselect, these LEDoutputswill donothing (not even send0) unless this circuit is selected.

buttonoutput1 ...
buttonoutput32 (bo)

These are individual outputs for every button in the group. They output button’s valuewhen it is active, otherwise 0.
If valueX is not defined for buttonX, the value 1 is output (not the button’s number!).

Note: in contrast to the led output, these outputs are not affected by select but always functional.

One application of these outputs is to use a buttongroupwith maxactive = X and minactive = 0 as a cheap bunch
of X toggle buttons in one single circuit and still use select.

output (o) The sum of the values of all active buttons will be sent here. if no button is active, 0.0 is being output.

buttonpress (bp) Emits a trigger if any button is being pressed

longpress (lop) Emits a trigger, when any button is pressed for at least 1.5 seconds. If this jack is used, buttonpresswill emit a signal if
the button in question is released before the 1.5 seconds, not immediately. Thisway you trigger either at buttonpress
or at longpress, not at both.

selectionchanged (sc) Emits a trigger when the selection of the buttons has changed. This is not quite the same as buttonpress, since a but-
ton press might not lead to a change. Also in multi button situations (e.g. maxactive = 4where you have 7 buttons)
the change is delayed up to 25 ms due to detection of bursts of quasi simultanous presses.

DROIDmanual for blue-6 148 Table of contents at page 2

Output Type Description

extrapress (ep) Emits a trigger, when one of the buttons was pressed but the selection has not changed. This can be used to build
clever interfaces like in the Motor Fader Performance Sequencer, where a press on the already selected track toggles
the current page.

DROIDmanual for blue-6 149 Table of contents at page 2

16.8 calibrator – VCO Calibrator

This circuit allows you to precisely com-
pensate for decalibrated or otherwise im-
perfectly tracking VCOs – which is proba-
bly a property of all existing analog VCOs
to some degree. It does this by applying
one specific adaptation value per individual octave. This
way you canmake even those VCO track well over 10 oc-
taves, that would normally only do 2 or 3.

The calibration of the error compensation is done man-
ually – by you. At first this may seem like a disadvan-
tage. In practice, however, this is much easier and more
accurate than the way some “autotune” modules do it.
Thosemodules have an additional input for “listening” to
a waveform output of the oscillator andmeasure and ad-
just the tracking at a button press.

The advantages of manual tuning are:

• You don’t need an extra waveform output of your
VCO.

• You can calibrate sound sources with complex
wave forms, whose pitch is are hard to grab by au-
totune devices.

• You can change the correction at any time during a
live performance without your audience noticing.

• It’s possible to make one VCO follow the (imper-
fect) tracking of a second one, in order to create
perfect FM sounds while just one VCO needs to be
adapted.

• It’s also possible to fix the tracking of unprecise
pitch CV generators, such as sequencers, quantiz-
ers or MIDI interfaces.

The calibrator circuit happily profits from the ’s
highly precise, linear and low-jitter ADCs and DACs. And
using eight such circuits one could fix the tuning

of up to eight VCOs.

How to use

Here is a typical patch for the use of the calibrator:

[calibrator]
input = I1
output = O1
nudgeup = B1.1
nudgedown = B1.3
ledup = L1.1
leddown = L1.3

The original pitch information from the sequencer, quan-
tizer, MIDI converter or whatever comes into I1. The
adapted pitch goes to O1 and from there to the V/Oct in-
put of your VCO. Of course the pitch information could
also come from some internal circuit like the minifonion
(page 279). In that case input is connected to an internal
patch cable coming from that circuit.

Now with the two buttons B1.1 and B1.3 you can adjust
the tuning up and down at any time while playing. Each
buttonpress just very slightly shifts the pitch upor down.
The adjustment is only done for the octave that’s cur-
rently playing. calibrator saves one calibration value
for each octave from 0 to 8 and also one for the pitches
below 0 V and those above 8 V. Your tuning profile is au-
tomatically saved to the memory card.

Pressingbothbuttons at the same time resets the calibra-
tion of the current octave.

For a good result I suggest either using a precise tuner or
playing the voice at the same time as a reference voice

and try to minimize the audible beatings.

As second way of using the VCO calibrator is specify-
ing a tuning adjustment for each octave by a fixed num-
ber (or a potentiometer if you can afford). This is done
with the inputs tune0 ... tune8 and tunelowtail and
tunehightail.A value of 1.0 means an upwards tuning
of one semitone (100 cents) per octave, and -1.0 likewise
downwards.

Persistence

As always, the internal state of the calibrator circuit
is automatically saved to your SD card and loaded when
your starts.

But what if you are using several calibrators, each for
a different (and differently tracking) VCO? How do you
know which of the saved calibration states is applied to
which VCO?

The answer to this is: all calibrators in your patch are
enumerated starting from 1. For each of them there is
one configuration saved to the SD card, based on that
number. So when you modify the calibration of the third
calibrator circuit in your patch, the modified configu-
ration will be saved as belonging to calibrator number 3.

So if you make sure that each VCO is always handled by
the same calibrator circuit youwill always get the right
configuration.

If you for example remove the first calibrator from your
patch, the second one will become the new first one and
load its calibration state when you load the new patch. If
you don’t want that to happen, simply keep the calibra-

DROIDmanual for blue-6 150 Table of contents at page 2

tor in the patch, even if you don’t need it anymore. It is
sufficient to keep just the line [calibrator]without any
further jack specifications.

Using an encoder instead of buttons

If you own an E4 controller, you can use one of its en-
coders for the tuning correction, instead of buttons. This
is not only faster and easier to operate but also gives you
visual feedback about the current correction in the LED
ring of the E4.

To do that add an encoder (see page 189) circuit. The

trick is to use the encoder’s movedup and moveddown trig-
gers and feed them into the nudgeup and nudgedown in-
puts. The calibrator’s correction output informs you
about the current correction and can be used as an input
for the override parameter of the encoder. If you use
just tiny corrections, you can amplify the display (zoom
in) by multiplying the value say be 2.

The following example shows you how to setup this.
Here in addition the encoder’s button is used for resetting
the correction of the current pitch (not the total one):

[calibrator]
input = I1
output = O4

nudgeup = _UP
nudgedown = _DOWN
correction = _CORRECTION
clearhere = _CLEARHERE
nudgeamount = 0.01

[encoder]
encoder = 4
movedup = _UP
moveddown = _DOWN
override = _CORRECTION * 2
button = _CLEARHERE
mode = 2 # make it bipolar
color = 0.4 # green
negativecolor = 0.8 # red

Input Type Default Description

input (i) � 1V
Oct 0V Patch your V/Oct pitch input here.

nudgeup (nu) A trigger here (most likely a button press) will modify the tuning of the currently played note (as read by input) up-
wards by one cent (or by nudgeamount if that is used.

nudgedown (nd) A trigger here will modify the tuning of the currently played note down.

clearhere (ch) A trigger here sets the correction of the currently played note to zero. This might affect a range of up to two octaves.

nudgeamount (na) 0.01 Changes the amount each button press detunes. A value of one would mean one semitone, so the default value of
0.01 corresponds to one cent (1

100) of a semitone.

tune0 ... tune8 (t) 0.0 Explicit tuning of the octaves 0 through 8 – if you do not want to nudge manually. tune0 sets the tuning for the input
pitch of 0 V, tune1 for 1 V and so on. A value of 1 means a tune adjustment of one semitone – which is 100 cent. The
maximum detuning is± 1 Octave (at a value of±12).

tunelowtail (tl) 0.0 Tuning adaption for the negative voltage range. A value of 1 means an upwards tuning of one semitone per octave, -1
likewise downwards.

tunehightail (th) 0.0 Tuning adaption for voltages > 8 V. A value of 1 means an upwards tuning of one semitone per octave, -1 likewise
downwards.

DROIDmanual for blue-6 151 Table of contents at page 2

Input Type Default Description

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 4 presets, so this number ranges from 0 to 3.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

output (o) � 1V
Oct The calibrated pitch goes out here.

ledup (lu) 0 1 When nudgeup is mapped to a button (which is most likely), map this output to the according LED and it will indicate
whenever it’s currently adjusting the output pitch upwards.

leddown (ld) 0 1 This is the LED for nudgedown, which indicates downwards adjustment.

correction (c) This output gives you information about the current amout of pitch correction. It is positive if the pitch is corrected
upwards, else negative. It is scaled in semitones, so a value of 0.2means a 20% of a semitone, which is the same is 20
cents.

DROIDmanual for blue-6 152 Table of contents at page 2

16.9 case – Switch choosing from inputs via conditions

This circuit selects one of several inputs
and routes its signal to the output based
on which of several conditions is true. For
each signal there is one related case input.
The first signal whose case input is non-
zero, is selected.

One example application is selecting one out of several
clock sources, depending on which clock is present. In
this example we assume that for each clock source there

is an internal cable that is 1 if that clock is present, and 0
otherwise:

[case]
case1 = _INTERNAL_CLOCK_PRESENT
value1 = _INTERNAL_CLOCK
case2 = _EXTERNAL_CLOCK_PRESENT
value2 = _EXTERNAL_CLOCK
case3 = _MIDI_CLOCK_PRESENT
value3 = _MIDI_CLOCK
output = _CLOCK

The order of the values is important here, since it
defines the precedence of the individual inputs. If
_INTERNAL_CLOCK_PRESENT is non-zero, input1 is
copied to output, regardless of what happens at the
other inputs.

If none of the switch inputs is non-zero, 0 is output, but
you can set a different fallback valuewith the input else.

Input Type Default Description

case1 ... case16 (c) 1st ... 16th case input. The first one that is non-zero defines which input value to use.

value1 ... value16 (v) 1st ... 16th value input. One of these is copied to the output, depending on which of the case inputs is none-zero.

else (e) 0 In case none of the case inputs is non-zero, this value is copied to the output.

Output Type Description

output (o) To this output the select value input is copied.

DROIDmanual for blue-6 153 Table of contents at page 2

16.10 chord – Chord generator

This circuit creates the pitch information
for up to four voices of a musical chord.
This means that you can attach the Volts
per octave inputs of up to four synth voices
and they will play a nice musical chord.
Hereby you have the flexibility of building your chord out
of any of the seven notes of a selected scale. So you are
not limited to root, 3rd, 5th and 7th. The algorithm is
similar to that in the Sinfonion but has an adapted mode
for three voiced chords in addition.

Minimal example

Here is the most simple (and probably useless) example:
it will play a C major 7 chord, i.e. output the respective
pitch CVs for the notes C, E, G and B at the outputs O1,
O2, O3 and O4:

[chord]
output1 = O1
output2 = O2
output3 = O3
output4 = O4

OutputO1will be at 0V, representing aC.Or course, if you
just have three voices, don’t use output4 and youwill get
a C major triad.

Selecting root and scale

Most likely you do notwant to play in Cmajor all the time
(or even never!), so you can select the root note and the
scale with the inputs root and degree. Setting root to 2
and degree to 7, for example, will select D natural minor:

[chord]
output1 = O1
output2 = O2
output3 = O3
output4 = O4
root = 2
degree = 7

root ranges from 0 to 11 and and degree from 0 to 107.
You find the complete table of all 108 scales on page 107.

But why the heck is that input named degree?? Well, it’s
a jargon from the Sinfonion and doesmake sense there in
some contexts. Please have a look into themanual of the
Sinfonion if you are interested!

Selecting the pitch of the notes

Per default all outputs are in the first octave, i.e. in the
range 0 V ... 1 V. Per convention this is very low and prob-
ably sounds ugly. With the pitch input you can set the
minimum pitch of the lowest output chord note. In the
next example this is read from I1. So you could, for ex-
ample, patch a sequencer here and have the chord out-
puts play a kind of four voiced melody:

[chord]
pitch = I1
output1 = O1
output2 = O2
output3 = O3
output4 = O4
root = 2
degree = 7

The spread parameter controls the maximum pitch of the
highest output chord note. It is always relative to the
pitch of the lowest note plus one octave. So if spread is
1.5 V (or 0.15), for example, the maximum allowed dis-
tance between the lowest and the highest chord note is
2.5 octaves. As lowest note the chord generator places
the chord note that is nearest above the pitch input. As
highest note it places the one nearest to upper bound
of the allowed range and the remaining notes are dis-
tributed in between with the most equal spacing possi-
ble.

Selecting the chord notes

Whatmakes the Sinfonion and also the harmonic circuits
in the stand apart from other modules is the flex-
ibility of note selection. So e.g. in C major, you are
not limited to playing the chord C/E/G/B. In fact you can
choose any subset from the currently selected scale.

For this there are seven inputs select1, select3, ...
select13 that select the notes of the current scale and
another five inputs selectfill1 ... selectfill5 that
select the notes not in the current scale. These 12 inputs
are binary inputs that expect either 0 or one 1. Each of
them selects one of the seven intervals of the scale for
being part of the chord. Here is a table of all these inputs
and the notes they would select in a C major or C minor
scale:

DROIDmanual for blue-6 154 Table of contents at page 2

Input interval step Cmaj Cmin

select1 root I C C

select3 3rd III E E♭

select5 5th V G G

select7 7th VII B B♭

select9 9th = 2nd II D D

select11 11th = 4th IV F F

select13 13th = 6th VI A A♭

One typical way to select these notes is with seven tog-
gle buttons, which is then much like the Sinfonion does
it. Assign the output of each of the seven buttons to one
of these functions:

[p2b8]

[button]
button = B1.1
led = L1.1

[button]
button = B1.2
led = L1.2

[button]
button = B1.3
led = L1.3

[button]
button = B1.4
led = L1.4

[button]
button = B1.5
led = L1.5

[button]
button = B1.6
led = L1.6

[button]
button = B1.7
led = L1.7

[chord]
select1 = L1.1
select3 = L1.2
select5 = L1.3
select7 = L1.4
select9 = L1.5
select11 = L1.6
select13 = L1.7
output1 = O1
output2 = O2
output3 = O3
output4 = O4

Now you can use the buttons to change the chord notes
on thefly. Of course, however, you also can use other sig-
nals for the selection. Maybe random gates, slowly run-
ning LFOs, a sequencer, whatever you like!

But what happens, if you do not select exactly four
notes?

• If you don’t select any note (or do not patch the
select-inputs at all), all scale notes are selected.

• If you select just one note, all four outputs will play
that same note.

• If you select two notes, output1 and output3 will
play the first note and output2 and output4 the
second one.

• If you select three notes, output4 will play the
same as output1.

• If you select five, six or seven notes, just the first
four notes will be used.

If some of the notes are doubled and you use a large
enough spread, they will be placed at different octaves.

By the way: It’s of course no problem to just use three or

even just two of the outputs, if you don’t need or have a
total of four voices.

Chord inversion

The chord generator lets you nail down the chord struc-
ture to a certain inversion. If you set inversion to 1, the
root note (or, to be more precise, the first selected note)
will be placed as the lowest note. Similarly the inversions
2, 3 and 4 will make the respective other selected notes
the lowest note.

Setting inversion to 0 (which is the default) will allow
any note to be the lowest. This allows the chord to be
closest to the pitch input.

Triggeredmode

The trigger input is essentially a sample & hold for the
outputs. So as soon as you patch that input, all outputs
are frozen until the next trigger.

Chords with three voices

The chord generation circuit can also create chords
with just three output voices. Simply omit the output
output4. When it is not connected, the “three voice
mode” is activated:

[chord]
output1 = O1
output2 = O2
output3 = O3
root = 2
degree = 7

DROIDmanual for blue-6 155 Table of contents at page 2

All parameters work as expected but there are some im-
portant adaptions. This is not the same as using the four
voiced mode and just look at the first three outputs. For
example:

• The spreading uses a simplified algorithmwith just
a bottom, middle and top note.

• If just three intervals are selected, you don’t get
a duplication of the first note on output2, as you
would otherwise.

Chords with two voices

Even if just twooutputs are connected, you can stillmake
use of this circuit. Now just the first two select... in-
puts are taken into account. But things like inversion and
spreading works nevertheless.

DROIDmanual for blue-6 156 Table of contents at page 2

Input Type Default Description

pitch (p) � 1V
Oct 0V This sets the minimum pitch of the lowest note of the chord.

spread (s) � 1V
Oct 0V Selects the range between the lowest and highest note of the chord measured in 1V/oct, while a spread of 0 means

that all chord notes are within one octave, a spread of 1 V means that the notes are spread out over two octaves and
so on.

inversion (iv) 1 2 3 0 Selects the inversion of the chord. 1 means that the root note should be the lowest note, 2 will make the second
selected note the lowest note, 3 the 3rd and 4 the 4th. The default, however, is 0 and doesn’t fix the inversion. Rather
that inversion is chosen that creates the chord closest to the input pitch.

trigger (t) This jack is optional. If you patch it, the Chord generator just reads a new input pitch when it receives a trigger.

root (ro) 1 2 3 0 Set the root note here. 0means C, 1meansC♯, 2meansD and so on. If youmultiply the value of an input like I1with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0 C

1 C♯

2 D

3 D♯

4 E

5 F

6 F♯

7 G

8 G♯

9 A

10 A♯

11 B

12 C

DROIDmanual for blue-6 157 Table of contents at page 2

Input Type Default Description

degree (dg) 1 2 3 0 Set the musical scale. This is a number from 0 to 107. Below are the first 12 andmost important scales. You find a list
of all 108 scales on page 107.

0 lyd – Lydian major scale (it has a ♯4)

1 maj – Normal major scale (ionian)

2 X7 – Mixolydian (dominant seven chords)

3 sus – mixolydian with 3rd/4th swapped

4 alt – Altered scale

5 hm5 – Harmonic minor scale from the 5th

6 dor – Dorian minor (minor with ♯13)

7 min – Natural minor (aeolian)

8 hm – Harmonic minor (♭6 but ♯7)

9 phr – Phrygian minor scale (with ♭9)

10 dim – Diminished scale (whole/half tone)

11 aug – Augmented scale (just whole tones)

Note: Alltogether there are 108 scales. Please see page 107 for a complete list

select1 (s1) + Gate input for selecting the root note as being an allowed interval. When youwant to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. select1 ...
select13will be set to one.

select3 (s3) + Gate input for selecting the 3rd.

select5 (s5) + Gate input for selecting the 5th.

select7 (s7) + Gate input for selecting the 7th.

select9 (s9) + Gate input for selecting the 9th (which is the same as the 2nd).

select11 (s11) + Gate input for selecting the 11th (which is the same as the 4th).

select13 (s13) + Gate input for selecting the 13th (which is the same as the 6th).

DROIDmanual for blue-6 158 Table of contents at page 2

Input Type Default Description

selectfill1 (sf1) off Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 (sf2) off Selects the alternative 3rd (i.e. the 3rd that is not in the scale).

selectfill3 (sf3) off Selects the alternative 4th or 5th. In most cases this is the diminished 5th.

selectfill4 (sf4) off Selects the alternative 13th (i.e. the 13th that is not in the scale).

selectfill5 (sf5) off Selects the alternative 7th (i.e. the 7th that is not in the scale).

DROIDmanual for blue-6 159 Table of contents at page 2

Input Type Default Description

harmonicshift (has) 1 2 3 0 This input can reduce harmonic complexity by disabling some of the scale or non-scale notes. It is an idea first found
in the Sinfonion and also provided by the circuit sinfonionlink (see page 353).

harmonicshift is staged after the select... inputs and further filters out (disables) notes based on their relation to
the current scale. This means that first the 12 select... inputs select a subset of the 12 possible notes. After that
harmonicshift can reduce this set further (it will never add notes).

If harmonicshift is not zero, depending on its value some or more of the scale notes are disabled, even if they would
be allowed by select.... Or in other words: the harmonic material is reduced.

You also can use negative values. These create rather strange sounds by removing the simple chord functions instead
of the complex ones first.

Here are the possible values:

0 off – all selected notes are allowed

1 disable all fill notes (non-scale notes)

2 disable fills and 11th

3 disable fills, 11thand 13th

4 disable fills, 11th, 13thand 9th

5 disable fills, 11th, 13th, 9th and 7th

6 disable fills, 11th, 13th, 9th, 7th and 3rd

7 disable fills, 11th, 13th, 9th, 7th, 3rd and 5th

-1 disable the root note

-2 disable the root note and the 5th

-3 disable root, 3rd, 5th

-4 disable root, 3rd, 5th, 7th

-5 disable root, 3rd, 5th, 7th, 9th

-6 disable root, 3rd, 5th, 7th, 9th and 13th

-7 disable all scale notes (fill notes untouched)

DROIDmanual for blue-6 160 Table of contents at page 2

Input Type Default Description

noteshift (nos) 1 2 3 0 Shifts the resulting output note(s) by this number of scale notes up or down (if negative). So the output note still is
part of the scale butmay be a note that is none of the selected ones. Themaximum shift range is limited to -24 … +24.

selectnoteshift (sns) 1 2 3 0 Shifts the output note by this number of selected scale notes up or down (if negative). If you use noteshift at the
same time, first selectnoteshift is applied, then noteshift. The maximum shift range is limited to -24 … +24.

tuningmode (tm) off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch (tp) � 1V
Oct 0V This pitch CV will be output while the tuning mode is active.

transpose (tr) � 1V
Oct 0V This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or

adding a vibrato.

Output Type Description

output1 ... output4 (o) � 1V
Oct 1st ... 4th pitch output

DROIDmanual for blue-6 161 Table of contents at page 2

16.11 clocktool – Clock divider / multiplier / shifter

This circuit implements various clockmod-
ifications, such as a clock divider, a clock
multiplier, a tool for changing the length
of an incoming gate signal and a clock time
shift.

Multiply and divide

Here is an example of a simple clock divider that divides
the incoming clock by 7 (i.e. for 7 incoming clocks one
outgoing clock is being produced).

[clocktool]
clock = I1 # patch a clock here
output = O1
divide = 7

This example doubles the speed of the clock by inserting
one additional clock tick right in themiddle between two
incoming ones: right in the middle between

[clocktool]
clock = I1 # patch a clock here
output = O1
multiply = 2

By usingmultiplication and division at the same time you
can create rhythms like “two over three”:

[clocktool]
clock = I1 # patch a clock here
output = O1
divide = 3
multiply = 2

Per default the outgoing clock has a duty cycle of 50%,
which means that it is 50% of the time high and 50% of
the time low – basically a symmetrical square wave. You
can change this with the dutycycle input, e.g. to 20%:

[clocktool]
clock = I1 # patch a clock here
output = O1
dutycycle = 20% # same as 0.2

Time shifting the clock

The input delay can be used to delay the clock signal. It
needs a steady input clock to work. The possible range
of delay is -1.0 …1.0. A value of 1.0 is equivalent of de-
laying each clock by exactly one cycle – which is pretty
useless, since it results in the same output clock. But for
example a value of 0.1will delay the clock by 10%. Here
is an example:

[clocktool]
clock = I1 # patch a clock here
output = O1
delay = 0.1 # same as 10%

Using a negative number will result in a clock that is al-
ways slightly before the original clock. This example
shifts the output clock 10% ahead of the input clock:

[clocktool]
clock = I1 # patch a clock here
output = O1
delay = -0.1

Pleasenote that this isnot a trigger delay, since it requires
a steady input clock. Otherwise funny and strange things
can happen. Also it should be obvious, that shifting a
clock ahead needs knowledge when exactly the next in-
put clock tick will happen.

Feeding a trigger sequencer like the algoquencer (see
page 115) with a shifted clock allows you to fine tune the
exact timing of that voice. You can easily map the shift
amount to a pot for tuning that live by ear:

[clocktool]
clock = I1 # patch a clock here
output = _SHIFTED_CLOCK
delay = P1.1 * 0.2 - 0.1 # limit to +/- 10%

[algoquencer]
clock = _SHIFTED_CLOCK
...

Please also have a look at timing (see page 365). That
can do a similar thing but is also able to shift the timing
differently for each beat in a sequence of several beats.

If you combine delaywith divideor multiply, the delay
is applied first. This means that the amount of delay is in
relation to one input clock cycle. The delayed input clock
is then run through the divider and multiplier. If you like
it vice versa, split things up into two clocktool circuit,
where the first one does the divide/multiply, feed that
output into the second one and do the delaying there.

DROIDmanual for blue-6 162 Table of contents at page 2

Gate length

Per default the length of the output gate is 10 ms – inde-
pendently of the length of the input gate. You can change
thegate length eitherwith the jackgatelengthand spec-
ify a fixed number of seconds, or by using dutycycle,
which is a percentage of the output clock rate. Please
note: if your gate length exceeds the time until the next
output gate, both will be ”joined” and thus no new gate
will be emitted.

Please note if you use dutycycle: right at the start of
the clock signal or after a greater speed change of the
clock, clocktool needs a short time to learn the new
clock speed and correctly adapt the newgate length. This
might lead to two merging gates, which in turn causes a
missing gate output.

DROIDmanual for blue-6 163 Table of contents at page 2

Input Type Default Description

clock (c) Patch a steady clock here for this circuit to be of any use

reset (r) A trigger here resets the internal counters. This is useful if you use the clock divider and want to restart the internal
counting from 0, in order to align the clock divider with some external sequencers or the like

divide (d) 1 2 3 1 Number to divide the clock through. This will be rounded to the nearest integer number. Note: if you want to use an
external CV then you need to multiply that with some useful number, since otherwise you will get a number between
0 and 1which is not useful at all. Remember: 10 V translates to a number of 1.

multiply (m) 1 2 3 1 Number to multiply the clock with. Same considerations hold as for divide.

dutycycle (dc) 0.50 1 + Output duty cycle of the clock – which is essentially a square wave – in a range from 0.0 to 1.0 or 0% to 100%. If you
don’t patch anything here, the length of the trigger output pulses will be 10 ms (’s standard trigger duration).

gatelength (gl) + This jack is alternative to dutycycle and will override it if it is used. It sets the length of each output pulse to a fixed
value that is independent of the incoming clock. A value of 0.5 (a CV of 5 volts) translates into a gate length of 0.5
seconds.

delay (dl) 0.0 This CV allows you to shift the input clock beat around in time. A value of 0.1 will delay each beat by 10% of a clock
cycle. A value of -0.1 is also allowed and shifts the beat 10% ahead.

For an unmodulated delay -0.1 and 0.9 is just the same, because the output clock will have the same relation to the
input clock. But if youmodify the delay from 0.0 to 0.9, the next tick will be delayed by 90% of one cycle, where is a
modification from 0.0 to -0.1will play the next tick by 10% earlier.

Output Type Description

output (o) Here comes the modified clock

inputpitch (ip) Experimental output that outputs a representation of the input clock’s pitch on a 1V/octave base, based on the refer-
ence of 60 BPM (1 Hz). This means that an input clock of 120 BPMwill output 1V (a value of 0.1), since 120 BPM it is
one octave higher than 60 BPM. If you feed that value to the rate input of an LFO you get that running at exactly the
same speed (not in the same phase, however).

outputpitch (op) Same for the modified output clock

DROIDmanual for blue-6 164 Table of contents at page 2

16.12 compare – Compare two values

This simple utility circuit allows you to
make a decision by comparing an input
value (at input) against a reference value
(at compare) and output one of three val-
ues depending on whether the input is less
than, greater than or equal to the reference.

The following simple example checks if the pot P1.1 is
left of the center (a value less than 0.5). If that is so, it
outputs 1, otherwise 0.

[compare]
input = P1.1
compare = 0.5
ifless = 1
output = O1

You can change the default output value of 0with the in-
put else. That specifies what happens if the condition
is notmet. The following example outputs -1, if P1.1 is
greater or equal to 0.5.

[compare]
input = P1.1
compare = 0.5
ifless = 1
else = -1
output = O1

Equality, analog unprecision

You can also check if two values are equal. This is done
with ifequal. Check this out:

[compare]
input = B1.1
compare = 1
ifequal = 4
else = 8
output = O1

Now while you hold the button B1.1 this circuit will out-
put the value 4 and otherwise 8.

Note: equality can be trickywhen it comes to values from
analog things like inputs or potentiometers. They always
undergo tiny random fluctiations. So the following ex-
ample, that should compare the current voltages of two
inputs, will never really work:

[compare]
input = I1
compare = I2
ifequal = 1 # will never happen!
output = O1 # This won't work!

If you try this out, you will probably never get both in-
puts equal. Even a single electron too much could the-
oretically make the difference. So in order to make such
comparisons possible, there is a way to allow for a slight
unprecision when doing the comparison. This is set with
the precision parameter:

[compare]
input = I1
compare = I2
precision = 0.1
ifequal = 1
output = O1

Now the inputs I1 and I2 are being treated as equal as
long as their difference is 0.1 (1 V) at most.

Makeing a three-way switch

It is possible to check all three relations at once. Make
sure that you apply a precision if you deal with analog
values:

[compare]
input = I1
compare = I2
precision = 0.1
ifless = 0
ifequal = 1
ifgreater = 2
output = O1

Now you get 0, 1 or 2, depending on wether I1 is less,
equal or greater than I2.

Note: Better do not use just ifless and ifgreaterwith-
out using ifequal or else. This lets the equality unde-
fined and will output 0 if for any chance the two input
values are equal. Better use ifless / ifgreater in com-
bination with else if you are not interested in the exact
equality.

Omitted inputs

It is allowed to omit any of the inputs ifless, ifequal,
ifgreater or else. Any of these is treated as 0with one
exception: If you omit all four, ifequal defaults to 1.
This make a super basic compare circuit just check if two
values are equal:

DROIDmanual for blue-6 165 Table of contents at page 2

input = B1.1
compare = 0
output = O1

This will output 1 if button B1.1 as the value 0 (is not
pressed).

Dynamic output values

As often, instead of using fixed values for ifless,
ifequal, ifgreater and else you can use dynamic val-
ues from somewhere else, of course. The following ex-
ample will output a sine wave at O1 if the pot is left of the
center or else a square wave:

[lfo]
hz = 2

sine = _SINE
square = _SQUARE

[compare]
input = P1.1
compare = 0.5
ifless = _SINE
else = _SQUARE
output = O1

Input Type Default Description

input (i) 0.0 A value to compare.

compare (c) 0.0 A reference value to compare the input with.

ifgreater (g) + Value to be output if input is greater than compare. If you patch nothing here, the value of the input elsewill be used.

ifless (l) + Value to be output if input is less than compare. If you patch nothing here, the value of the input elsewill be used.

ifequal (q) + Value to be output if input is equal to comparewithin the precision defined by precision. If you patch nothing here,
the value of the input elsewill be used.

else (e) 0.0 Specifies the output value in case non of the stated conditions are met.

precision (pc) 0.0 An optional precision to be used by ifequal

Output Type Description

output (o) Here one of ifgreater, ifless or ifequal is output.

DROIDmanual for blue-6 166 Table of contents at page 2

16.13 contour – Contour generator

An enhanced version of the classic ADSR-
envelope generator with the six phases
predelay, attack, hold, decay, sustain and
release.

For triggering there are two alternative in-
puts: gate and trigger. Use trigger if you are not in-
terested in the length of the gate signal. There will be no
decay / sustain phase in that case.

The minimal patch just connects gate or trigger and
the output. It creates an envelopewith standard timings,
triggered at I1 and output to O1:

[contour]
gate = I1
output = O1

Assigning pots to the classic four inputs lets you use the
just as a normal ADSR envelope:

[p2b8]
[p2b8]

[contour]
gate = I1
attack = P1.1
decay = P1.2
sustain = P2.1
release = P2.2
output = O1

When you try this out, youwill notice that the time range
of the attack parameter is much shorter than that of
decay and release. If fact it is just 1

20 of these. This
has been chosen in this way because I believe that this

makes sense from a musical point of view. Very long at-
tack times are quite unusual and I wanted to be able to
directly map the four values to pots. But if you don’t like
that you can – of course – make all three timing parame-
ters have the same range simply bymultiplying attack by
20:

[p2b8]
[p2b8]

[contour]
gate = I1
attack = P1.1 * 20
decay = P1.2
sustain = P2.1
release = P2.2
output = O1

If you do not change the shape parameter, the duration
of the attack phase is 0.1 sec at a value of 1. The phases
decay and release have a duration of 2.0 sec at a value of
1.

The Phases

In addition to the traditional ADSRphases this circuit also
hasaanoptional predelay (P) phase –whichacts like ade-
lay before the envelope starts – and an optional hold (H)
phase which keeps the envelope at maximum level for a
short time right after attack and before decay.

The following diagram shows an example envelope with
all six phases. The gate starts at 0ms and ends at 200ms.

0 50 100 150 200 250 300

0

5

10

time(ms)

V
ol
ts

P
A
H
D
S
R

Attack, Decay and Release

The phases attack, decay, release are phases where the
level of the envelope starts at one level and then ap-
proaches another level within a certain time. In the up-
per example all these phases had a linear characteristic.
That means that the output voltage changes by a con-
stant amount per time.

’s contour allows you to control the shape of
these phases in order to get them bent in either direc-
tion. For that purpose there are the inputs attackshape,
decayshape and releaseshape.

Let’s take decay as an example. During the decay phase
the envelopes voltage falls from the maximum level of
10 V (you can change this with the input level) to the
sustain level defined by the input sustain. For simplic-
ity let’s assume that you have not used these inputs, so
the maximum level is 10 V (1.0) and the sustain level is
5 V (0.5). Also we assume attack, predelay and hold to
be 0.0.

When decayshape is not patched or otherwise set to its

DROIDmanual for blue-6 167 Table of contents at page 2

default of 0.5, the shape of the decay curve is linear. This
means that it goesdownby the samevoltageeach second
until it reaches 0.5.

0 50 100 150 200 250 300

0

5

10

time(ms)

V
ol
ts

D
S
R

Now, if you set decayshape to 1.0, the curve is com-
pletely exponential:

0 50 100 150 200 250 300

0

5

10

time(ms)

V
ol
ts

D
S
R

Such an envelope sounds completely different – of course
also depending on whether you feed this into a linear
VCA, exponential VCA or a VCF. For fine control you can
use any number between 1.0 and 0.5 of course. In that
case you will get a curve that is bent to a certain degree.
Assigning decayshape to a pot helps you listening to the
different sounds:

[contour]
gate = I1
decayshape = P1.1
output = O1

If the shape gets a value less than 0.5, the curve is bent
into the opposite direction (some call this logarithmic
but mathematically this is not true). Here is an example
where decayshape is set to 0.0:

0 50 100 150 200 250 300

0

5

10

time(ms)

V
ol
ts

D
S
R

Input Type Default Description

gate (g) + Patch a gate signal here that triggers the envelope. Gatemeans that the length of the signal is relevant. While the gate
is high the sustain phase holds on. As soon as gate is going low the release phase is being entered.

trigger (t) This is an alternative method of starting the envelope. If you use trigger instead of gate, there are the following
differences:

• The duration of the trigger signal is being ignored.
• There is no decay / sustain phase. Attack and hold are immediately followed by release. The inputs sustain and
decay have no impact anymore.

• The predelay and attack phases are continued until their end even when the trigger signal ends (When using
gate and the gate signal ends during predelay, the envelope does not start. When it ends during attack, decay /
sustain are being skipped and release starts at the current level of the envelope. That way short gates can result
in “quieter” envelopes).

DROIDmanual for blue-6 168 Table of contents at page 2

Input Type Default Description

retrigger (rt) 1 If you patch 0 or off here, a gate or trigger impulse will not immediately restart the envelope unless it already has
reached its release phase. The default on, which means that a trigger will immediately restart the envelope in any
case.

startfromzero (sz) 0 If you set this to 1 or on, a trigger or gate will reset the envelope’s current level immediately to zero. This is sometimes
called “digital mode”. In the normal analog mode the envelope resumes from where it is. This means that when a
trigger occurs right in the release phase where the level is still high, will start it’s attack not from zero but from this
hight value.

abortattack (aa) 0 This is an on / off setting that decides what happens if the input gate goes off while the predelay or attack phase is
still not finished. Per default that phase will be finalized regardless of the gate state. If abortattack is on, the end of
the gate will immediately stop the attack phase andmove on to hold. Note: In this case the value of the envelope will
not reach the maximum level. If the gate ends during the predelay phase, no envelope will be started at all.

Note: This setting is only functional when the gate input is being used for triggering the envelope. If you use trigger,
the attack phase is always completely executed and this setting has no influence.

loop (lo) 0 This is an on / off input that switches loop on or off. When loop is on, the envelope will immediately start again once
it has finished. It also starts without triggering. This converts contour into a kind of fancy LFO.

gate / trigger and loop can be combined. Any gate or trigger will restart the envelope just as usual – even in loop
mode.

predelay (pd) 0.0 Thepredelayphase inserts adelaybetween the incominggate and thebeginof theenvelope. The lengthof thepredelay
is 0.1 seconds per volt, so a value of 1.0means 1 second

attack (a) 0.0 Length of the attack phase, i.e. the time from the beginning of the gate until the maximum level is reached. See the
general description for information about the scaling of this input.

hold (h) 0.0 If this is none-zero, the envelopes lingers a certain amount of time at its maximum level after the attack and before
the decay phase. The input value specifies a number of seconds. A value of 0.5 (this is 5 V) will create a hold time of
0.5 seconds.

decay (d) 0.2 Time of the decay phase

sustain (s) 0 1 0.5 Sustain level

swell (sw) 0 1 0.0 If this jack is set to a value greater than 0.0, the level of the envelopewill go up or down again during the sustain phase
until it reaches swelllevel.

swelltime (st) 5.0 Time of the swell phase

swelllevel (sl) 1.0 Level the swell phase is approaching. Setting this to the same as sustain effectively disables swell.

DROIDmanual for blue-6 169 Table of contents at page 2

Input Type Default Description

release (r) 0.2 Timing of the release phase

level (l) 1.0 Maximum level and scaling of the envelope. It is basically an output attenuator of the envelope. Sudden changes in
the level will immediately have an (audible) impact on the envelope.

velocity (v) 0 1 1.0 energy of the attack: The velocity is similar to the level, but is effective just during the attack phase. During that
phase that maximum voltage that is read from the velocity jack and will be used as the velocity of the envelope.
Further changes during the other phases will be ignored. This makes it ideal of using with a sequencer. For example
you can patch an accent output here and add some offset. Sudden changes in this input will not affect the shape of the
envelope.

pitch (p) � 1V
Oct 0V This is aonevolt per octave input affecting all timings of the envelope. When you set this to 0 (the default), it is neutral.

A value of 0.1 (1 Volt) will exactly double the speed of all phases - just as one octave up doubles the frequency of an
oscillator. This jack can be used to easily implement envelopes where the length very naturally follows this pitch - just
like on a piano, glockenspiel or marimba lower notes last longer than higher ones.

taptempo (tt) Tap tempo is an alternative method of specifying a pitch information. When you patch a clock to tap tempo, all time
parameters in the envelope are relative to that clock. If the clock speeds up, the envelope gets faster and vice versa.
The reference speed is 120 BPM. This means that if you patch a 120 BPM clock here, nothing changes. Clocks faster
than 120 BPMwill speed up the envelope. Clocks slower than 120 BPMwill slow it down.

Please see page 23 for details on using taptempo inputs.

shape (sh) 0.50 1 0.5 If you use this jack, it sets the shape for all of the relevant phases, which are attack, decay, swell and release. Note:
this input is only effective for those phases where the dedicated input (like attackshape, etc.) is not being used.

attackshape (as) 0.50 1 + Shape of the attack curve. If nothing is patched here, the value of shape will be used. See the general description for
how curve shapes work.

decayshape (ds) 0.50 1 + Shape of the curve in the decay phase. If nothing is patched here, the value of shapewill be used.

swellshape (ss) 0.50 1 + Shape of curve during the swell phase. If nothing is patched here, the value of shapewill be used.

releaseshape (rs) 0.50 1 + Shape of the curve in the release phase. If nothing is patched here, the value of shapewill be used.

zerocrossing (z) + This is an experimental feature: If you patch the output of an oscillator here, an incoming gate or trigger signal will be
delayed until the next zero crossing of that signal. That allows you to start the envelope exactly when the audio signal
is at 0 and avoid nasty klicks, even if the attack is set to 0. It comes at a price, however. The delay between the trigger
and the first zero crossing might vary a lot from note to note and that could make your rhythm untight, especially if
the frequency of the oscillator is low.

DROIDmanual for blue-6 170 Table of contents at page 2

Output Type Description

output (o) Main output of the envelope. Patch this to your filter, VCA or wherever you like.

negated (n) The negated output is the same as the output but in negative voltage.

inverted (iv) The inverted output always outputs positive voltages but is inverted relative to the level of the envelope. When the
normal output outputs 0 V, the inverted output outputs level and vice versa

endofpredelay (ep) This output will emit a trigger with a length of 10 ms when the predelay phase has ended.

endofattack (ea) This output will emit a trigger with a length of 10 ms when the attack phase has ended.

endofhold (eh) This output will emit a trigger with a length of 10 ms when the hold phase has ended.

endofdecay (ed) This output will emit a trigger with a length of 10 ms when the decay phase has ended.

endofrelease (er) This output will emit a trigger with a length of 10 ms when the release phase has ended.

DROIDmanual for blue-6 171 Table of contents at page 2

16.14 copy – Copy a signal, while applying attenuation and offset

This circuit is a simple utility that copies a
signal froman input to anoutput. Since ev-
ery input generally can be attenuated and
offset this can be used for scaling and off-
setting a signal on its path.

Build a simple precision adder (CV mixer), that adds the
voltages of I1 and I2:

[copy]

input = I1 + I2
output = O1

Provide an attenuated signal from I1 into an internal
patch cable:

[copy]
input = I1 * 0.5
output = _INPUT_CV

Note: Previous versions of copyhad an invertedoutput.
This has been removed in blue-3. But the same effect can
beachievedby substracting a signal from1. This converts
0 V into 10 V, 2 V into 8 V, 10 V into 0 V and so on:

[copy]
input = 10V - I1
output = O1

Input Type Default Description

input (i) 0.0 Connect the signal you want to copy here.

Output Type Description

output (o) The resulting signal will be sent here.

DROIDmanual for blue-6 172 Table of contents at page 2

16.15 crossfader – Morph between 8 inputs

This utility circuit creates a CV controlled
mix of two out of up to eight inputs.

With two inputs this acts like a classical
cross fader. The following example lets
you fade between the signals at I1 and I2
by turning the pot P1.1:

[crossfader]
input1 = I1
input2 = I2
fade = P1.1
output = O1

At fully CCW (0.0) only the signal of the first input is be-
ing output, at fully CW (1.0) only that of the second one.
In the center position (0.5) you get the average of both
inputs, namely 0.5×I1 + 0.5×I2.

Using more than two inputs is possible. The fade input

thenmaps the range 0.0 ... 1.0 to a journey from the first
to the last input. Let’s see the following example:

[lfo]
hz = 0.1
sawtooth = _FADE

[crossfader]
input1 = I1
input2 = I2
input3 = I3
input4 = I4
fade = _FADE
output = O1

Now during one LFO cycle of 10 seconds the output O1
begins with the signal at I1 and then morphs to that of
I2. It reaches 100% of I2 at a fade value of 1

3 . Then it
continues toI3,which it reachesat 2

3 andfinally – after 10
seconds – it ends at I4. After that it immediately jumps
back to I1, in order to begin the next cycle.

Values beyond 1.0 for fade are allowed and allow you to
morph from the last input to the first one. In the previ-
ous example thatwould be the range from 1.0 to 1.3333.
So if you scale up the sawtooth to a total range of 0.0 ...
1.3333 you will get a smooth cyclic morph between all
four inputs:

[lfo]
hz = 0.1
sawtooth = _FADE

[crossfader]
input1 = I1
input2 = I2
input3 = I3
input4 = I4
fade = _FADE * 1.3333
output = O1

Input Type Default Description

input1 ... input8 (i) 0.0 The input signals that you want to crossfade between. At least input1 and input2 need to be patched. Otherwise
they are treated like 0 V signals.

fade (f) 0 1 0.5 This value decides which of the two inputs should be mixed and to which degree each one should go into the mix. At
0.0 the mix consists of 100% of the first inputs, at 1.0 of 100% of the last patched input.

Output Type Description

output (o) Output of the mix

DROIDmanual for blue-6 173 Table of contents at page 2

16.16 cvlooper – Clocked CV looper

Easy to use clocked CV looper that also
loops an additional gate and can do over-
lay and overdub.

This circuit is a very easy to use CV looper.
It records an incoming CV (and optionally
a gate as well) on a virtual tape loop with a resolution of
one sample per ms. The length of this tape is eight sec-
onds. If you need a longer loop time, you can reduce the
tape speed. At a speed of 0.5 you have a maximum loop
time of 16 seconds and a resolution of one sample per
2 ms (which is still pretty decent for most applications).

This looper is meant to be playable in a live situation as
easily as possible. For that purpose it does not imple-
ment the typical loop start→ loop stop scheme – which
requires the musician to know beforehand that she will
start a loop. Instead the looper is always recording. The
loop length is specified in clock ticks. And as soon as the
looping is activated, the previous x clock ticks of CV in-
formation will be repeated over and over.

Here is an example for a simple looper for oneCVwithout
a gate:

[button]
button = B1.1
led = L1.1

[cvlooper]
cvin = I1
clock = I8 # steady clock
cvout = O1
length = 16 # 16 clock ticks
loopswitch = L1.1

The button B1.1 is converted into a toggle button for ac-
tivating the looping. The CV is read from I1 and is sent to

O1. As long as the loop switch is off the looper is in by-
pass mode and simply copies I1 to O1. At the same time
it is always recording to its internal endless tape. When
the loop switch is switched on, the last 16 clock ticks of
CV information is looped to O1 and I1 is ignored.

Please note: for your convenience the exact time when
the loop switch is switched on is quantized to the nearest
clock tick – may it be in the future or past. This makes
playing exactly in time much easier.

The second example adds a gate signal – such as out-
put by a ribbon controller. The gate is running through
I2→O2.

[button]
button = B1.1
led = L1.1

[cvlooper]
cvin = I1
gatein = I2
clock = I8 # steady clock
cvout = O1
gateout = O2
length = 16 # 16 clock ticks
loopswitch = L1.1

Using a gate changes the behaviour of the CV looper. The
state of gatein (not the exact voltage) is being looped as
well. The CV is recorded to the tape only while the gate is
high.

Using a gate makes two additional features possible:

1. When overlay is on and the input gate is active,
the input CV will override that on the tape and in-
stead the source signal from cvin is bypassed to

the output. The tape’s content stays untouched.
This allows you to overlay the loop CV with your
own from time to time.

2. On the other hand, when overdub is on and the in-
putgate is active, the inputCVwill bewritten to the
tape and replaces the recorded CV at those places.
And it also will be routed to the output at the same
time.

Toggle buttons would fit nicely for these two functions.

Please note: you always need a clock! The CV looper is
useless without one. If you do not want to use an exter-
nal clock, you canmake use of the LFO circuit for creating
an internal clock.

What if you want to loop more than one CV? Just create
more cvlooper circuits – one for each CV. And control
them from the same set of buttons.

Changing the tape or clock speed

It is possible to change the tape speed on the fly in order
to slow down or speed up the recorded loop’s content. It
is important – however – to always change the tape speed
and clock speed at the same timeand in the samemanner.
Otherwise you will get stuttering effects. So if you dou-
ble the tapespeed you also need to double the frequency
of the clock.

Changing the length

Changing length parameter on the fly is supported and
just works. Remember: it does not set the length of the
tape loop but just the length of that part that is played

DROIDmanual for blue-6 174 Table of contents at page 2

back. The recording is always done with the maximum
length. So if you increase the length while playing back
you will get access to the older parts of the CV history
that way. Just don’t make the length longer than the ac-
tual tape (see below).

Limitations

1. The value range of cvin and cvout is -1 … +1 – or -10 V
…+10V. If that range is not sufficient for you, you need to
scale it yourself. For example you could divide the value
by 10 before sending it to cvin andmultiply it with 10 af-
ter it arrives at cvout:

[cvlooper]
cvin = _INPUT_CV / 10
cvout = _OUT
...

[copy]
input = _OUT * 10
output = _OUTPUT_CV

2. Memory (RAM) is a valuable resource. The CV looper
limits itself to 8000 samples in order not to waste too
much memory and leave space for other circuits as well
(the Droid master has about 100.000 bytes of memory
and 8000 samples need 16.000 bytes). But if you want
to make longer loops, you can reduce the tape speed and
thus use less samples per second.

3. The total loop length can be 128 clock ticks at most. If
youneedmore ticks, you candivide the input clock down,
using clocktool:

[clocktool]
clock = G1
divide = 2
output = _LOOP_CLOCK

[cvlooper]
clock = _LOOP_CLOCK
cvin = I5
tapespeed = 0.2 # max loop five x longer
cvout = O5
length = 128 # = 256 original ticks
loopswitch = _SOME_BUTTON

Input Type Default Description

cvin (ci) 0.0 Input CV that should be looped.

gatein (gi) 1 Optional input gate. If you do not patch something here, the gate is assumed to be always high.

clock (c) Input clock. The clock is mandatory and is the base for the definition of the loop length. Also the loop switch is quan-
tized in time to the nearest clock.

reset (r) A trigger here resets the playback head immediately to the start of the loop, if you are in playback mode.

length (l) 1 2 3 16 Length of the loop in clock ticks. Example: You get a length of 16 ticks by patching the number 16 to length. If you
want to set the length bymeans of an external CV that would require 160 Volts. So you need tomultiply your input by
some useful number in that case.

tapespeed (s) 1.0 Relative tape speed, where 1.0 is the normal speed. So a value of 0.5 slows down the speed thus increasing the effec-
tive tape length from 8 to 16 seconds while reducing the sampling rate from 1 ms to 2 ms per sample. Changing the
tape speed on the fly probably leads to interesting results.

loopswitch (ls) + Mandatory parameter: While the loop switch is off theCV looper simply sends all input CVand gate to their respective
outputs. At the same time CV and gate are also recorded to the tape. When the loop switch is on, the CV and gate are
being read from the tape, instead. The input CV and gate are now ignored.

DROIDmanual for blue-6 175 Table of contents at page 2

Input Type Default Description

pause (p) off This is a binary input. If you send a high signal here, the looper pauses. This is only works in playback mode. The
current CV value is hold the entire time. This is not the same as bypass, since in bypass mode the original CV will be
routed through.

overlay (ov) off Overlaying changes the behaviour while looping is active. If overlay is set to on, while the input gate is active the gate
and CV will be sent directly from the inputs rather than read from the tape.

overdub (od) off Overdubbing also changes the behaviour during the looping: If it is active then while the input gate is high the input
gate and CV will be written to the tape – thus changing the loop on the fly.

bypass (b) off Setting bypass to on copies the input CV and gate from their inputs to their outputs while keeping the loop’s content
untouched. This disabled the looping for the while, but you can get back to it later. Note: this is different from turning
off the loop switch, because then your tape’s content would be overwritten.

Output Type Description

cvout (co) Output of the bypassed or looped CV

gateout (go) Output of the bypassed or looped gate

DROIDmanual for blue-6 176 Table of contents at page 2

16.17 dac – DA Converter with 12 bits

This circuit converts a binary representa-
tion of up to 12 bits into an output value in
a given range. Consider the following ex-
ample:

[dac]
bit1 = I1
bit2 = I2
bit3 = I3
output = O1

In this example three bits are being used.
Three bits can represent a number from 0 to 7. These are
mapped to the input range from 0 to 1 (or 0 V to 10 V) in
the following way:

bit1 bit2 bit3 bit value output

0 0 0 0 0.000

0 0 1 1 0.143

0 1 0 2 0.286

0 1 1 3 0.429

1 0 0 4 0.571

1 0 1 5 0.714

1 1 0 6 0.857

1 1 1 7 1.000

In other words: this circuit will convert three different
gate inputs into one analog output value. bit1 has the
most influence, but3 the least.

The normal output range is 0 to 1 (i.e. 10 V) per default,
but you can change that with the parameters minimum
and maximum. For example you could have the three bits
mapped to just the range of 0.1 to 0.5:

[dac]
bit1 = I1
bit2 = I2
bit3 = I3
minimum = 0.1 # 1V
maximum = 0.5 # 5V
output = O1

Now the table looks like this:

bit1 bit2 bit3 bit value output

0 0 0 0 0.100

0 0 1 1 0.157

0 1 0 2 0.214

0 1 1 3 0.271

1 0 0 4 0.329

1 0 1 5 0.386

1 1 0 6 0.443

1 1 1 7 0.500

If you use more of the bit-outputs you get more resolu-
tion. For example if you use bit1 ... bit8, the total range
will be divided into 256 possible output values. Themax-
imum is 12 bits. Since bit 1 is the most significant bit,
adding more and more bits will not change the influence
of the already used bits.

Please also have a look at the circuit adc (see page 113,
which does the exact opposite!

DROIDmanual for blue-6 177 Table of contents at page 2

Input Type Default Description

bit1 ... bit12 (b) + The 12 bit input bits. bit1 is theMSB – themost significant bit. The LSB (least significant bit) is the highest input that
you actually patch.

minimum (m) 0.0 This sets the lower bound of the output range, i.e. the value that the bit sequence 000000000000will produce.

maximum (x) 1.0 This sets the upper bound of the output value, i.e. the value that the bit sequence 111111111111will produce.

Output Type Description

output (o) Output signal.

DROIDmanual for blue-6 178 Table of contents at page 2

16.18 delay – A tape delay for CVs, gates and numbers

Use this circuit todelay themovementCVs,
gates or integer numbers in time. The us-
age is very simple. Feed input signals into
the circuit, set a delay time and these sig-
nals are output again delayed by that time.

Note: This circuit is still experimental. In a future firmware
version it might be changed or removed. Also the file for-
mat on the SD card for the saved recordingsmight change
andanewversionmightnotbeable to loadold recordings.
The basic usage of the delay is very simple:

[delay]
cvin = I1
cvout = O1
delay = 0.5

Here the signal from I1 is output again at O1with a delay
of 0.5 seconds.

You can make the delay time depend on the speed of a
clock signal. just feed a steady clock into clock. Now the
delay parameter is measured in clock ticks – not in sec-
onds anymore.

[delay]
cvin = I1
cvout = O1
clock = G1 # input clock
delay = 4 # delay by 4 ticks

Use as a trigger delay

Alongside the continous CV, eight gate signals can be fed
through the delay. Use gatein1…gatein8 and gateout1

…gateout8 for this purpose:

[delay]
gatein1 = G1
gatein2 = G2
gatein3 = G3
gatein4 = G4
gateout1 = G5
gateout2 = G6
gateout3 = G7
gateout4 = G8
delay = 0.5

Now the gate patterns at the inputs G1 through G4 ap-
pears time shifted by 0.5 seconds at the outputs G5
through G8.

Technical background and limitations

The two circuits recorder (see page 341) and delay (see
page 179) are based on the same implementation of a vir-
tual tape. This virtual tape has three tracks with three
recording and playback heads:

1. One head for recording a continous CV in the range
−1 …+1 (which is−10 V …10 V)

2. One head for recording eight gate tracks in parallel
(CVs where just 0 and 1 is recorded)

3. One head for recording a discrete integer number
in the range 0 …255

All these are recorded in parallel, so for example it’s easy
to record a CV/gate signal with just one cvrecorder. The
discrete number is useful for recording the outputs of
buttongroup (see page 146) circuits or the switches on
the S10 similar things.

Note: The dynamich range of CV signal on the tape is just
-1 …+1 (or−10 V …+10V). Any “too hot” signal is clipped
to that range. The internal resolution of the CV is 16 bit
(precisly: one Volt is divided in 3200 steps). If you need a
larger range, you need to divide the input signal andmul-
tiply the output signal by some factor, but loose a bit pre-
cision that way.

The track with the eight gates records just 0 and 1. Any
other value will be squeezed into that format: values be-
low 0.1 (1 V) are considered 0, all other values 1.

In order to use the RAMof the as efficient as pos-
sible (and allow for many multiple instances of these cir-
cuits), the tape uses just 256 samples. Each time the
state of one of the gates or the value of the number
changes, a new sample is created. A change in the input
CV is handled more intelligently as the CV values of the
samples or interpolated linearily. Themaximum error be-
tween the interpolated value and the actual stored CV is
limited to 0.0001 (which is 1 mV).

If the input CV is more chaotic, however, the number of
samples per time is limited to an average of one sam-
ple every 20 ms, while short periods with up to 10 sam-
ples without this limitations are allowed. This ensures
that theminimum recordable tape length is 256× 20ms,
which is 5.12 seconds. Usually CVs are not so chaotic but
either stepped ormoving smoothly, so the recordings can
be much longer.

If you have the special case of a stepped input CV – such
as the output from a sequencer or from a CV/gate key-
board – you can switch to an alternativemode. Patch the
gate output of the sequencer or keyboard into thesample
input of the circuit. This enables the “triggered mode”.
Here a new sample is just and only created at each posi-

DROIDmanual for blue-6 179 Table of contents at page 2

tive gate edge of the sample input. So the recordings can
be as long as 256 notes.

Note: That way you would loose the gate length, since
the end of the gate does not trigger a new sample. Use
the gatetool (see page 235) with the inputgate and
outputedge to get one trigger at each edge and feed that
into sample.

Saving the tape to disk

The delay does not support presets because of memory
limitations. But you can save the current contents of the
tape to your SD card. This is done by the two trigger in-
puts save and load, which are usually mapped to some
buttons. Here is a simple example.

[delay]
save = B1.5
load = B1.6
...

If you hit button B1.5, the file tape0001.bin is created
on your SD card. Button B1.6 loads that file into the cir-
cuit.

You can use any file number from 1 to 9999 by using the
parameter filenumber. Youmight want tomap that to a
rotary switch of an S10:

[delay]
save = B1.5
load = B1.6
filenumber = S2.1
...

Note: Loading and saving is done in real time from/to
your SD card. The files are very small, but the operation
can takea small numberofmilliseconds. During that time
no circuit will do its job. And if your SD card is missing,
things lag a bit more due to timeouts.

One important difference to presets is that these files
can be share among circuits and even among different

patches. A recording of the recorer circuit can be loaded
with every recorder or delay circuit.

Loading and saving

You might wonder, why this circuit offers loading and
saving of the tape’s content to the SD card. The reason
is not because it’s super useful but because delay uses
the same tape implementation as recorder and saving is
part of that.

When you load a file into the tape, it’s contents will be
audible for a short time. But soon after the tape is over-
written with the new incoming data.

Saving might make more sense. You could make a snap-
shot of the tape’s content and load that into a recorder
(see page 341) for playback. But even that doesn’t seem
to be game changing material.

Input Type Default Description

delay (dl) 1.0 The CVs are delayed by this amount of seconds. If you patch clock as well, the delay is specified in clock tick, so then
delay = 1means “delay by one clock tick”.

cvin (ci) 0.0 Continous input CV

numberin (ni) 1 2 3 Discrete input number in the range 0 ... 255

gatein1 ... gatein8 (gi) Input gates

clock (c) If you use this clock input, all time inputs are measured in clock ticks instead of seconds.

sample (sm) If you patch this input, “triggered”mode is enabled. In thismode, the virtual tape just records a newCVon each trigger
at sample. So it just records stepped CVs, no slopes and no CV changes between the triggers.

DROIDmanual for blue-6 180 Table of contents at page 2

Input Type Default Description

timewindow (tw) 0.0 When in triggeredmode, this optional parameterhelps tacklingaproblemthatmanyhardware sequencers show: often
their pitchCV is not at its final destination value at the time their gate is beingoutput. Often you see a very short “slew”
ramp of say 5 ms after the gate. During that time the pitch CVmoves from its former to the new value.

Now if you trigger thecvtape circuitwith the sequencer’s gate youwill essentially sample thepreviouspitchCV instead
of the new one. Or maybe something in between.

The timewindow parameter configures a short time window after the trigger to trigger. During that time period the
tape will constantly adapt the last sample to a changed input CV. When that time is over, the input is finally frozen on
the tape.

The timewindow parameter is in seconds. So when you set timewindow to say 0.005 (whichmeans 5ms), you give the
input CV 5ms time for settling to its final value after a trigger to sample before freezing it.

bypass (b) off Setting bypass to on copies the input signals directly to the outputs, regardless of any other stuff going on.

save (sv) Send a trigger here to save the current contents of the tape to a file on the SD card. The filename is tapeXXXX.bin,
where XXXX is replaced by the number set by filenumber.

load (ld) Send a trigger here to load a previously saved file into the tape. Use filenumber so specify which file to load.

filenumber (f) 1 2 3 1 Number of the file to load or save. The range is 0 - 9999. If filenumber is 123, the name on the SD card is
tape0123.bin. These files are shared between all recorder and delay circuits.

Output Type Description

cvout (co) Output of the continous input CV

numberout (no) 1 2 3 Output of the discrete number

gateout1 ... gateout8
(go)

Output of the gates

overflow (ov) When the internal memory of the tape is exceeded and data got lost, this gate goes to 1 for 0.5 seconds. If you are
suspecting this situation, you can wire this output to an LED and observe the memory status that way.

DROIDmanual for blue-6 181 Table of contents at page 2

16.19 detune – Detunemultiple voices in amost disharmonic way

Sometimes braking the harmony – at least
for some period of time – can be a way to
break through monotony. This circuit al-
lows you to detune up to eight voices in a
most disharmonic way.

The application is simple. Before outputting your pitch
information from your sequencers, quantizers, chord
generators, arpeggiators and friends, feed them through
this circuit. Then use the CV input detune to select the
level of ugly detuning.

For a first test, startwith using a pot for the detune value:

[detune]
detune = P1.1
input1 = _PITCH1 # from somewhere
input2 = _PITCH2 # from somewhere
input3 = _PITCH3 # from somewhere
input4 = _PITCH4 # from somewhere
input5 = _PITCH5 # from somewhere
output1 = O1
output2 = O2
output3 = O3
output4 = O4
output5 = O5

The crux of thematter is that all of the voices are detuned
in realation to each other. This circuit makes sure that

each of the eight outputs is detuned in a different way,
so if you input a chord, it won’t just simply move up and
down in pitch but gets distorted and disharmonic.

Hints:

• Try using a slow and slight bipolar triangle LFO.
• Try using an envelope with a short attack and a
longer release to detune at the start of every bar
and let the voices fade back into tune.

This detune algorithm is identical with that of the Sinfo-
nion. Therefore it is a goodmatch for the chaoticdetune
output of the circuit sinfonionlink (see page 353).

Input Type Default Description

input1 ... input8 (i)

detune (d) 0.0

tuningmode (tm) 0 While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch (tp) � 1V
Oct 0V This pitch CV will be output while the tuning mode is active.

Output Type Description

output1 ... output8 (o)

DROIDmanual for blue-6 182 Table of contents at page 2

16.20 droid – General DROID controls

This circuit gives access to some general
configuration settings. It does not

make sense to create more than one in-
stance of this.

The droid circuit gives you access to mis-
cellaneous functions that affect the system as a whole.
Themost commonly used functions are that for lowering
the brightness of the LEDs on the master, G8 and X7 via

ledbrightness and that of reducing the force feedback
power of virtual notches of the motor faders of the M4.
This is done with m4notchpower.

Input Type Default Description

ledbrightness (l) 1.0 Let’s you dim all of the 24 LEDs of the master and the G8. This is mainly for those who think they are too bright. But
since this parameter can be CV-controlled, you could of course also do funny things with it. Beware: if you set this to
zero, the LEDs will be completely dark. This also includes possible error messages.

maxslope1 ... maxslope8
(s)

0.25 Sets a threshold for a voltage change between two samples until the internal logic of the outputs assumes that
this step is intentional and should not be smoothed out. A typical case where you do not want smoothing is the pitch
output of a sequencer.

Thedefault value is0.25. Avalueof0.0 turnsoff smoothingaltogether since the slightest voltage change is considered
an intentional jump.

lpfilter1 ... lpfilter8
(lf)

0 1 0.25 Configures a digital low pass filter on the output in order to smooth out digital noise resulting from the ’s main
loop. This loop is running somewhere between 3 and 6 kHz – depending on the number of circuits you use.

Per default this filter is set to 0.25 – which means a mild filtering – thus still allowing fast and snappy envelopes and
other rapidly changing signals while filtering away most of the digital artefacts.

If you use an output for a slow envelope that is combined with an audio path in a way that you hear digital artifacts
then increase that value. This is e.g. the case if you modulate a VCA that in turn modulates a very low pitched audio
wave with very few harmonics (such as a sine or triangle wave).

Themaximum value of 1.0 leads to a very strong filtering – i.e. removing all fast transients. Snappy envelopes will be
smoothed out heavily. Square wave LFOs will be converted into lower level almost sine waves.

m4faderspeed (m4f) 0 1 Set the force / speedof themotor faders. Faster speedsneedmoreelectrical powerandmightwearoff the faders faster.
Too slow speeds might lead to poor operation. This value goes from 0.0 (slowest possible speed) to 1.0 (maximum
speed). If you don’t use this parameter, some reasonable default is used that depends on the firmware of the M4
module.

statusdump (sd) A trigger here does the same as a double “click” on the master’s button: it creates a status dump file on the SD card.
This trigger allows you automated control with a precise timing. Each dump needs a couple ofmilli seconds towrite to
the SD card. So better do not spam this input with a high frequency of triggers.

DROIDmanual for blue-6 183 Table of contents at page 2

Input Type Default Description

m4notchpower (m4n) 0 1 Set the force feedback power of the M4 motor fader units when they operate with virtual notches. The range is from
0 (minimum notch power) to 1 (maximum notch power). Note: 0 does not turn the notches off, there is still some
minimal feedback. If you don’t use this parameter, the notch force feedback operates at some default power, which is
dependent on the M4 firmware version.

calibrate (c) Immediately enter the calibration procedure, that’s contained in the maintainance menu (only MASTER). Skips the
menu. After calibration is done, resets.

startcontrollerupgrade
(u)

Immediately starts the firmware upgrade procedure for controllers likeM4 and E4. After one succesfull upgrade resets
the master.

startx7upgrade (x7) Immediately starts the X7 firmware upgrade procedure (which is located at position 8 of the maintainance menu).
After the upgrade of the X7 resets the master.

clear (cl) A trigger here sends a trigger to the clear input of all circuits that support this. That brings the state of those circuits
to their start state. Circuits that have presets do keep those presets untouched. Just the current state is affected.

That trigger is not sent to circuits whose clear input is patched.

Note: Just that part of the state is affected that is saved to the SD card. For example the algoquencer (see page 115)
does not reset to the first step, it just clears it’s current pattern.

clearall (ca) A trigger here sends a trigger to the clearall input of all circuits that support this. That’s like a global factory reset
for all of your circuits. Everything is set to its starting state, including all presets of those circuits.

That trigger is not sent to circuits whose clearall input is patched.

Note: Just that part of the state is affected that is saved to the SD card. For example the algoquencer (see page 115)
does not reset to the first step, it just clears it’s current pattern.

uislowdown (us) 1 Since blue-6 circuits that are ment to build a user interface are executed at just one eighth of the normal speed. They
are just executed every eighth loop cycle. This saves considerable loop time and speeds up all the other more musical
circuits.

This breaks the rule that all circuits are executed in the order of their appearance in the patch, however. So if your
patch really depends on that and your buttons, buttongroups and pots seem to behave weird, try switching off the UI
optimization by setting this parameter to 0.

DROIDmanual for blue-6 184 Table of contents at page 2

16.21 encoderbank – Create bank of up to 8 virtual input knobs from E4 encoders

This circuit makes your life easier if you
deal with lots of encoders in a larger setup.
Instead of using a single encoder (see page
189) circuit for every virtual knob, you can
handle up to eight encoders with just one
circuit.

The encoderbank circuit shares almost all features with
the single encoder circuit, except for:

• movedup, moveddown and valuechanged triggers
• The override input
• The sharewithnext functionality

Please read themanual of the encoder (see page 189) cir-
cuit for all the details and examples of the features. We
don’t repeat them here for sake of tersity.

Example of a definition of 3 encoders:

[encoderbank]
firstencoder = E2.1
output1 = O1
output2 = O2
output3 = O3
outputscale = 2V

Defining the number of encoders

This circuit has no setting for the number of encoders
it controls. This number is automaticall defined by the
number of outputs, leds or buttons you use. More pre-
cisely, it is the highest outputX or ledX or buttonX you
use, whichever is higher. In the upper example, output3
is the highest connected output number, so the circuit
controls three encoders, starting from firstencoder.

Input Type Default Description

firstencoder (e) 1 2 3 1 The first encoder to use. You can either use it’s register name, like E8.2 for encoder 2 on controller 8. As an alternative
you can use a number like 6. That would specify the 6th encoder of your setup: the encoder number 2 on your second
E4.

For each of the output jacks you use, one encoder is used, following the order of your controllers.

This value is read just once when the starts. Making this parameter dynamic does not work.

led1 ... led8 (l) 0 1 You can use the rings of LEDs around the encoders as virtual LEDs using this parameter. This is similar to using the
according L registers of the E4, but honors the select input.

startvalue (sv) 0.0 This sets the value the encoder gets when you start this circuit for the first time or when you send trigger to clear.

Note: the range of this value refers to the situation before outputscale and outputoffset is applied. So if mode is
unused or at 0, a startvalue of 0.5 sets the encoder’s virtual value exactly to the center – regardless of any scaling or
offsetting that happens afterwards.

notch (no) 0.0 This parameter helps you to dial in exactly the center of the selected range, which is 0.5 in normal mode and 0.0 in
bipolar mode.

The value of notch specifies the portion of one complete 360 cycle of the pot during which the center position should
be assumed. 0.1 is probably a good value.

Notch does not work if mode selects positive or negative infinity.

DROIDmanual for blue-6 185 Table of contents at page 2

Input Type Default Description

outputscale (os) 1.0 The output is multiplied by this value. This is just for convenience andmay save a copy (see page 172) circuit in some
situations.

outputoffset (oo) 0.0 After scaling the virtual value with outputscale, this value is being added before sending the result to the output.

mode (m) 1 2 3 1 Selects the possible range of the virtual value.

0 Off: the encoder is unsed, its LEDs are off

1 Normal mode: fixed range between 0.0 and 1.0

2 Bipolar mode: fixed range between -1.0 and 1.0

3 Positive infinity: open range between 0.0 and∞

4 Negative infinity: open range between−∞ and 0.0

5 Bipolar infinity: open range between−∞ and∞

6 Circular infinity: range is 0.0 … 1.0, but repeats over in both directions

This setting is ignored if discrete is in use.

Note: The mode 0 is for situations where encoders are overlayed with select and an encoder is unused. Setting mode
= 0 can be used to disable this encoder and blank its LEDs.

smooth (sm) 0.5 Unlike a potentiometer, an encoder does not output continous values but steps. If you directly wire the output of an
encoder to a CV input of an audio module, the steps might become audible.

Therefore the final values of the encoder are smoothed out by a simulation of a low pass filter. That’s essentially the
same as in the slew circuit. The smoothing is enabled per default but you can change it with this parameter.

A value of 0.0 turns off smoothing andyouget access to the tiny steps of the encoder. 1.0 selects amaximumsmooth-
ing, which has also the effect that fast turns of the encoder are slowed down a bit. The default value of 0.5 does just
a mild slew limiting.

If you use discrete, the smoothing is not applied.

discrete (d) 1 2 3 0 Set this to an integer number of 2or higher to enablediscretemode. In thismode the encoderworks like a rotary switch
for selecting one of the numbers 0, 1, 2 and so on. The number you set for discrete selects the number of positions
in this “switch”. For example discrete = 4 produces the values 0, 1, 2 or 3.

In this mode the inputs notch, mode and smooth are ignored.

DROIDmanual for blue-6 186 Table of contents at page 2

Input Type Default Description

snapto (sn) + Use thisparameter todefineapositionwhere theencodervalueautomatically returns to if it is not turned. Thisbehaves
a bit like a pitch bendwheel. You can get crazy CVmodulations if you use a dynamic CV for snapto, such as the output
of an LFO. The encoder’s valuewill try to follow the LFO but you can still turn the encoder andwork “against” the LFO.

This mechanism also works if the encoder is not selected.

snapforce (sf) 0.5 Specifies the speed or “force” with that the encoder moves back to the snapto position if that is used. A force of 0.0
deactivates snapto.

sensivity (se) 1.0 The sensivity determines how far you need to turn the knob to get which amout of value change. Per default one turn
of 360 degrees changes to the value from 0.0 to 1.0. A sensitivity of 2, doubles the speed of change, 0.5 slows it
down to the half.

If you use mode to enable infinity, there is no total range. In this case one turn changes the value by sensivity.

If you use discrete, one turn of the knob changes the virtual switch by eight positions, if sensitivity is at 1.0, and
accordingly faster or slower if you change that.

autozoom (a) 0 1 0.0 The “auto zoom” feature allows you to fine adjust values when turning the knob slowly and coarse adjust when you
turn it fast. If autozoom is at the maximum value of 1.0, turning the knob just slowly changes the value by super tiny
amounts, while turning it fast operates way faster than usual. Use any value between 0.0 and 1.0 for autozoom to
select the level of this slowing down for slowmovements.

autozoom has no effect if discrete is used.

color (co) + Color of the pointer in the LED ring. Here are some example color values:

0.2 cyan

0.4 green

0.6 yellow

0.73 orange

0.8 red

1.0 magenta

1.1 violet

1.2 blue

DROIDmanual for blue-6 187 Table of contents at page 2

Input Type Default Description

negativecolor (nc) + If you use this parameter, it defines the color of the LEDs in case the current logical value is negative.

ledfill (lf) 1 2 3 1 Selects whether the LED ring displays the current value with just a single colored dot (ledfill = 0) or by additionally
illuminating all LEDs between 0 and the current value in half brightness (ledfill = 1).

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 8 presets, so this number ranges from 0 to 7.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

output1 ... output8 (o) Output the current value if the virtual encoder value (don’t use this if you are using sharewithnext).

button1 ... button8 (b) This outputs provides youwith the current states of the push buttons in the encoders, but only if the circuit is selected.
While you could do this with an extra button (see page 141) circuits, using this output is more convenient in some
situations.

DROIDmanual for blue-6 188 Table of contents at page 2

16.22 encoder – Provide access to a knob on the E4 controller

This circuit provides access to one of the
encoders of anE4 controller and allows you
tocontrol one “virtual” valuewith it. Unlike
pots or buttons, the encoders always need
a circuit to use them.

Introduction

The E4 controller (see page 70) has four rotary knobs that
you can turn endlessly in either direction. These knobs
are commonly called “encoders” – probably because you
can encode data with them, which is weird, because with
buttons, faders and switches youcanencodedata equally
well.

Unlike a potentiometer, which always has a certain posi-
tion, an encoder does not have one and thus no current
“value”. For this reason you cannot directly use the regis-
ters of the encoders, like E1.1. Instead you always need
a circuit to access them.

The circuit encoder uses one of the encoders and lets you
control a virtual valuewith it. It is virtual, becauseyoucan
map as many different values onto one physical encoder
as you like. Mapping multiple functions to one encoder
requires using the select input and needs one instance
of the encoder circuit per function. Please refer to page
348 for the whole story on select.

An alternative to encoder is the circuit encoderbank (see
page 185). It does the same, but with a number of en-
coders at once, so you need less circuits if you work with
many encoders in a similar way.

What you can dowith encoders

Encoders are surprisingly flexible and can do much more
than mimicking a potentiometer. Here are some exam-
ples:

• Select a value between 0.0 and∞ (infinity)
• Select a discrete integer value, e.g. 0, 1, 2, …7
• Use it as a kind of “pitch bend dial”: the value
moves back to the center on it’s own if you don’t
move it.

• Strumming: get a trigger every time the knob is
turned by a certain angle

For the purpose of displaying the currently selected
value, each encoder is surrounded by a ring of 32 multi
color LEDs.

In addition each encoder has a builtin push button that
can be accessed with a B register, e.g. B1.1 for the first
button if the E4 is your first controller. There is also an
L register for each encoder (e.g. L1.1). This allows you
to use the whole LED ring around the encoder as one big
white LED – nicely overlaying with any actual animation
from the encoder itself.

Basic usage

The most basic example uses your first encoder (on the
first E4) to select a value between 0 and 1. The result is
sent as a voltage to output O1. That’s as simple as this:

[encoder]
encoder = E1.1
output = O1

E1.1 stands for encoder number 1 on you first controller
(which must be an E4). E7.2 would mean encoder 2 on
controller number 7.

When you now turn the encoder, you see a colored dot
moving around the square LED ring. It begins at the bot-
tom, left of the center. This positionmarks the value 0.0:

Turn the encoder clockwise and the colored dot moves
along, leaving a trail behind:

At the end – denoting the value 1.0 – the dot is again at
the bottom, this time right of the center:

DROIDmanual for blue-6 189 Table of contents at page 2

Notes:

• The position of the white pointer of the knob has
no meaning. It can be anywhere. You can use it
for your ownorientation, if you like, but it does not
reflect the current logical value. We use the same
knobsas for thepotentiometers simplybecausewe
like the overall look.

• The light of the LEDs ismixing in the opaquemate-
rial of the front plate so the light of one LED posi-
tion bleeds a bit into its neighbor positions. That’s
the reasonwhy the thebottomposition lights a bit,
was well, in a real E4.

Multiple functions on one knob

Overlaying an encoder with multiple independent func-
tions is a standard task. Asusual itworkswith theselect
input (see page 348 for howall thisworks). The following
example uses a buttongroup (see page 146) for selecting
three different encoder functions, eachoutputting a volt-
age to a CV output. Here is a complete patch example:

[p2b8]
[e4]

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3

led1 = L1.1
led2 = L1.2
led3 = L1.3

[encoder]
encoder = E1.1
select = L1.1
output = O1

[encoder]
encoder = E1.1
select = L1.2
output = O2

[encoder]
encoder = E1.1
select = L1.3
output = O3

It’s nomistake that each encoder circuit uses encoder =
E1.1, because we want to map three different functions
on the same encoder. Each time you press another of the
three buttons, you switch to the corresponding function
and the LEDs around the encoder get a different color.

Choosing a different range of values

A range from 0.0 to 1.0 is not alwayswhat youwant. For
your convenience there are the parameters outputscale
and outputoffset. They are applied to the output value
and work similar as the attenuation ond offset of param-
eter inputs: the scale is applied first and then the offset.

Let’s assume you want the output to be in the range 0.2
… 0.5. This can be achieved by scaling the output by 0.3
first (because 0.5 - 0.2 = 0.3) and then adding 0.2
(because that’s the start value):

[encoder]
encoder = E1.1
output = O1
outputscale = 0.3
outputoffset = 0.2

Setting the sensivity of the knob

For technical reasons an encoder of the E4has 96 discrete
steps in each rotation. Thismeans that all changes of the
output value are stepped. If your range is 0.0 … 1.0, one
such step is 1

96 , which is 0.0104 – or 0.104V. If you use
the output as the pitch of a VCO, these steps are clearly
audible.

You can use the parameter sensivity to amend this. If
you set this e.g. to 0.1 (which is 10%), one rotation just
does 10% of 1

96 and the step size is reduced to 10% of its
original value. Thismeans, that youneed to turn theknob
10 times around until the colored dot reaches it’s end po-
sition:

[encoder]
encoder = E1.1
output = O1
sensivity = 10%

If you like, you can use the push button in the encoder for
switching the sensivity. The output button gives you the
current state of the encoder’s button, when it is selected.
This you can self-patch into the sensivity. In the follow-
ing example the sensvity is 10%. But as long as you hold
the button it goes up to 100% (the button adds 90% to the
standard 10%):

DROIDmanual for blue-6 190 Table of contents at page 2

[encoder]
encoder = E1.1
output = O1
button = _BUTTON
sensivity = _BUTTON * 90% + 10%

A different way for changing the sensitivity is to use
autozoom. This parameter needs a value from 0 (auto
zoom is off) to 1 (maximum auto zoom). When auto
zoom is enabled, slowmovements of the encoder change
the virtual value just by very tiny amountswhile very fast
movements change thevalueevenmore thanusual. With
autozoom = 1, this effect is dramatic, so maybe start
with using 0.5 as a first try:

[encoder]
encoder = E1.1
output = O1
autozoom = 0.5

Bipolar values

Sometimes youneedbipolar values, e.g. those that range
from -1.0 to +1.0. This can be achived by setting mode
= 2. The following example outputs a value between -
2 V and 2 V. It achieves this by setting the output scale to
2V, which is applied to the original output range of -1.0 …
+1.0:

[encoder]
encoder = E1.1
output = O1
mode = 2
outputscale = 2V

While you could achive a similar effectwith outputscale
= 4V and outputoffset = -2V, using mode is better,

since you get a nice bipolar LED display where the cen-
ter of the value (denoting 0.0) is top center and the LED
trail starting from there.

Infinity

The fact that the encoder has no “end” can be used to
choose a value froman infinite range. There are three dif-
ferent values for mode that setup an infinite range:

• mode = 3: Positive infinity: 0 …∞
• mode = 4: Negative infinity: −∞ … 0
• mode = 5: Bipolar infinity: −∞ …∞

When working with infinity, it can be handy to be able to
reset the value to 0.0. This is done with the clear input,
which can be self-patched to the button:

[encoder]
encoder = E1.1
output = O1
mode = 3 # positive infinity
button = _BUTTON
clear = _BUTTON

Circular infinity

The encoder supports yet another type of infinite move-
ment. This is selected by mode = 6:

• mode = 6: Circular infinity: range is 0.0… 1.0, but
repeats over in both directions

In this mode the output always is in the range 0.0 … 1.0
– or to bemore precisemore like 0.0… 0.99999..., since
1.0 is never reached. If the value is alreadynear 1 andyou
continue turning clockwise, it starts over at 0. Or if you

are at 0 and turn counter clock wise, the value jumps to
0.9999... from there.

[encoder]
encoder = E1.1
output = O1 # always in range 0 ... 1
mode = 6 # circular infinity

Two applications spring into mind where this is useful:

• Setting the phase or syncphase of the lfo (see
page 239) circuit.

• Setting the relative timing of the timing (see page
365) circuit.

Colors and LEDs

Per default, every virtual encoder function get’s its own
color for the LED ring. You can set your favourite color
with the color parameter. Here is a simple example:

[encoder]
encoder = E1.1
color = 0.4 # green
output = O1

If you are using a bipolar range (e.g. mode = 2) you can
set a different color for the negative range, for example
red:

DROIDmanual for blue-6 191 Table of contents at page 2

[encoder]
encoder = E1.1
output = O1
mode = 2
outputscale = 2V
color = 1.2 # blue
negativecolor = 0.8 # red

Thismakes theLED indication red in thenegativehalf and
keeps the usual color (here blue) in the positive half. The
center position is always marked white:

Here are some example colors:

0.2 cyan

0.4 green

0.6 yellow

0.73 orange

0.8 red

1.0 magenta

1.1 violet

1.2 blue

Discrete values

Sometimes you need a control for discrete values like 0,
1, 2 and so on. This might be a setting for the length of
a sequence, a clock division or a value for select inputs.
You can set an encoder to output such numbers by using
the parameter discrete.

Set discrete to the number of different values the en-
coder should output. Of course, this number needs to be
a least 2. The output values always start from 0. Here is
an example for the encoder switching between the values
0, 1, 2 or 3:

[encoder]
encoder = E1.1
discrete = 4 # values 0, 1, 2, 3
output = _SELECT # goes somewhere

Working with discrete could be simulated by using the
normal mode and applying a quantizer (see page 337)
circuit afterwards. But that does not have the nice visual
feedback that discrete has.

The LED ring shows the possible “switch positions” of the
encoder as colored dots while the currently selected po-
sition is white. Here is what this looks like with 4, 5 and 7
positions (thewhite pointer is at randompositions here):

The parameters offset and scale can be used to scale or
shift these numbers. Let’s build a switch for selecting one
of the values -2 V, -1 V, 0 V, 1 V and 2 V. Such a switch can
be used as an octave switch for a VCO.

To do this we set discrete = 5, because it’s five differ-
ent values (0 … 4). Then we scale this by 1 V to get 0 V …
4V.And ifwe then substract 2Vby settingoutputoffset
= -2V, we get what we want:

[encoder]
encoder = E1.1
output = O1
discrete = 5
outputscale = 4V
outputoffset = -2V

Note: mode does not work with discrete. You cannot
have infinite numbers to choose from, but you can set
discrete = 1000000 if you really need something prac-
tically near to infinity.

Output triggers on encodermovements

You can get a trigger whenever the encoder has moved
in either direction by using the outputs movedup and
moveddown. movedupmeans that the virtual value would
increase, hence clockwise rotation.

Per default you get a trigger for every 5 internal move-
ment steps of the encoder. One full rotation is 96 steps.
You can change this resolution with movementticks.
For example if you want 12 triggers per rotation, set
movementticks = 8.

[encoder]
encoder = E1.1
output = O1 # output is optional
movementticks = 8
moveddown = O2 # CCW
movedup = O3 # CW

DROIDmanual for blue-6 192 Table of contents at page 2

Note: If you set movementticks to a low number and/or
turn the knob super fast, the triggers can become so fre-
quent that they would merge together and the receiving
end would see them as one big blurb. This is because the
duration of a trigger is 10ms – as it is standard in .

In order to avoid this, the triggers are queued and delayed
in away that there is at least a gap of 10ms between two
triggers. This way no trigger is lost, but after a fast turn
of the knob it can take some fraction of a second until the
last trigger has been sent out.

There is an alternative trigger that fireswhenever the vir-

tual value has changed:

[encoder]
encoder = E1.1
output = O1 # output is optional
valuechanged = O2

There are a few of differences to the moveddown and
movedup outputs. Those are more “lowlevel” and tell
you about the movement of the actual encoder, while
valuechanged watches over the virtual value that you
edit with the encoder. Here are the differences:

• You don’t get triggers if theminimum ormaximum
value has been reached and the knob is still turned.

• Whendiscrete is used, valuechanged triggers ex-
actly at the point when the encoder snaps to the
next position.

Yetmore features

There are evenmore features of the encoder ciruit, which
youfind in the list of paramters below. Specifically have a
look at notch, smooth, snapto, snapforce, ledfill and
override.

Input Type Default Description

encoder (e) 1 2 3 1 The encoder to use. You can either use it’s register name, like E8.2 for encoder 2 on controller 8. As an alternative you
can use a number like 6. That would specify the 6th encoder of your setup: the encoder number 2 on your second E4.

This value is read just once when the starts. Making this parameter dynamic does not work.

override (or) + Use this parameter to convert the encoder into a mere display. The knob is completely ignored and the value from the
input is used as the value that is displayed in the LED ring.

The parameter discrete still works, so you can use the LED ring for displaying a discrete number such as the current
step in a sequence.

Also mode is honored. Values that do not fit into the selected range or number of discrete values will be rounded to
the nearest allowed value.

override honors select, so if you use select, it does nothing to the LEDs while the encoder circuit is not selected.

sharewithnext (sw) 0 If set this to 1, the output output will not be used but the circuit shares it’s output with the next encoder circuit and
operates on the same virtual value as that. Use this if you want to control the same value with two different encoder
circuits (which might be available in different contexts of your user interface).

If you do this, make sure that both encoder circuits have the same settings of mode and discrete.

movementticks (mv) 1 2 3 5 Specifies the number of encoder ticks you need to turn to get one trigger at movedup or moveddown. One complete
rotation of the encoder creates 96 such ticks.

DROIDmanual for blue-6 193 Table of contents at page 2

Input Type Default Description

led (l) 0 1 + You can use the ring of LEDs around the encoder as one virtual LED using this parameter. This is similar to using the
according L register of the E4, but honors the select input.

If you set led to 1, all LEDs will get brighter or white, if they would be black otherwise.

startvalue (sv) 0.0 This sets the value the encoder gets when you start this circuit for the first time or when you send trigger to clear.

Note: the range of this value refers to the situation before outputscale and outputoffset is applied. So if mode is
unused or at 0, a startvalue of 0.5 sets the encoder’s virtual value exactly to the center – regardless of any scaling or
offsetting that happens afterwards.

notch (no) 0.0 This parameter helps you to dial in exactly the center of the selected range, which is 0.5 in normal mode and 0.0 in
bipolar mode.

The value of notch specifies the portion of one complete 360 cycle of the pot during which the center position should
be assumed. 0.1 is probably a good value.

Notch does not work if mode selects positive or negative infinity.

outputscale (os) 1.0 The output is multiplied by this value. This is just for convenience andmay save a copy (see page 172) circuit in some
situations.

outputoffset (oo) 0.0 After scaling the virtual value with outputscale, this value is being added before sending the result to the output.

mode (m) 1 2 3 1 Selects the possible range of the virtual value.

0 Off: the encoder is unsed, its LEDs are off

1 Normal mode: fixed range between 0.0 and 1.0

2 Bipolar mode: fixed range between -1.0 and 1.0

3 Positive infinity: open range between 0.0 and∞

4 Negative infinity: open range between−∞ and 0.0

5 Bipolar infinity: open range between−∞ and∞

6 Circular infinity: range is 0.0 … 1.0, but repeats over in both directions

This setting is ignored if discrete is in use.

Note: The mode 0 is for situations where encoders are overlayed with select and an encoder is unused. Setting mode
= 0 can be used to disable this encoder and blank its LEDs.

DROIDmanual for blue-6 194 Table of contents at page 2

Input Type Default Description

smooth (sm) 0.5 Unlike a potentiometer, an encoder does not output continous values but steps. If you directly wire the output of an
encoder to a CV input of an audio module, the steps might become audible.

Therefore the final values of the encoder are smoothed out by a simulation of a low pass filter. That’s essentially the
same as in the slew circuit. The smoothing is enabled per default but you can change it with this parameter.

A value of 0.0 turns off smoothing andyouget access to the tiny steps of the encoder. 1.0 selects amaximumsmooth-
ing, which has also the effect that fast turns of the encoder are slowed down a bit. The default value of 0.5 does just
a mild slew limiting.

If you use discrete, the smoothing is not applied.

discrete (d) 1 2 3 0 Set this to an integer number of 2or higher to enablediscretemode. In thismode the encoderworks like a rotary switch
for selecting one of the numbers 0, 1, 2 and so on. The number you set for discrete selects the number of positions
in this “switch”. For example discrete = 4 produces the values 0, 1, 2 or 3.

In this mode the inputs notch, mode and smooth are ignored.

snapto (sn) + Use thisparameter todefineapositionwhere theencodervalueautomatically returns to if it is not turned. Thisbehaves
a bit like a pitch bendwheel. You can get crazy CVmodulations if you use a dynamic CV for snapto, such as the output
of an LFO. The encoder’s valuewill try to follow the LFO but you can still turn the encoder andwork “against” the LFO.

This mechanism also works if the encoder is not selected.

snapforce (sf) 0.5 Specifies the speed or “force” with that the encoder moves back to the snapto position if that is used. A force of 0.0
deactivates snapto.

sensivity (se) 1.0 The sensivity determines how far you need to turn the knob to get which amout of value change. Per default one turn
of 360 degrees changes to the value from 0.0 to 1.0. A sensitivity of 2, doubles the speed of change, 0.5 slows it
down to the half.

If you use mode to enable infinity, there is no total range. In this case one turn changes the value by sensivity.

If you use discrete, one turn of the knob changes the virtual switch by eight positions, if sensitivity is at 1.0, and
accordingly faster or slower if you change that.

DROIDmanual for blue-6 195 Table of contents at page 2

Input Type Default Description

autozoom (a) 0 1 0.0 The “auto zoom” feature allows you to fine adjust values when turning the knob slowly and coarse adjust when you
turn it fast. If autozoom is at the maximum value of 1.0, turning the knob just slowly changes the value by super tiny
amounts, while turning it fast operates way faster than usual. Use any value between 0.0 and 1.0 for autozoom to
select the level of this slowing down for slowmovements.

autozoom has no effect if discrete is used.

color (co) + Color of the pointer in the LED ring. Here are some example color values:

0.2 cyan

0.4 green

0.6 yellow

0.73 orange

0.8 red

1.0 magenta

1.1 violet

1.2 blue

negativecolor (nc) + If you use this parameter, it defines the color of the LEDs in case the current logical value is negative.

ledfill (lf) 1 2 3 1 Selects whether the LED ring displays the current value with just a single colored dot (ledfill = 0) or by additionally
illuminating all LEDs between 0 and the current value in half brightness (ledfill = 1).

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

DROIDmanual for blue-6 196 Table of contents at page 2

Input Type Default Description

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

output (o) Outputs the current virtual value of this circuit. Don’t use this if you are using sharewithnext.

button (b) This output provides you with the current state of the push button in the encoder, but only if the circuit is selected.
While you could do this with an extra button (see page 141) circuit, using this output is more convenient in some
situations. While the circuit is not selected, the output is set to 0.

moveddown (md) Outputs a trigger whenever you have turned the encoder left (counter clock wise) by a certain amount (which can be
altered by movementticks. Beware: If you turn too fast, triggers might overlap and merge together.

movedup (mu) Outputs a trigger whenever you have turned the encoder right (clock wise) by a certain amount (which can be altered
by movementticks). Beware: If you turn too fast, triggers might overlap and merge together.

valuechanged (vc) Outputs a trigger whenever the virtual value has changed.

DROIDmanual for blue-6 197 Table of contents at page 2

16.23 encoquencer – Performance sequencer using E4 encoders

This circuit is an exact replica of the
motoquencer (see page 286) circuit, but it
uses encoders of the E4 controller instead
of the motorfaders of an M4 controller.

Here is a minimal example:

[e4]

[encoquencer]
clock = I1
cv = O1
gate = O2

The manual section of the motoquencer (see page 286)
circuit is long and deep and we don’t want to duplicate it
here. Please go topage286 to learn about all features and
see examples. Here are the only differences between the
encoquencer and the motoquencer:

• The circuit’s name is encoquencer and uses en-
coders.

• For setting and removing gates, it uses the push
buttons in the encoders.

• It uses the LED rings around the encoders to visu-
alize what’s going on.

• The encoders do not give haptic feedback, of
course.

Please don’t get confused by the fact that many param-
eters have the word fader in their name or description.
This is because we chose to use the same names as in
the motoquencer. This allows you so to use all patch ex-
amples for the motoquencer. The only thing you have
to do is to replace the circuit name motoquencer by
encoquencer everywhere in these patches. When you
read “fader” or “M4”, think of “encoder” and “E4”.

LED visualization

Unlike a fader, an encoder has no visible position. The E4
uses a ring (or rather square) of LEDs, instead. Read the
LEDs as follows:

Every stepof the sequence is representedbyoneencoder.
Themiddle threeLEDsbeloweachencoderhave the same
function as the touch button’s LED in the M4: They re-
flect the current buttonmode. Usually they shows active
gates (greenish blue). If the buttonmode is set to “start /
end”, the three LEDs are green on the first used step and
a red LED on the last one.

The two LEDs left and right of those for the gates are
unused. The remaining 25 LED visualise the current
setting of the sequencer step according to the current
fadermode:

• Pitch / CV: In quantized mode every scale note is
represented by one colored LED. The color reflects
the chord function of that note. For example root
notes are blue, fifths are green, thirds are red. That
makes it easier to set the right note. In unquan-
tized mode you just get a blue LED gauge starting
from the bottom left.

• RandomizeCV: A light greenLEDgauge showsyou
the amount of randomization.

• Gate propabilites: The eight possible settings are
represendted by eight positions in the ring. The
LEDs are blue for the various standard random po-
sitions of 100%, 50%, 25% and 12%. The positions
for playing a note every 2nd or 4th turn are light
green. And the special position 1 for playing a note
when the last randomwas positive is magenta.

• Repeats: The LEDs are purple and white. Purple
means an odd number (1, 3, 5, 7, 9, 11, 13, or 15).

Whitemeans an even number 2, 4, 6, 8, 10, 12, 14,
16. This funny scheme makes it easier to spot cer-
tain numbers.

• Gate pattern: The for possible settings are repre-
sented by one colored corner of the ring, each. It
order is cyan (just play the first repetition), ma-
genta (play all repetions), orange (play one long
note), yellow (tie this note with the next one).

• Ratchets: The number of ratchets are symbolized
by purple LEDs for odd numbers (1, 3, 5, 7) and
white LEDs for the even numbers (2, 4, 6, 8).

• Gate: If the fader mode is set to 6 (gate), all LEDs
are light blue for enabled gates.

• Skip: If the fader mode is set to 7 (skip), all LEDs
are violet for skipped notes.

And the encoquencer has two inputs the motoquencer
(see page 286) does not have: ledpreview and zorder.
When you set ledpreview = 1, the LED ring always
shows all possible values in dimmed colors. Try it out!
And zorder swaps how the steps of the sequence are dis-
tributed on the encoders from “vertical first” to “horizon-
tal first”.

DROIDmanual for blue-6 198 Table of contents at page 2

Input Type Default Description

zorder (z) 1 2 3 0 This parameter changes to order of the encoders in the sequence. The natural order (at the default value of zorder
= 0) assignes the sequence steps to the encoders in their order of appearance in your controllers. The step counter
moves downwards the four encoders of one E4, then jumps to the first encoder of the next E4 and so on. There are four
different choices. The choices 2 and 3 are for situations where you mount the master at the right of your controllers.

0 sequence step moves downwards, E4 by E4

1 sequence step moves left to right, row by row

2 Like 0, but start with last E4

3 right to left, row by row

The name zorder resembles the fact that if you draw the order of the encoders with a pen on a paper, the setting
zorder = 1 looks like three times the letter Z.

nume4s (n4) 1 2 3 + Define the number of E4 modules the sequencer should occupy if zorder is 1 or 3. If you don’t used this variable,
the number is set to numfaders / 4. If you have eight E4 and want to create a sequencer with just the first row, set
numfaders = 8 and zorder = 1 and nume4s = 8. For using the first two rows, do the same with numfaders = 16.
By choosing a specific encoder to be the first, with firstfader, you canmove this rectangle of encoders to a different
position in your E4 matrix.

ledpreview (pv) 0 Set this to 1 if you want the inactive states (or possible settings) to be illuminated in the LED ring.

firstfader (f) 1 2 3 1 First M4 fader of the sequencer (starting with 1). If you omit this, it starts at the first fader of your first M4.

numfaders (n) 1 2 3 Number of faders to use for your sequencer. The typical numbers are 4, 8, 16 and 32. 32 is the maximum (eight M4
units). If you omit this, all of your M4 faders will be used.

numsteps (ns) 1 2 3 Number of steps your sequence consists of (at maximum). The number of steps can be greater than the number of
faders. In that case use page for paging your faders so that you can edit all of the steps. Having the number of steps
less than the faders, makes no sense – it’s just a waste of faders. The maximum number of steps is 32.

If you don’t set this parameter, the number of steps will be set to the number of faders.

Note: changing this setting dynamically can provoke various surprising behaviours. For example the number of pages
(see parameter page) might be reduced. Or the endmarker is forciblymoved around. If youwant to change the length
of the sequence via CV, better use endstep or autoreset.

Another note: Setting numstepswill not restrict the number of faders. If you set numsteps = 4 but have eight faders
available, the circuit will use all these, even if faders 5, 6, 7 and 8 will be useless. You need to set numfaders = 4 in
this situation.

DROIDmanual for blue-6 199 Table of contents at page 2

Input Type Default Description

page (p) 1 2 3 0 Use this parameter, if you have less faders than steps. The first page is 0, not 1. For example if you have 4 faders but
16 steps, you can select between the four “pages” of four faders each, by settings bar to 0, 1, 2 or 3. The output of a
buttongroup (see page 146) with one button per page is a goodmatch for this parameter.

clock (c) Patch an input clock here. If you want to use ratcheting, that clock needs to be stable and regular, because the se-
quencer needs to interpolate the clock and create evenly distributed new beats within two clock ticks. If you don’t use
ratching, you can use any rhythm you like here – may it be shuffled, euklidean, the output from another sequencer or
whatever you like. Each clock tick will advance the sequence to the next step (or to the next repition of the current
step).

taptempo (tt) If your clock is not steady but might be stopped and restarted, you should patch a steady clock here. This avoids
problems with the computation of the gate length right after starting the clock. The tap tempo computation needs a
series of at least two clock pulses so the gate length of the first step is wrong after the clock has stopped for a while.

reset (r) A trigger here resets the sequencer to its start step. The next clock tick (or a tick that is roughly at the same time as
the reset) will play step 1. Note: If there is a resetwithout a clock tick at the same time, the sequencer will go to “step
0”, which is a special state where it waits for the clock to advance to the first step. Without that fancy logic, a reset
plus clock would skip step 1 and start with step 2.

run (ru) 1 If you set this input to0, the sequencerwill ignore all incoming clock ticks. It stops. Thedefault of1 is normal operation,
where it runs. This input is a better way to temporarily stop the sequencer than to stop the clock. The reason: for
computing the gate length and ratchets a steady input clock is needed. If you stop the clock, the next gate length
and ratches right after the next start will have the wrong duration since at least two clock ticks are neccessary for
computing its speed.

Note: This input is not a replacement for mute, since a muted sequencer leaves the clock running and advances steps.
It just mutes the gate output.

composemode (cm) Enabling “composemode”makes it easier tofind the right note in a step,when creatingmore complexmelodies. When
composemode is set to 1, the sequencer stops clocking. Instead – every time you change theCVof a step, it immediately
jumps to that step, outputs the changed CV and opens the gate for a short time, so you can listen to the changed note.

mute (m) If you set this to 1, the gate output of the sequencer is muted (will always be 0). Any changes of the CV output still
happen.

cvbase (cb) 0.0 Here you set the voltage the sequencer will output if the CV fader is at the bottom position. The allowed range is -1 …
1 (which is the same as the range from -10 V to +10 V, if you output the CV directly to an output).

cvrange (cr) 0.2 CV range of the faders. So the resulting CV lies somewhere between cvbase and cvbase + cvrange. The CV range
cannot be negative and is capped at 1. If you need a greater range, consider multiplying the output value of the cv
output of the sequencer.

DROIDmanual for blue-6 200 Table of contents at page 2

Input Type Default Description

invert (iv) 0 Inverts the CV or pitch output. This is like mirroring the fader position. Now if the fader is up, the output is low and
vice versa. In scale quantized mode, the melody still stays within the scale.

quantize (q) 1 2 3 2 Switches on quantization in two levels. At 0, the faders run freely and output a continous CV.

At 1, the output is quantized to semitones, which is 1
12V steps. Also the faders will get artifical notches – one for each

semitone. That is, unless your range is too large. The maximum number of notches with force feedback is 25, so if
your range exceeds two octaves (0.2), the notches are turned off.

At 2, the output is quantized to the scale that root and degree define. Furthermore the individual scale notes can be
switched on or off with the parameters select1, select3 and so on. Note: the root input does not select the lowest
note of the CV range. That is still set with cvbase. It is just used for selecting the scale.

0 no quantization

1 quantize to semitones (1/12V steps)

2 quantize to the scale set by root and degree

cvnotches (cn) 1 2 3 0 Usually the CVs of the steps are ment to be note pitches (when quantize is 1 or 2), or just free CVs (quantize = 0).
There is an alternative mode, however, that allows you to assign integer values like 0, 1, 2 and so on to each step.

To do this set cvnotches to a value of 2 or greater. This defines the number of discrete values (and hence notches)
for each step and put CVs of the sequence into notched mode. 1makes no sense, of course, since in this “pitch bend
mode” the faders would always return to the neutral position.

In notched mode the cv output does not output a pitch but a notch number starting from 0. cvbase, cvrange and
quantize are ignored.

The maximum number of notches is 127, but the haptic force feedback of the motor faders is disabled starting at 26.

shiftsteps (sh) 1 2 3 0 Shifts all your steps by that number to the left (negative numbers shift to the right). So if shiftsteps is 1, right after
a reset, the sequencer will not play step 1, but step 2. The shifting wraps around at the end of your sequence, so if you
have 24 steps and shift is 1, the sequencer will play step 1 instead of step 24.

Note: Other things like startstep, endstep, playmode, from and autoreset take place after shifting.

DROIDmanual for blue-6 201 Table of contents at page 2

Input Type Default Description

startstep (ss) 1 2 3 1 Sets the first step to be used. This means that after a reset or when the sequencer comes to the end of the sequence,
it will begin at this step.

There is also away for settings start and endwith buttons (see below at buttonmode). If you use the interactivemode,
the startstep and endstep settings will be overridden. The are reactived if you clear everything.

Note: startstep and endstep take place after applying shiftsteps.

endstep (es) 1 2 3 Sets the last of the steps to be played. The default is to play all steps. After playing the end step, the sequencermoves
on to the start step at the next clock tick.

If startstep is equal to endstep, the sequence just consists of one single step.

Settings startstep larger then endstep is allowed and reverses the playing order.

DROIDmanual for blue-6 202 Table of contents at page 2

Input Type Default Description

form (fo) 1 2 3 0 This is an advanced feature that allows you to slice your steps into two or three parts and create musical song forms
like AAAB or ABAC. Each of the parts A, B or C are then played according to the playmode.

The form AAAB, for example, creates a 32 step form from just 16 steps, by playing the first 8 steps three times and
then the second 8 steps once.

The following forms are available:

0 A (forms are basically deactivated)

1 AAAB

2 AABB

3 ABAC

4 AAABAAAC

5 AB

6 AAB

Notes:
• The splitting of the steps into parts takes place after accounting for startstep and endstep.
• Forms with A, B and C split the pattern into three parts. These parts can only be of equal size if the number of
steps is dividable by 3, of course.

• The pattern AB is really not the same as A, e.g when direction is set 1 (reverse). In that case each of the parts
is played backwards, but the parts themselves move forwards on your steps.

direction (d) 0 Sets the general direction inwhich the sequencermoves through the steps. 0means forwards and 1means backwards.

pingpong (pp) 0 If set to 1, the sequencer will change the direction every time it reaches the start or end of the sequence.

DROIDmanual for blue-6 203 Table of contents at page 2

Input Type Default Description

pattern (pt) 1 2 3 0 Selects one of a list of movement patterns. That way, the sequence steps are not played in linear order but in a more
sophisticated movement. Available pattern are:

0 go step by step to the sequence (normal) →

1 two steps forward, one step backward →→←

2 double step forward, one step backward ⇒←

3 double step forward, double step backward, single step forward ⇒⇐→

4 double step forward, single step forward, double step backward, single step forward ⇒→⇐→

5 random single step forward or backward ↔

6 go forward by a small random number of steps →× ?

7 random jump to any allowed (other) note ⇕

repeatshift (rs) 1 2 3 0 This is a number in the range -24 … +24. If you set this to non-zero, each repetition of a step shifts the played note by
that many notes within the selected scale notes. This only has effect on steps where the number of repeats is greater
than 1. Also it is only is applied when the quantize = 2.

ratchetshift (ras) 1 2 3 0 This is a number in the range -24 … +24. If you set this to non-zero, each ratchet of a step shifts the played note by
that many notes within the selected scale notes. This only has effect on steps where the number of ratchets is greater
than 1. Also it is only is applied when the quantize = 2.

If you combine ratchetshiftwith repeatshift, both shifts are added together. And the ratchet shifting is reset for
each repetition of the step.

accumulatorrange (ac) 1 2 3 + Using this parameter enables the pitch accumulator. The value sets the maximum value the accumulator can get. The
maximum is 16. If you set this to 0, the fadermode for pitch randomization still is in the special modewhere the upper
four positions control the impact of the accumulator.

Please consult the manual of motoquencer (see page 286) for details on the pitch accumulator.

DROIDmanual for blue-6 204 Table of contents at page 2

Input Type Default Description

constantlength (co) 0 This input enables a feature that (tries to) keep the actual length of the sequence constant. There are two levels. If
constantlength = 1, every change in the repeats of a step is compensated by changing the repeats in the following
steps. E.g. if you increase the number of repeats from 4 to 5 in step 3 (by moving the fader in the appropriate fader
mode), the repeats in step 4 are reduced by 1. If they are already 1, step 5 is tried an so on, until it wrap around to step
1.

The second level is constantlength = 2. Here also the skip setting of steps is honored andmodified in order to keep
the length constant. A skipped step essentially has the length 0 (or 0 repeats). The componsation is now done not
only when the repeats are changed but also when skip is switched on or off on a step.

All the compensation is only active with the range that is set with the start and end step.

autoreset (ar) 1 2 3 0 If set to non-zero, automatically issues a reset (just like a trigger to reset) every N clock ticks.

metricsaver (ms) 1 TheMetric Saver ™ helps you to reliably come back to your original metric and time after playing around with all sorts
of parameters that change the played number of steps in the sequence. These are: startstep, endstep (also when
changed interactively), form, direction, pingpong, pattern, autoreset and repeats and skips of individual steps.
Therefore it counts the actual number of clock cycles since the last external reset (or system start). And when all of
these features are deactivated, it snaps back the clock to the position it would have been by now if you never had
played around with all the funny stuff.

That way, during a live performance, you can safely play aroundwith all this polymetric and otherwise time disrupting
stuff and as soon as you clean up your mess – voila: you are back on track and in sync with the rest of the “band”.

The metric saver is turned on by default. But you can disable it by setting the parameter to 0.

DROIDmanual for blue-6 205 Table of contents at page 2

Input Type Default Description

fadermode (fm) 1 2 3 0 Switches the current meaning of the motor faders. You probably want to connect the output of a buttongroup (see
page 146) here. Here are the possible modes:

0 pitch / CV

1 randomize CV

2 gate propability

3 repeats (up to 16)

4 gate pattern

5 ratchets (up to 8)

6 gate

7 skip

buttonmode (bm) 1 2 3 0 Switches the current meaning of the touch buttons below the faders. You probably want to connect the output of a
buttongroup (see page 146) here. Here are the possible modes:

0 gates

1 start / end

2 gate pattern

3 skip

holdcv (hc) 1 This setting determines wether the CV output changes every time the sequencer moves to the next step or just when
that step is active (a gate is being played). The latter is the default. But if you set this to 0, the CV values of steps
without gates will also influence the output CV.

Note: regardless of this setting, the CV will never change inbetween. Any change of the CV faders, the cvbase and
cvrange and so on will only take effect when the next step is played. This also ensures that repeats or ratchets are
always in the same pitch.

defaultcv (dc) 0.0 Set the CV the steps should be set to on a trigger to clear. That value must be within the range set by cvbase and
cvrange, or it will be truncated to that range.

If you have set cvnotches, however, the value is expected to be an integer in the range 0 ... cvnotches - 1.

DROIDmanual for blue-6 206 Table of contents at page 2

Input Type Default Description

defaultgate (dfg) 1 Here you set to which state (on / off) the gates should be set on a trigger to clear.

clearskips (cs) A trigger here removes the “skip” setting from all steps.

clearrepeats (crp) A trigger here resets the number of repeats to 1 for each step.

clearstartend (cse) A trigger here clears the manual settings of the start and end step. So the sequence will be played in its full length
(again) .

gatelength (gl) 0.5 The gate length in input clock cycles. A value of 0.5 thus means half a clock cycle. A steady input clock is needed
for this to work. Please note that if the gate length is >= 1.0, two succeeding notes will get a steady gate, which
essentially means legato.

If you don’t use a steady clock, set this parameter to 0. This will output aminimal gate length of about 10ms (basically
just a trigger).

keyboardmode (km) 1 2 3 1 This input sets how a keyboard, that is hooked to keyboardcv, and keyboardgate should be used for directly playing
notes. You can set it to 0, 1 or 2.

0 ignore the keyboard inputs

1 keyboard and sequencer play together, keyboard has precedence

2 mute sequencer, just play keyboard

keyboardcv (kc) � 1V
Oct The pitch input of a keyboard. This is used for playing along with the keyboardmode or recording with recordmode.

keyboardgate (kg) Thegate inputof akeyboard. Apositive gate enabledplay along (seekeyboardmode) andalso recording, ifrecordmode
is set accordingly.

recordmode (rm) 1 2 3 0 Use this input to recordmelodies playedwith a keyboard (namely keyboardcv and keyboardgate) into the sequencer.
There are three possible settings:

0 don’t record

1 record, notes longer than one step will automatically tie steps via the gate pattern

2 record, don’t tie notes. Ignore the length of the input note

recordsilence (rsi) 0 When this input is set to 1while recording, silence will be recorded while keyboardgate is off. Otherwise you can just
add notes to the sequence.

DROIDmanual for blue-6 207 Table of contents at page 2

Input Type Default Description

copy (cy) A trigger here copies the current page of the sequence to an internal clipboard. The clipboard is not part of any preset
and is also not saved to the SD card. It can be used later for pasting it’s data to another preset or another page of a
sequence.

paste (pa) A trigger here copies the steps from the clipboard to the current page.

pastefaders (pf) This is like paste, but just the values of the faders of the current fadermode are copied.

pastebuttons (pb) This is like paste, but just the values of the faders of the current buttonmode are copied. Note: the buttonmode “start
/ end” is not supported by copy and paste.

linktonext (ln) 0 This settings allows you to createmotoquencer tracks that havemore than one CV or gate output for each step. If you
set this to 1, the next motoquencer circuit in your patch will by synchronized to this one. This means that it always
plays the same step number – including all fancy operating like shiftsteps, startstep, endstep, form, pattern and
autoreset. All those inputs and also clock and reset are ignored by the next motoquencer.

The same holds for the “repeats” and “skip” setting of the steps.

fadermode and buttonmode are extended to the next motoquencers by adding 10 for eachmotoquencer to follow. So
fadermode = 10will show the CV of next motoquencer in the faders. fadermode = 11 the CV randomization of the
next motoquencer. fadermode = 20 show the CV of the third linked motoquencer and so on.

Don’t set fadermode or buttonmode on the linked motoquencers. They will be ignored there.

Note: The linktonext setting cannot by dynamically changed. It needs to be fixed 0 or 1. You cannot use any button
or internal cable or other methods to change it while the patch is running.

luckychance (lc) 0 1 1.0 Sets tha chance for a step to be affected by the next “lucky” operation (see triggers below).

luckyscope (ls) 1 2 3 0 Determines which part of the sequence is affected by the “lucky” operations. Depending on this setting the following
steps are affected:

0 All steps between the current start and end step

1 All steps

2 All steps between start and end on the current page

3 All steps on the current page

luckyamount (la) 0 1 1.0 Sets the amount of change that a “lucky” operation does to a step. The meaning depends on the operation. See the
parameters below.

DROIDmanual for blue-6 208 Table of contents at page 2

Input Type Default Description

luckycvbase (lv) 0 1 0.0 This parameter affects only the operation luckycvs and luckyfaderswhen the fader mode is set to 0. It adds a fixed
amount of CV to the random result, so that lies in the range luckycvbase … (luckycvbase + luckyamount).

luckyfaders (lf) Moves the currently selected faders (according to fadermode) to new random positions. luckyamount sets the maxi-
mum value of the fader, where 1 allows the maximum.

luckybuttons (lb) Randomly toggles the currently selected buttons (according to buttonmode). luckyamount only has an effect when
the gate patterns are selected, since here, four different values are possible. luckamount restricts them if it is lower
than 1.

luckycvs (lcv) Replaces the affected steps’ CVs with a new random CVs. The lowest possible CV is cvbase. If luckyamount is 1, the
highest possible CV is cvbase + cvrange, otherwise it is cvbase + luckyamount× cvrange.

luckycvdrift (ld) Modifies the affected steps’ CV randomly up or down. They will stay in the CV range set by cvbase and cvrange.
luckyamount controls the amount of change.

luckyspread (lr) First computes the average CV of all steps. Then changes the CV values of the affected steps such that their distance
to the average increases or decreases. If luckyamount is greater than 0.5, the distance is increased. Otherwise it is
decreased.

luckyinvert (li) Inverts the CVs of the affected steps within the allowed CV range. luckyamount has no influence.

luckyrandomizecv (lrc) Sets the “randomize CV” values of the affected steps to random values (yes, this is double randomization). The
luckyamount sets the maximum randomization value that will be set.

luckygates (lg) Sets the gates of the affected steps randomly to on or off. The chance for on is determined by luckyamount. So with
luckyamount = 0 you clear all gates and with luckyamount = 1 you set all gates.

luckyskips (lk) Sets the “skip this step” setting of the affected steps randomly to skip or normal. The chance for skip is determined by
luckyamount.

luckyties (lt) Sets the “tie this step to the next” setting of the affected steps randomly to tie or normal. This is the same as setting
the gate pattern to the upper most position. The chance for tie is determined by luckyamount.

luckygatepattern (lgp) Randomizes the gate pattern of the selected steps (there are four different values: once, all, hold and tie). Use
luckyamount to reduce that set.

luckygateprob (lga) Sets the “randomize gate” values of the affected steps to random values (yes, this is double randomization). The
luckyamount sets theminimum randomization value that will be set (yes, this is inverted). So with luckyamount = 1
you disable randomization andmake the gates play always. With luckymount = 0 you set the gate propability to the
lowest possible value (still not 0).

DROIDmanual for blue-6 209 Table of contents at page 2

Input Type Default Description

luckyrepeats (lrp) Randomly sets the number of repeats of the affected steps to something between 1 and 16 (the maximum). The
luckyamount determines the maximum repetition number, where 1 stands for a maximum of 16 repetitions.

luckyratchets (lrt) Randomly sets the number of ratches of the affected steps to something between 1 and 8 (the maximum). The
luckyamount determines the maximum ratchet number, where 1 stands for a maximum of 8 ratchets.

luckyshuffle (lsh) Randomly swaps all affected affected steps (their playing order) together will all their attributes. luckyamount has no
influence.

buttoncolor (bc) 0.1 Set a user defined color for the gate buttons. This color is only used when buttonmode = 0. The main purpose of this
option is to allow a separate color for the gate button in a linked sequencer, that does something else than gates.

luckyreverse (lrv) Reverses the playin gorder of the affected steps. luckyamount has not influence.

root (ro) 1 2 3 0 Set the root note here. 0means C, 1meansC♯, 2meansD and so on. If youmultiply the value of an input like I1with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0 C

1 C♯

2 D

3 D♯

4 E

5 F

6 F♯

7 G

8 G♯

9 A

10 A♯

11 B

12 C

DROIDmanual for blue-6 210 Table of contents at page 2

Input Type Default Description

degree (dg) 1 2 3 0 Set the musical scale. This is a number from 0 to 107. Below are the first 12 andmost important scales. You find a list
of all 108 scales on page 107.

0 lyd – Lydian major scale (it has a ♯4)

1 maj – Normal major scale (ionian)

2 X7 – Mixolydian (dominant seven chords)

3 sus – mixolydian with 3rd/4th swapped

4 alt – Altered scale

5 hm5 – Harmonic minor scale from the 5th

6 dor – Dorian minor (minor with ♯13)

7 min – Natural minor (aeolian)

8 hm – Harmonic minor (♭6 but ♯7)

9 phr – Phrygian minor scale (with ♭9)

10 dim – Diminished scale (whole/half tone)

11 aug – Augmented scale (just whole tones)

Note: Alltogether there are 108 scales. Please see page 107 for a complete list

select1 (s1) + Gate input for selecting the root note as being an allowed interval. When youwant to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. select1 ...
select13will be set to one.

select3 (s3) + Gate input for selecting the 3rd.

select5 (s5) + Gate input for selecting the 5th.

select7 (s7) + Gate input for selecting the 7th.

select9 (s9) + Gate input for selecting the 9th (which is the same as the 2nd).

select11 (s11) + Gate input for selecting the 11th (which is the same as the 4th).

select13 (s13) + Gate input for selecting the 13th (which is the same as the 6th).

DROIDmanual for blue-6 211 Table of contents at page 2

Input Type Default Description

selectfill1 (sf1) off Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 (sf2) off Selects the alternative 3rd (i.e. the 3rd that is not in the scale).

selectfill3 (sf3) off Selects the alternative 4th or 5th. In most cases this is the diminished 5th.

selectfill4 (sf4) off Selects the alternative 13th (i.e. the 13th that is not in the scale).

selectfill5 (sf5) off Selects the alternative 7th (i.e. the 7th that is not in the scale).

DROIDmanual for blue-6 212 Table of contents at page 2

Input Type Default Description

harmonicshift (has) 1 2 3 0 This input can reduce harmonic complexity by disabling some of the scale or non-scale notes. It is an idea first found
in the Sinfonion and also provided by the circuit sinfonionlink (see page 353).

harmonicshift is staged after the select... inputs and further filters out (disables) notes based on their relation to
the current scale. This means that first the 12 select... inputs select a subset of the 12 possible notes. After that
harmonicshift can reduce this set further (it will never add notes).

If harmonicshift is not zero, depending on its value some or more of the scale notes are disabled, even if they would
be allowed by select.... Or in other words: the harmonic material is reduced.

You also can use negative values. These create rather strange sounds by removing the simple chord functions instead
of the complex ones first.

Here are the possible values:

0 off – all selected notes are allowed

1 disable all fill notes (non-scale notes)

2 disable fills and 11th

3 disable fills, 11thand 13th

4 disable fills, 11th, 13thand 9th

5 disable fills, 11th, 13th, 9th and 7th

6 disable fills, 11th, 13th, 9th, 7th and 3rd

7 disable fills, 11th, 13th, 9th, 7th, 3rd and 5th

-1 disable the root note

-2 disable the root note and the 5th

-3 disable root, 3rd, 5th

-4 disable root, 3rd, 5th, 7th

-5 disable root, 3rd, 5th, 7th, 9th

-6 disable root, 3rd, 5th, 7th, 9th and 13th

-7 disable all scale notes (fill notes untouched)

DROIDmanual for blue-6 213 Table of contents at page 2

Input Type Default Description

noteshift (nos) 1 2 3 0 Shifts the resulting output note(s) by this number of scale notes up or down (if negative). So the output note still is
part of the scale butmay be a note that is none of the selected ones. Themaximum shift range is limited to -24 … +24.

selectnoteshift (sns) 1 2 3 0 Shifts the output note by this number of selected scale notes up or down (if negative). If you use noteshift at the
same time, first selectnoteshift is applied, then noteshift. The maximum shift range is limited to -24 … +24.

tuningmode (tm) off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch (tp) � 1V
Oct 0V This pitch CV will be output while the tuning mode is active.

transpose (tr) � 1V
Oct 0V This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or

adding a vibrato.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 4 presets, so this number ranges from 0 to 3.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

cv () The CV output (or pitch output, if you use quantize).

DROIDmanual for blue-6 214 Table of contents at page 2

Output Type Description

gate (g) The gate output.

startofsequence (ssq) Outputs a trigger whenever the sequencer starts playing from the beginning. This can be used for synchronizing with
other sequencers. An external resetwill also cause this output to trigger.

startofpart (spa) Outputs a trigger whenever a form part starts again. This is only interesting when you use form.

startstepout (sso) 1 2 3 Outputs the current start step. This is useful in case it has been interactively set with the buttons and you need that
information for another circuit.

endstepout (eso) 1 2 3 Outputs the current end step. This is useful in case it has been interactively set with the buttons and you need that
information for another circuit.

currentstep (cst) 1 2 3 Outputs the number of the step that is currently being played (starting from 0).

currentpage (cpg) 1 2 3 Outputs the number of the fader page that is currently played, i.e. the value youwould have to feed into page in order
to see the currently being played step.

accumulator (acc) 1 2 3 The current value of the pitch accumulator (an integer number in the range 0 … 16.

DROIDmanual for blue-6 215 Table of contents at page 2

16.24 euklid – Euclidean rhythm generator

This circuit creates trigger patterns accord-
ing to the well-known Euclidean rhythms
and is of course CV controllable. The pat-
tern is described by three numbers:

• The number of steps in the pattern
• The number of beats in the pattern
• An offset for shifting the beats for-
ward

The number of beats are distributed as evenly as possible
in the pattern – but of course are all placed precisely on
clock beats. Here are a few examples of various patterns:

length: 16, beats: 4, offset: 0� � � �
length: 16, beats: 5, offset: 0� � � � �
length: 16, beats: 5, offset: 1� � � � �
length: 16, beats: 11, offset: 0� � � � � � � � � � �
length: 13, beats: 5, offset: 0� � � � �
length: 13, beats: 5, offset: 1� � � � �
length: 4, beats: 2, offset: 1

� �
Here is an example without CV control:

[euklid]
clock = G1
reset = G2
length = 16
beats = 5
offset = 0
output = G3

Now let’s change that in order tomake the beats control-
lable by the pot P1.1. Please note how the pot range is
being changed from the default 0 … 1 to the necessary
1 … 16 by using a factor of 15 and an offset of 1:

[euklid]
clock = G1
reset = G2
length = 16
beats = P1.1 * 15 + 1
offset = 0
output = G3

By the way: Since the default for length is 16 and for
offset 0 you can drop those two lines if you like:

[euklid]
clock = G1
reset = G2
beats = P1.1 * 15 + 1
output = G3

Offbeats

The output offbeats does the exact opposite of
outputs: it triggers at those clock beats where output
does not. So at any given clock tick exactly either output
or offbeats triggers.

Gate length

The lengthof theoutput gate is the sameas that of the in-
put gate. Also the exact voltage from the input is copied
to the output while the current step is active.

DROIDmanual for blue-6 216 Table of contents at page 2

Input Type Default Description

clock (c) + Patch a clock signal here. It does not need to be steady – even if this is the most usual application. Note: this input is
classified as a gate input, since the length of the gate is being preserved when forwarded to output and offbeats.

reset (r) A trigger here resets the pattern to the start

outputsignal (os) + Usually on active steps euklid just lets the original input clock get through to the output. If this parameter is used, it
will be sent to the output on active steps instead. The easiest application is just setting it to 1. The output will then
become 1 the whole time while the current step is active. This is useful if you want to use euklid as modulation CV
rather than as trigger.

length (l) 1 2 3 16 The length of a pattern. This is interpreted as an integer number, which must be greater than 0. If it is not then 1 is
assumed. If you CV control the length, use multiplication. The maximum accepted length is 64.

beats (b) 1 2 3 5 Thenumberof activebeats that shouldbedistributedamongst thelength steps. If thatnumber is greater thanlength,
it is capped to that number.

offset (of) 1 2 3 0 rotates or shifts the pattern by that number of steps. This number can be positive or negative.

Output Type Description

output (o) Output of the beats in the current pattern. The gate length is directly taken from the input clock – just as the voltage.

offbeats (ob) Here those impulses will be output where there is no beat in the pattern.

DROIDmanual for blue-6 217 Table of contents at page 2

16.25 explin – Exponential to linear converter

This circuit converts an exponential input
curve into a linear output curve. Image you
have an analog envelope outputting an ex-
ponential curve like the following one:

0 100 200 300 400 500
0

0.5

2

4

6

8

time(ms)

V
ol
ts

The curve starts at 8 V and reaches 0.5 V at about 500ms
later.

The following droid patch will convert this into a linear
curve:

[explin]
input = I1
output = O2
startvalue = 8V
endvalue = 0.5V

0 100 200 300 400 500
0

0.5

2

4

6

8

time(ms)

V
ol
ts

Input
Output

With the values startvalue and endvalue you config-
ure how this translation is scaled. The startvalue se-
lects the voltage where the exponential input curve and
the linear output curve should be the same. If the input is

an envelope voltage then startvaluewould be the start
or maximum voltage of that envelope.

A falling exponential curve will never reach 0 in theory.
So with endvalue you set a value (or voltage) in that you
consider the curve to be low enough to be inaudible. At
that voltage the linear output will exactly be zero. This
voltage can be used to control the slope of the linear out-
put curve. The following example shows how different
values of endvalue affect the output:

0 100 200 300 400 500

0.5
1
2

4

6

8

time(ms)

V
ol
ts

0.5V
1V
2V

Input Type Default Description

input (i) 0.0 Patch an exponential envelope output or a similar signal here. This valuemust be positive or otherwise it will be set to
0.0.

startvalue (sv) 1.0 The assumedmaximum value of the input signal (the start voltage fromwhere it decays in an exponential way.

endvalue (ev) 0.01 The value at which it is assumed to be zero (at which the linear output will be set to zero. This value must be positive.
It is forced to be>= 0.001.

mix (m) 0 1 1.0 Sets the mix between the “dry” and “wet” signal: At 0.0 the output is the same as the input. At 1.0 the output is the
linear curve. At a value in between it is some average. You are even allowed to used values> 1.0. A value of 2.0will
overcompensate and bend the curve beyond linearity into a curve somemodularists would call logarithmic.

DROIDmanual for blue-6 218 Table of contents at page 2

Output Type Description

output (o) Here comes the resulting linear output

DROIDmanual for blue-6 219 Table of contents at page 2

16.26 faderbank – Createmultiple virtual faders inM4 controller

This circuit is very similar to motorfader
(see page 311) but controls up to 16 faders
at once. It’s purpose is to reduce the num-
ber of motorfader circuits in situations
where you control banks or arrays of pa-
rameters in a similar way. It does not add any extra func-
tionality to motorfader.

That being said, it is easiest to just show the differences
to a single motorfader circuit. And these are:

• Instead of fader you set firstfader to specify
which faders you want to control. The number of
faders does not need to be set since it corresponds
to the number of output jacks you use.

• Instead of output you have output1, output2 and
so on. This determines the number of faders that
are controlled by this circuit.

• The parameters notches and ledcolor are com-
mon for all controlled faders. They are identical as
those in motorfader.

• The parameters ledvalue1, ledvalue2, ... can set
the brightness of the individual LEDs below the
faders.

• Because of memory limitations you only have 6
presets (motorfader has 8).

Here is an example of a fader bank of the three faders 3,
4 and 5 (spreading over two M4s). We use a pot to se-

lect one of six presets (from 0 to 5). Turning the pot will
immediately switch the preset (and the faders will move
accordingly). And the CVs will be sent to outputs O1, O2
and O3:

[p2b8]
[m4]

[faderbank]
preset = P1.1 * 6
output1 = O1
output2 = O2
output3 = O3

Input Type Default Description

firstfader (f) 1 2 3 1 First M4 fader of the virtual fader bank (starting with 1).

notches (n) 1 2 3 Number of artifical notches. 0 disables the notches. 1 creates a pitch bend wheel. 2 creates a binary switch with the
output values 0 and 1. Higher number create that number of notches. E.g. 8 creates eight notches and output will
output one of the value 0, 1, ... 8.

The maximum number of notches is 201. But if you select more than 25 notches, the force feedback is turned off as
the notches would get too small to work.

startvalue (sv) 0.0 This sets the value the faders should get when the circuit starts for the first time or when you send a trigger to clear.

ledcolor (lc) When you use this input, it will set the color of the LED below the faders, when the circuit is selected. If the LED is off,
this setting has now impact.

ledvalue1 ... ledvalue16
(lv)

When you use this input, it will override the brightness of the LEDs below the faders, but just when this circuit is
selected.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

DROIDmanual for blue-6 220 Table of contents at page 2

Input Type Default Description

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 6 presets, so this number ranges from 0 to 5.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

output1 ... output16 (o) The current values of the virtual motor faders are output here.

button1 ... button16 (b) Outputs the current value of the touch buttons of the faders to these output, when this circuit is selected. When the
circuit is not selected, 0 is output.

DROIDmanual for blue-6 221 Table of contents at page 2

16.27 fadermatrix – Matrix of up to 4x4 virtual motor faders

This circuit is a clever way of controlling a
four by four matrix of parameters, which
allows you to select either a row or a col-
umn.

As an example let’s think of a bank of four
envelope generators. Each of them has the settings
attack, decay, sustain and release (ADSR). That nicely
forms a 4×4matrix:

Att 1 Dec 1 Sus 1 Rel 1

Att 2 Dec 2 Sus 2 Rel 2

Att 3 Dec 3 Sus 3 Rel 3

Att 4 Dec 4 Sus 4 Rel 4

The fadermatrix has 16 outputs that map to these ma-
trix positions:

output11 output12 output13 output14

output21 output22 output23 output24

output31 output32 output33 output34

output41 output42 output43 output44

Now when you design a patch for controlling these 16
parameters with 4 motor faders you basically have the
choice of selecting rows or columns! One way would be
to always select one of the envelopes to be diplayed and
edited on your faders, for example the second one:

Att 1 Dec 1 Sus 1 Rel 1

Select Att 2 Dec 2 Sus 2 Rel 2

Att 3 Dec 3 Sus 3 Rel 3

Att 4 Dec 4 Sus 4 Rel 4

An alternative would be to have control over all decay

parameters of the four envelopes – in order to shape for
synthvoices at the same timewithout switchingbetween
those:

Select

Att 1 Dec 1 Sus 1 Rel 1

Att 2 Dec 2 Sus 2 Rel 2

Att 3 Dec 3 Sus 3 Rel 3

Att 4 Dec 4 Sus 4 Rel 4

With faderbank you would have to decide for one of the
two options. Butwith fadermatrix you can have both at
the same time.

With the rowcolumn input you can select each column
and each row as follows:

DROIDmanual for blue-6 222 Table of contents at page 2

0

1

2

3

4 5 6 7

Att 1 Dec 1 Sus 1 Rel 1

Att 2 Dec 2 Sus 2 Rel 2

Att 3 Dec 3 Sus 3 Rel 3

Att 4 Dec 4 Sus 4 Rel 4

If you create a buttongroupwith eight buttons and patch
the output to the rowcolumn input, you have access to
all four rows and columns. The nice thing about the
buttongroup is that it automatically outputs the values
from 0 to 7. Here is an example:

[p2b8]
[m4]

[buttongroup]
button1 = B1.1
button2 = B1.3
button3 = B1.5
button4 = B1.7
button5 = B1.2
button6 = B1.4
button7 = B1.6
button8 = B1.8
led1 = L1.1
led2 = L1.3
led3 = L1.5
led4 = L1.7
led5 = L1.2

led6 = L1.4
led7 = L1.6
led8 = L1.8
output = _ROWCOLUMN

Nowweaddafadermatrix. Wesendall 16outputs to in-
terncal patch cables to be picked up later by four contour
circuits:

[fadermatrix]
rowcolumn = _ROWCOLUMN
output11 = _ATTACK_1
output12 = _DECAY_1
output13 = _SUSTAIN_1
output14 = _RELEASE_1
output21 = _ATTACK_2
output22 = _DECAY_2
output23 = _SUSTAIN_2
output24 = _RELEASE_2
output31 = _ATTACK_3
output32 = _DECAY_3
output33 = _SUSTAIN_3
output34 = _RELEASE_3
output41 = _ATTACK_4
output42 = _DECAY_4
output43 = _SUSTAIN_4
output44 = _RELEASE_4

And here is the example for the first contour (the other
three are similar):

[contour]
gate = I1
attack = _ATTACK_1
decay = _DECAY_1
sustain = _SUSTAIN_1
release = _RELEASE_1
output = O1

If you don’t want to waste 8 buttons for just switching,
you can also use a pot and scale it to the range of 0 ... 7:

rowcolumn = P1.1 * 7

And of course the rotary switch of an S10would also be a
perfect match, since it outputs exactly the number from
0 to 7.

Notches

As discussed in motorfader (see page 311), faders can
set to have artifical notches. Also in the fader matrix you
can set notches. Here the idea is that every parameter in
the same column of the matrix has the same number of
notches. Example:

notches3 = 8

This sets all four parameters in column 3 to have
eight notches. This affects the four outputs output13,
output23, output33 and output43 so that they get
notches when selected and also change their output be-
haviour to outputting one of the values 0, 1, 2 ... 7.

As you can see the matrix always assumes that you edit
four similar thingswith four parameters each. Every row
of the matrix is one such thing. Every column is one pa-
rameter.

Smaller matrices

You also can create smaller matrices, for example 3×.
Simply omit the outputs output14, 24, 34, 44, 41, 42 and
43 in that case. Also 2×2 is possible.

DROIDmanual for blue-6 223 Table of contents at page 2

Because we always need to be able to swap rows and
columns, those number always have to be identical. So
you cannot create a 3×4 matrix, for example.

Largermatrices

If you have eight faders, you can create even larger ma-
trices. A 8×8matrix can be created by four fadermatrix

circuits. Here you need some extra logic. At any time ex-
actly twoof the circuitsmust be selected. Use the select
inputs in combinationwith rowcolumn in order to set this
up (left as an excercise) ;-)

Input Type Default Description

firstfader (f) 1 2 3 1 First M4 fader of the virtual fader matrix (starting with 1).

rowcolumn (rc) 1 2 3 0 Currently selected row or column as follows:

0 Control output11, output12, output13 and output14

1 Control output21, output22, output23 and output24

2 Control output31, output32, output33 and output34

3 Control output41, output42, output43 and output44

4 Control output11, output21, output31 and output41

5 Control output12, output22, output32 and output42

6 Control output13, output23, output33 and output43

7 Control output14, output24, output34 and output44

DROIDmanual for blue-6 224 Table of contents at page 2

Input Type Default Description

notches1 ... notches4 (n) 1 2 3 0 Number of artifical notches in the respective column. For example notches2 controls the notches of output12,
output22, output32 and output42.

0 disables the notches

1 creates a pitch bend wheel

2 creates a binary switch

3 creates a switch with four positions

8 creates eight notches

25 creates 25 notches

Enabling notches also changes the output value. When you have two or more notches, the output values become
discrete. For example with four notches the output will be 0, 1, 2 or 3.

Note: The maximum number of notches is 201. But if you select more than 25 notches, the force feedback is turned
off as the notches would get too small to work.

startvalue1 ...
startvalue4 (sv)

These inputs allow to set a defined start value for each column. When the starts first and there is either no
saved state or state saving is disabled via dontsave = 1, these start values are used. Also a trigger to clear loads the
start avlues. There is one start value for each column. All rows share the same start value for a column.

ledvalue11 ... ledvalue14
(l1)

With these inputs you can address the LEDs below the virtual faders of output11 ... output14. As opposed to using
direction (e.g. L1.1), these inputs will only affect the LED if the according output is selected.

ledvalue21 ... ledvalue24
(l2)

With these inputs you can address the LEDs below the virtual faders of output21 ... output24. As opposed to using
direction (e.g. L1.2), these inputs will only affect the LED if the according output is selected.

ledvalue31 ... ledvalue34
(l3)

With these inputs you can address the LEDs below the virtual faders of output31 ... output34. As opposed to using
direction (e.g. L3.2), these inputs will only affect the LED if the according output is selected.

ledvalue41 ... ledvalue44
(l4)

With these inputs you can address the LEDs below the virtual faders of output41 ... output44. As opposed to using
direction (e.g. L4.2), these inputs will only affect the LED if the according output is selected.

ledcolor1 ... ledcolor4
(lc)

Sets the color of the LEDs below the faders if ledvalueXY is used. There are just four inputs since every column of
outputs has the same LED color (in order to identify them). The color works as with the R registers for the LEDs on the
master module.

DROIDmanual for blue-6 225 Table of contents at page 2

Input Type Default Description

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 6 presets, so this number ranges from 0 to 5.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

output11 ... output14
(o1)

Outputs for the CV values of the first row of parmeter.

output21 ... output24
(o2)

Outputs for the CV values of the second row of parmeter.

output31 ... output34
(o3)

Outputs for the CV values of the third row of parmeter.

output41 ... output44
(o4)

Outputs for the CV values of the fourth row of parmeter.

button11 ... button14
(b1)

Give access to the state of the touch button below the faders when the respective output in the first row is selected.

DROIDmanual for blue-6 226 Table of contents at page 2

Output Type Description

button21 ... button24
(b2)

Give access to the state of the touch button below the faderswhen the respective output in the second row is selected.

button31 ... button34
(b3)

Give access to the state of the touch button below the faders when the respective output in the third row is selected.

button41 ... button44
(b4)

Give access to the state of the touch button below the faders when the respective output in the fourth row is selected.

DROIDmanual for blue-6 227 Table of contents at page 2

16.28 firefacecontrol – Control a RME Fireface interface (experimental)

This experimental circuit allows you to
control the most import volumes and
mixes of an RME Fireface audio interface.
It’s also a perfect match for the M4 motor
fader units. You need an X7 in order to use
this circuit.

Please note that this circuit is still experimental. Its main

problem is that the MIDI implementation of the Fireface
ismore designed for user interaction via aMackie Control
and not for general automation. This is very sad.

For example there is a MIDI CC for changing the panning
of a channel. But instead of simply having the CC going
from0 (left) via 64 (mid) to 127 (right), it uses various CC
values as commands for modifiying the existing panning

by some fixed value to the left or to the right. So without
knowing the current setting, it’s not possible to send the
correct CC commands. And for there is noway to
know, since MIDI is a one way communication.

RME: if you are reading this: please contactme so thatwe
can fix this.

Input Type Default Description

trs () 1 2 3 1

outputlevel1 ...
outputlevel16 (ol)

0 1

mainoutput (mo) 1 2 3 1

phonesoutput1,
phonesoutput2 (po)

1 2 3

outputmix1in1 ...
outputmix1in16 (o1i)

0 1

outputmix2in1 ...
outputmix2in16 (o2i)

0 1

outputmix3in1 ...
outputmix3in16 (o3i)

0 1

outputmix4in1 ...
outputmix4in16 (o4i)

0 1

outputmix5in1 ...
outputmix5in16 (o5i)

0 1

outputmix6in1 ...
outputmix6in16 (o6i)

0 1

outputmix7in1 ...
outputmix7in16 (o7i)

0 1

DROIDmanual for blue-6 228 Table of contents at page 2

Input Type Default Description

outputmix8in1 ...
outputmix8in16 (o8i)

0 1

outputmix9in1 ...
outputmix9in16 (o9i)

0 1

outputmix10in1 ...
outputmix10in16 (o10i)

0 1

outputmix11in1 ...
outputmix11in16 (o11i)

0 1

outputmix12in1 ...
outputmix12in16 (o12i)

0 1

outputmix13in1 ...
outputmix13in16 (o13i)

0 1

outputmix14in1 ...
outputmix14in16 (o14i)

0 1

outputmix15in1 ...
outputmix15in16 (o15i)

0 1

outputmix16in1 ...
outputmix16in16 (o16i)

0 1

postfader1 ...
postfader16 (pf)

pan1 ... pan16 (p) 0 1

unmute1 ... unmute16 (u) 0 1

update (ud)

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

DROIDmanual for blue-6 229 Table of contents at page 2

Input Type Default Description

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

DROIDmanual for blue-6 230 Table of contents at page 2

16.29 flipflop – Simple flip flop

This circuit implements a flip flop that
stores one bit, which can be manipulated
with various triggers.

Here is a simple example for a flip flop that
toggles at each trigger. Fun fact: this im-
plements a clock divider by two:

[flipflop]
toggle = I1
output = O1

As an alternative you can work with set and reset trig-
gers:

[flipflop]
set = I1
reset = I2
output = O1

Note: The flip flop does not save its state to the SD card.
And it has no presets. If you need any of these, have a
look at button (see page 141).

Input Type Default Description

toggle (t) A trigger here inverts the state of the flip flop. It changes 0 to 1 and 1 to 0.

set (s) Sets the flip flop to 1.

reset (r) Sets the flip flop to 0.

clear (cl) Sets the flip flop to the value defined by startvalue.

startvalue (sv) 0 The flip flop starts its live with this value. Also clearwill set the flip flop to this value.

load (ld) Loads the value into the flip flop that’s defined with loadvalue.

loadvalue (lv) 1 Value to set the flip flop to, when load is triggered.

Output Type Description

output (o) Outputs the current value of the flip flop: either 0 or 1.

DROIDmanual for blue-6 231 Table of contents at page 2

16.30 fold – CV folder – keep (pitch) CVwithin certain bounds

This circuit can keep an incomingCVwithin
defined bounds, but not by limiting to
these bounds, but by folding it in case it ex-
ceeds these bounds.

Themainapplication is keeping thepitchof
a voice within a certain range by octaving it up and down
when necessary. Octaving keeps the actual note value.
Here is an example for that application:

[fold]
input = I1
output = O1
foldby = 1V # one octave
minimum = 1.2V
maximum = 2.5V

If the input value at I1 is going below 1.2 V, 1 V will be
added over and over until the output voltage is at least
1.2 V. So the upper example will convert as follows:

• 0.7 V→ 1.7 V
• 2.0 V→ 2.0 V
• -4.3 V→ 1.7 V
• 4.4 V→ 2.4 V

If you apply that to a bass voice, you make sure that it
never goes to lowor toohigh,which is helpful if that voice
is the result of a combinationof sequences, randomnum-
bers, transpositions and other funny generative ideas.

Note: If you do not specify minimum or maximum, no fold-
ingwill take place at that boundary. If you specify neither
of them, this circuit is completely useless.

Anomalies

Two anomalies can happen if the parameters are a bit
“crazy”. This first one happens, when the space between
minimum and maximum is less than one foldby. Consider
the following example:

[fold]
input = I1
output = O1
foldby = 1V
minimum = 1.1V
maximum = 1.3V

Now if the input voltage is e.g. 1.0 V, it will be folded up
to 2.0 V, which is then above the maximum range. But
it will stay there, since there is no way to fold it into the
range anyway.

The second anomaly is if minimum is greater than
maximum. Look:

[fold]
input = I1
output = O1
foldby = 1V
minimum = 2.5V
maximum = 1.5V

Here any voltage below 2.5 V will be folded up until it is
above that value. so 2.4 V will be folded to 3.4 V. Well,
you could also argue that because 2.4 V is also above the
maximumvalue it should get folded down instead. While
that is true, fold behaves asymmetrical here and gives
folding up the precedence.

But why would you set such strange parameters? Well,

because they can be CVs of course. Try the following
patch and send the output O1 to the pitch input of a voice:

[p2b8]
[p2b8]

[lfo]
hz = 2 * P1.1
triangle = _CV

[lfo]
hz = 2 * P1.2
triangle = _MIN

[lfo]
hz = 2 * P2.1
triangle = _MAX

[lfo]
hz = 2 * P2.2
triangle = _FOLDBY
level = 2V

[fold]
input = _CV
minimum = _MIN
maximum = _MAX
foldby = _FOLDBY
output = O1

[lfo]
rate = O1 * 0.2
hz = 110
output = O2

Here all four inputs are from slowly running LFOs and
funny things happen. Playwith the four pots and youwill
get all sorts of very interesting random patterns.

DROIDmanual for blue-6 232 Table of contents at page 2

Input Type Default Description

input (i) 0.0 Input CV to be folded.

foldby (f) 0.1 Amount to be added or substracted from the input CV if it is not within the allowed range. This CV must be positive.
If it is negative or zero, no folding will be done.

minimum (m) + Lower bound of the allowed range. If unpatched, no lower bound will be applied.

maximum (x) + Upper bound of the allowed range. If unpatched, no upper bound will be applied.

Output Type Description

output (o) Folded output voltage

DROIDmanual for blue-6 233 Table of contents at page 2

16.31 fourstatebutton – Button switching through 4 states (OBSOLETE)

This circuit has been superseded by the
newcircuitbutton (seepage141). button
can do all fourstatebutton can do and
much more. So fourstatebutton will be
removed soon.

This circuit converts one of the push buttons of your con-
trollers into abutton that switches throughup to four dif-
ferent states. This is very similar to togglebutton but
that supports just two states.

The LED will be off in state 1, 100% bright in state 4 and
somewhere in between in the other two states.

The use case is to have away tomanually switch through
three or four options. The following example implements
anoctave switch for aVCO.Thebutton stepsyou through

the sequence0→1→2→3→0octaves. Thepitch is be-
ing read from I1 and output again at O1 – possibly shifted
by up to 3 octaves (3 V).

[fourstatebutton]
button = B1.1
led = L1.1
value1 = I1 + 0V
value2 = I1 + 1V
value3 = I1 + 2V
value4 = I1 + 3V
output = O1

Of course the values need not be fixed values. The next
examples shows you a patch where the button is
used to cycle through four differentwave formsof anLFO
and send that to output O1:

[lfo]
hz = 2
square = _W1
triangle = _W2
sawtooth = _W3
sine = _W4

[fourstatebutton]
button = B1.1
led = L1.1
value1 = _W1
value2 = _W2
value3 = _W3
value4 = _W4
output = O1

Input Type Default Description

button (b) The button.

reset (r) A positive trigger here will reset the button to the first state.

value1 ... value4 (v) The values that output should get when the four various states are active.

startvalue (sv) 1 2 3 By setting this to 0, 1, 2 or 3 you set the initial state of the button when the is powered up to state 1, 2, 3 or 4.
It also disabled the automatic saving of the button’s state in the ’s internal flash memory.

Output Type Description

output (o) Depending on the current state of the button here the value of input1, input2, input3 or input4will be copied.

led (l) 0 1 The LED in the button

DROIDmanual for blue-6 234 Table of contents at page 2

16.32 gatetool – Operate on triggers and gates, modify gatelength

This utility works with triggers, gates and
edge-triggers, can convert each type into
each other type and can change the length
of gates in flexible ways.

gatetool has three different types of inputs. Usually you
would patch only one of these:

• inputgate expects a gate signal and honors the
time span during which the gate is high. It takes
into account the length of the input gate.

• inputtrigger expects triggers signals. Here the
time span during which the input is high is not rel-
evant. Just the start of the trigger counts. If you
patch a “normal” gate signal here, the length of it
is ignored (which could be just what you wanted).

• inputedge looks for transitions between low and
high or high and low. Such transitions are called
“edge”. Each time the input level swaps is consid-
ered as a trigger. So patching a normal gate signal
herewill count as a trigger when the gate goes high
and another trigger when it goes low again.

For each input gate, trigger or edge, the gatetool out-
puts an output gate and an output trigger and an output
edge:

• outputgate goes high on an input gate, trigger or
edge. The length of the output gate can be modi-
fied in various ways (see below).

• outputrigger outputs a short trigger of 10 ms on
an input gate, trigger or edge.

• outputedge toggles between 0 and 1 on each input
gate, trigger or edge.

Modifying the gate length

The lengthof theoutput gateonoutputgate canbe spec-
ified in various ways. First let’s assume that you use the
inputtrigger or the inputedge input. In this case there
is no “input gate length”. The length of the output gate is
set by gatelength, which is a number in seconds:

[gatetool]
inputtrigger = I1
outputgate = O1
gatelength = 0.5 # 500 ms

As an option, you can set the gate length in relation to a
reference clock (please see page 23 for details on using
taptempo inputs). As soon as you patch taptempo, the
gatelength parameter is in relation to one input clock
tick (in language 0.3 is just the same as 30%):

[gatetool]
inputtrigger = I1
taptempo = I2 # some steady clock
gatelength = 0.3 # 30% of one clock tick
outputgate = O1

Note: The taptempo input has the one and only purpose
of setting a time reference to gatelength.

Now let’s assume that you have an input gate signal, that
has a specific length and you want to keep that or work
on that. For that purpose use the gateinput and the
gateoutput:

[gatetool]
inputgate = I1
outputgate = O1 # keep gate length

This example is not very useful, though, since it just
copies the input gate to the output without changing the
gate length. Use the gatelengthparameter to switch the
behaviour to that oftriggerinput: the input gate length
is ignored and overruled by that parameter:

[gatetool]
inputgate = I1
outputgate = O1
gatelength = 0.5 # 500 ms

More interesting isgatestretch. This is thefirst time the
lengthof the input gate is honored andhas any relevance:
Here you specify a percentage by that the gate should be
made longer:

[gatetool]
inputgate = I1
outputgate = O1
gatestretch = 0.3 # make gate 30% longer

For obvious reasons you cannotmake a gate shorter by a
percentage since nobody – not even Droid – can look into
the future...

Note: gatestretch obviously only makes sense if you
don’t use gatelength!

If you want to keep the gate length within certain
bounds, you can make use of mingatelength and
maxgatelength. They set a lower or upper limit on the
length of the output gate. They only are effective when
gatelength is not used. Both parameter are in seconds
or – if taptempo is used – in fractions of one clock tick.

The following example forwards the input gates un-
changed to the output, but makes sure that the length

DROIDmanual for blue-6 235 Table of contents at page 2

is never shorter than 10% and never longer that 90% of
a clock tick:

[gatetool]
inputgate = I1
taptempo = I2 # steady clock
outputgate = O1
mingatelength = 0.1
maxgatelength = 0.9

Building a clock divider

The edge triggers can help you building a clock divider
that divides by two. Of course you could do that with
clocktool (see page 162), as well. But this example il-
lustrates a bit, how the edge triggers work. Consider the
following example:

[gatetool]
inputtrigger = I1
outputedge = O1

Now for every trigger in I1, the edge output changes it’s

level. So in order to go from low to high and low again,
you need two input triggers. The output signal at O1 then
just outputs one gate signal in that time. So two triggers
are converted into one.

Use edges for pinging filters

Another application of edges is pinging filters with a zero
length impulse. Use the same patch snippet as above and
patch O1 to the input of a resonant filter. By just using the
edge, you really get exactly one ping. A trigger – regard-
less how short – always has two edges and thus pings the
filter twice, which can sound unclean.

Input Type Default Description

inputgate (ig) Input gate. Use this if the length of the input gate is relevant.

inputtrigger (it) Input trigger. Use this if the length of the input gate should be ignored.

inputedge (ie) Input edge: Use this if every low/high or high/low transition should count as a trigger.

gatelength (gl) Sets the length of the gate of outputgate in seconds. If you use taptempo the length is in fractions of a clock tick,
instead.

gatestretch (s) 0.0 Makes the output gate longer than the input gate by the given percentage. This parameter is ignored if gatelength is
used.

mingatelength (m) 0.01 Defines a minimum length of the output gate in seconds or clock ticks.

maxgatelength (x) Defines a maximum length of the output gate in seconds or clock ticks.

taptempo (tt) If you patch a reference clock here, gatelength, mingatelength and maxgatelength are fractions of one clock tick,
not seconds anymore. Please see page 23 for details on using taptempo inputs.

Output Type Description

outputgate (og) Outputs a gate with controllable length for every gate, trigger or edge event.

outputtrigger (ot) Outputs a 10 ms trigger for every gate, trigger or edge event.

DROIDmanual for blue-6 236 Table of contents at page 2

Output Type Description

outputedge (oe) Toggle between 0 and 1 at every gate, trigger or edge event.

DROIDmanual for blue-6 237 Table of contents at page 2

16.33 ifequal – Check if two values are equal

This circuit is a simplified version of
compare (see page 165). It uses less mem-
ory and CPU and just checks if two values
are equal.

The following example shows the usage: The values of
input1 and input2 are compared. If they are equal (i.e.
if _TRACK = 2), the value specified by ifequal is output
to output, otherwise the value of else.

[ifequal]
input1 = _TRACK
input2 = 2
ifequal = _TRACK2_GATES
else = 0
output = O1

Notes:

• A comparison of a value read from an analog input
will probablyneverwork since there is always a tiny

amount of jitter and noise.
• Comparison of floating point values like 0.3might
fail, as well, because these number can introduce
internal rounding errors.

• If you run into these issues, use compare (see page
165) instead. That circuit deals with unprecision
by introducing a allowed range for the values to be
equal.

• The main purpose of this circuit is to save a bit a
RAM and CPU in cases where you don’t use the full
feature set of compare.

Input Type Default Description

input1 (i1) 0.0 A value.

input2 (i2) 1.0 Another value

ifequal (q) 1.0 Value to be output if input1 is exactly equal to input2.

else (e) 0.0 Value to output otherwise.

Output Type Description

output (o) Here comes the result.

DROIDmanual for blue-6 238 Table of contents at page 2

16.34 lfo – Low frequency oscillator (LFO)

A flexible low frequency oscillator with
seven different waveforms, phase modu-
lation, flexible sync mechanisms, random-
ization, wave formmorphing and other in-
teresting features.

Please note also that this LFO is not intended to be used
at audio rate. It can probably operate until roughly 1000-
1500 Hz, but will sound ugly, distorted and with many
digital artefacts – especially the waveforms with steep
edges like square, ramp and sawtooth. If that’s exactly
what you intend, then maybe you will have fun anyway.

Waveforms

Here is the simplest possible patch. In this example the
frequency is specified in Hertz (cycles per seconds) and
the triangle output is routed directly to O1:

[lfo]
hz = 4
triangle = O1

The resulting output looks like this:

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

This is how the sawtooth output looks like:

[lfo]
hz = 4
sawtooth = O1

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

The ramp is similar but falling instead of rising:

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

The waveforms sine and cosine are similar but are one
quarter cycle (90°) apart:

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

paraboloid is very similar to sine, but is constructed
based on quadratic equations (which is faster):

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

Maybe the simplest waveform is square:

0 0.2 0.4 0.6 0.8 1
0

5

10

time(sec)

V
ol
ts

Bipolar output, Level and Offset

Please note that the LFO outputs just positive voltage
ranges until you set bipolar = on. That extends the
waveform to negative voltages (while doubling the peak-
to-peak voltage):

[lfo]
hz = 4
bipolar = on
triangle = O1

DROIDmanual for blue-6 239 Table of contents at page 2

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

time(sec)

V
ol
ts

The inputs level and offset can be used to control the
voltage range of the outputs – which is here for your con-
venience and avoids the need for additional circuits for
doing this. The following example outputs a sine wave at
5Hz toO4 that is gently oscillatingbetween2Vand3.5V:

[lfo]
hz = 5
level = 1.5V
offset = 2V
sine = O4

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

time(sec)

V
ol
ts

Frequency control

The frequency of the LFO can be controlled in various
ways. In the upper examples we used the input hz. Here
you specify the frequency of the LFO directly in Hz. This
is ideal when you want to set a fixed frequency with a
discrete number, rather than a control voltage. Here is
a rectangle LFO running at 1.5 cycles per second:

[lfo]
hz = 1.5
rectangle = O3

A more eurorack-like way is using the rate input, which
worksona1V / octave scheme. One “octave” heremeans
that the frequency doubles. Here is an example for creat-
ing a triangle LFO running at 4 Hz, since 2 V doubles the
base frequency of 1Hz two times (insteadof 2V you could
also write 0.2):

[lfo]
rate = 2V
bipolar = on
triangle = O1

The third way is to use tap tempo by sending a steady
clock into taptempo. The LFO then mimics the speed of
that input clock. This can even be combined with rate:
If you use both, then first taptempo is being used to set
the speed and then rate is used for altering that speed.
So sending -1 V into rate will create an LFO running at
half clock speed (since -1 V pitches down the LFO by one
octave).

[lfo]
taptempo = G1 # steady clock here
rate = -1V # run at half clock speed
sawtooth = O2

And even hz can be used in combination. Now the speed
of the taptempo is multiplied with the value of hz. Oth-
erwise stated: 1 Hz is the reference. The following sets
the LFO’s frequency to three times the tap tempo:

[lfo]
taptempo = G1
hz = 3
sawtooth = O2

Hz vs BPM

Sometimes people ask for help converting BPM into Hz
or vice versa. And some even express their unhappyness
about the fact that the Droid uses Hz rather than BPM.
Well – that decision was made because in general I see
the LFO rather as an oscillator than as a clock. And for
oscillators Hz is the usual way to measure the speed or
frequency.

So when you use an LFO as your master clock, how can
you convert specify BPM as Hz? Simply divide your BPM
by 15 to get the correct value for hz. So 120 BPM would
be hz = 8.

That sounds surprising, since Hz means oscillations per
second and BPM beats per minute. The point is: BPM
means beats per minute, not clock ticks per minute. In
a modular environment it is most common to run your
clock at 16th notes. And the “beat” inBPMrefers toquar-
ter notes. For playing one quarter note we need to play
four 16th notes, so after dividing by 60 to convert min-
utes into seconds, we need to multiply by 4, to convert
quarters into 16ths.

That – of course – assumes that your master clock is
running at 16th notes, sometimes written as 4 PPQN (4
pulses per quarter note).

DROIDmanual for blue-6 240 Table of contents at page 2

Randomization

Randomization is an experimental new feature that com-
bines random voltages with an LFO. If you turn this pa-
rameter up, then for each “hill” of the output waveform
has a different height. The parameter randomize con-
trols how strong that effect is. With 0.0 randomization
is turned off. At 1.0 it is at its strongest and the random
level of each hill is in the range 0.0 … 1.0.

Here is an example of a randomized sine wave:

[lfo]
hz = 0.5
randomize = 0.8
sine = O1

Theoriginalwave if printed lightand theand the random-
ized wave at output O1 ismagenta:

0 1 2 3 4 5 6
0

5

10

time(sec)

V
ol
ts

Pleasenote: If you turnbipolaron, thena “hill” is consid-
ered to be something above or below the zero line. That
means that now the sinewavehas twice asmuchhills and
the randomization works different. Here is an example
patch:

[lfo]
hz = 0.5
randomize = 0.8
sine = O1
bipolar = 1

And this is how the output looks like:

0 1 2 3 4 5 6
−10

−5

0

5

10

time(sec)

V
ol
ts

Note: Since not all waveform have there “hills” at the
same place and the start and end of a hill might even
be affected by skew or pulsewidth, each waveform out-
put has its own independent randomization. Therefore
cosine is not the phase shifted output of sine anymore,
if you use randomization.

Wave form selection andmorphing

As an alternative to the seven indiviual waveform out-
puts there is a common output simply called output. The
waveform can be selected with the input waveform and
defaults to 0, which means square wave. So for a simple
clock you can write:

[lfo]
hz = 2
output = G1

A triangle wave is selected with the code 2:

[lfo]
hz = 2

output = G1
waveform = 2

Here is the complete list of available waveforms:

0 square

1 sawtooth

2 triangle

3 ramp

4 paraboloid

5 sine

6 cosine

It is allowed to use non-integer values, like 0.5. This
will create a mixture between two adjacent waveforms
– while respecting the ratio. For example 2.1 will select
90% triangle and 10% ramp. That way you can smoothly
morph through the available waveforms. Here is an ex-
ample. Let’s start with waveform = 0.0, which gives a
plain square wave:

[lfo]
hz = 4
output = O1
waveform = 0.0

And this is what it looks like:

0 1 2 3 4
0

5

10

time(sec)

V
ol
ts

DROIDmanual for blue-6 241 Table of contents at page 2

At 1.0we get a saw tooth:

[lfo]
hz = 4
output = O1
waveform = 1.0

0 1 2 3 4
0

5

10

time(sec)

V
ol
ts

And in between – at 0.5 – we get somemixture:

[lfo]
hz = 4
output = O1
waveform = 0.5

0 1 2 3 4
0

5

10

time(sec)

V
ol
ts

DROIDmanual for blue-6 242 Table of contents at page 2

Input Type Default Description

rate (ra) 0.0 Frequency control: The default frequency of the LFO is 1 Hz (one cycle per second). Each volt doubles the frequency.
So an input of 1 V (a number of 0.1) speeds up the LFO to 2 Hz, 2 V (0.2) create 4 Hz and so on. On the other hand
negative voltages reduce the speed, so -1 V (-0.1) will give 0.5 Hz and so on.

taptempo (tt) Feed a reference clock here and the LFOwill run at the speed of that clock – albeit optionally modified by rate and hz.
Please see page 23 for details on using taptempo inputs.

hz () 1.0 Set the frequency in Hz directly by setting a number here. Note: you cannot use hz at that same time as taptempo.
But both can be combined with rate.

level (l) 1.0 The maximum positive output level of the LFO. The default of 1.0means a swing between 0 V and 10 V – unless you
enable bipolar, in which case it moves from -10 V to 10 V.

randomize (r) 0 1 0.0 Randomization is an experimental new feature that combines randomvoltageswith an LFO. If you turn this parameter
up, then for each hill of the LFO’s waveform output a new random attenuation is being chosen andmultiplied with the
current level. The result is an output, where each cycle of the waveform has a different level.

offset (of) 0.0 The output of the LFO is shifted by that voltage right before the output. This is the same as adding or mixing a fixed
voltage to the output. Not very fancy, but practical if you want to output amodulation voltage within a certain range.

bipolar (b) 0 If this switch is set to on, then the LFO will output a full swing from -level to +level. When set to off it will swing
between 0V and +level.

phase (p) 0 1 0.0 Shift the LFOs phase by this value. A value of 0.0 leaves the LFO run in its normal phase. 0.5will shift bei 180◦. And
1.0will shift by a complete phase of 360◦, which is the same as 0.0.

pulsewidth (pw) 0.50 1 0.5 This sets the pulse width of the square LFO and only affects the output square. It ranges from 0.0 to 1.0. Please note
that a pulse width of exactly 0.0 or 1.0 will make the output stick to the respective lower or upper level.

skew (sk) 0.50 1 0.5 Modifies the symmetry of the triangle output by shifting the “peak” of the triangle left and right. The default of 0.5
creates a symmetric waveform. Smaller values speed up the rising part of the triangle and create more and more a
ramp likewaveformuntil a skew of 0.0 creates an exact ramp – just the same as the ramp output. A skewof 1.0 create
a sawtooth waveform.

sync (sy) A positive trigger edge at this input will reset the LFO. It will force to restart the waveform at its “beginning”. By using
the input syncphase you can change that behaviour.

syncphase (sp) 0 1 0.0 This input changes the behaviour of the sync input. I changes the phase the waveform restarts at when it receives a
sync trigger. E.g. by setting this to 0.5 a sync triggerwill restart thewaveform right at itsmiddle. This is an interesting
feature that cannot be found in analog LFOs since it would be very hard to build in actual circuits.

DROIDmanual for blue-6 243 Table of contents at page 2

Input Type Default Description

waveform (w) 0.0 If youuseoutput – rather than the individualwaveformoutputs likesquare, sawand soon– this input selects theWave
form. An integer number from 0 to 6 selects one of the seven available waveforms. Any number in between selects a
mixture of the two neighboring waveforms. That way you can smoothly morph through all the available waveforms.
The codes for the waveforms are:

0 square

1 sawtooth

2 triangle

3 ramp

4 paraboloid

5 sine

6 cosine

Output Type Description

output (o) Main output of the LFO.

square (q) A square waveform –modified by pulsewidth.

sawtooth (st) Outputs a sawtooth waveform – i.e. a rising ramp

triangle (t) Outputs a triangle waveform –modified by skew.

ramp (rp) Outputs a falling ramp – like a sawtooth that is mirrored. Note: if the LFO is set to bipolar then this is the negation of
sawtooth. If it is set to unipolar then this is not the case. The waveform will be positive then!

paraboloid (pb) Anexperimentalwaveform that looks very similar to a sinewavebut is derived froma triangle by computing the square
of each waypoint’s distance to level.

sine (si) A sine waveform.

cosine (cs) A sine waveform shifted by 90◦. This output is for your convenience and avoids needing two LFO circuits in cases
where you want to make quadrature applications. Please note that 180◦ and 270◦ can easily be achieved by negating
the outputs sine and cosine at a later stage.

DROIDmanual for blue-6 244 Table of contents at page 2

16.35 logic – Logic operations utility

Utility circuit for logic operations on gate
signals. It can do operations like AND, OR,
NAND, NOR, etc.

Basic operation

In this example we do an and operation. O1
will output 1 (on) if all of I1, I2 and I3 see on (voltage
above 1 V):

[logic]
input1 = I1
input2 = I2
input3 = I3
and = O1

Here is how to do a logic negate of a signal:

[logic]
input = I1
negated = O1

If you do not like the 1 V threshold, you can change it:

[logic]
input = I1
negated = O1
threshold = 5V

Doing logic without this circuit

Please note, that many times when you think you need
the logic circuit you can do the same much simpler. Here

is an example,where youuse a toggle button to switchon
a clock, which is sent to output O1. The idea is to make
an AND combination of the clock signal and the button
state:

[button]
button = B1.1
led = L1.1

[lfo]
hz = 2
square = _LFO

[logic]
input1 = L1.1
input2 = _LFO
and = O1

While thisworksprettywell, here is a solution thatmakes
use of the fact, that themultiplication of two gate signals
is in fact a kind of AND combination, sinceA × B is just
1, ifA andB are 1 and 0 otherwise:

[button]
button = B1.1
led = L1.1

[lfo]
hz = 2
square = _LFO

[copy]
input = _LFO * L1.1
output = O1

You even can avoid the Copy-circuit if you make use of
the level input of the LFO, since setting the level to 0
disables it:

[button]
button = B1.1
led = L1.1

[lfo]
hz = 2
square = _LFO
level = L1.1

DROIDmanual for blue-6 245 Table of contents at page 2

Another nice solution is to make use of offvalue and
onvalue of the button circuit. offvalue is 0 per default,
so we just need to define onvalue:

[lfo]
hz = 2
square = _LFO

[button]
button = B1.1
led = L1.1
onvalue = _LFO

If youneed to combine twogates in order to create a com-
mon gate pattern, you can use addition – which is very
similar to a logic OR combination. The following exam-
ple creates two overlayed euclidean rhythms:

[euklid]
length = 16
beats = 3
output = _E1

[euklid]
length = 13
beats = 2
output = _E2

[copy]
input = _E1 + _E2
output = O1

Note: When both _E1 and _E2 are 1 at the same time, the
sum is 2, of course. This does not matter, since the out-
put voltage is capped at 10 V (1.0) anyway.

DROIDmanual for blue-6 246 Table of contents at page 2

Input Type Default Description

input1 ... input8 (i) + 1st ... 8th input. Note: this input is declared as a gate input, but in fact you can use it as a CV input in combi-
nation with various or random values set for the threshold.

threshold (t) 0.1 Input values at, or above this threshold value, are considered high or on. The default is 0.1 which corresponds to an
input voltage of 1 V. You can get interesting results when both the inputs are variable CVs (like from LFOs) and this
threshold is being modulated as well.

lowvalue (l) 0.0 Output value that is output for logic low, false or off.

highvalue (h) 1.0 Output value that is output for a logic high, true or on.

countvalue (cv) 0.1 Value added to the count output for each input with a high level

Output Type Description

and (a) A logic AND operation on all patched inputs: This output is set to highvalue if all inputs are high (i.e. at least
threshold), else lowvalue

or (o) A logic OR operation on all patched inputs: This output is set to highvalue if at least one of the inputs is high

xor (x) Exclusive OR: This is high, if the number of high inputs is odd! Thismeans that any change in one of the inputs will also
change the output.

nand (na) Like AND but the outcome is negated.

nor (no) Like OR but the outcome is negated.

negated (n) Logical negate of input1 (which can abbreviated as input). Note: The inputs input2 ... input7 are ignored here.
Another note: If you use input1 anyway, negated always outputs exactly the same as nand and nor. It’s just more
convenient to write and easier to understand. Hence a dedicated output for a logic negate.

count (c) 1 2 3 Adds countvalue to this output for each input that is high.

countlow (cl) Adds countvalue to this output for each input that is low.

DROIDmanual for blue-6 247 Table of contents at page 2

16.36 math – Math utility circuit

This circuit provides mathematic opera-
tions. Some of these use input1 and
input2 – such as sum or product. Other
ones just use input1 (which can be ab-
breviated as input) – such as negation or
reciprocal.

Example for computing the quotient I1I2 :

[math]
input1 = I1
input2 = I2
quotient = O1

Example for computing the square root of I1:

[math]
input = I1

root = O1

Note: As long as you do not send a value directly to an
output like O1, the range of the value is not limited by this
circuit. You can generate almost arbitrary small or large
positive and negative numbers. When you send a value
to an output, it will be truncated into the range -1 ... +1
(which corresonds to -10 V ... +10 V).

Unused inputs

When you don’t use both inputs for an operation that
usually needs to values, the omitted input will make the
operation “neutral”. For example in themultiplication an
omitted input will be treated as 1.0 where as in the sum
it defaults to 0.0. This is useful when you want to tem-
porarily disable a line in your patch. Consider the follow-

ing patch, whichmultiplies the incoming CV from I1with
the pot value of P1.2 and outputs it to O1.

[math]
input1 = I1
input2 = P1.2
product = O1

If you now remove the line with input2, the output will
simply copy the input, not set it to 0:

[math]
input1 = I1
input2 = P1.2
product = O1 # will be set to I1, not 0

Input Type Default Description

input1, input2 (i) The two inputs

Output Type Description

sum (s) input1+ input2

difference (d) input1− input2

product (p) input1× input2

quotient (qu) input1 / input2. If input2 is zero, a very large number will be returned, while the correct sign is being kept. This is
mathematically not correct but more useful than any other possible result.

modulo (md) input1modulo input2. This needs some explanation: With this operation you can “fold” the value from input1 into
the range 0 ... input2. For example if input2 is 1 V, the output will convert 1.234 V to 0.234 V, -2.1 V to 0.9 V and
0.5 V to 0.5 V. If input2 is zero or negative, the output will be zero.

DROIDmanual for blue-6 248 Table of contents at page 2

Output Type Description

power (pw) input1 to the power of input2. Please note that the power has several cases where it is not defined when either the
base or the exponent is zero or less than zero. In order to be as useful for yourmusicmaking as possible the math circuit
behaves in the following way:

• If input1 < 0, input2 is rounded to the nearest integer.
• If input1 = 0 and input2 < 0, a very large number is output.

average (a) The average of input1 and input2

maximum (x) The maximum of input1 and input2

minimum (m) The minimum of input1 and input2

negation (n) −input1

reciprocal (rc) 1 / input1. If input1 is zero, a very large number is being output, while the sign is being kept.

amount (am) The absolute value of input1 (i.e. −input1 if input1 < 0, else input1)

sine (si) The sine of input1 in away, the input range of 0.0 … 1.0 goes exactly through onewave cycle. Ormoremathematically
expressed: sin(2π × input1).

cosine (cs) The cosine of input1 in a way, the input range of 0.0 … 1.0 goes exactly through one wave cycle. Or more mathemat-
ically expressed: cos(2π × input1).

square (q) input12

root (ro)
√
input1. Please note that you cannot compute the square root of a negative number. In order to output something

useful anyway, the result will be−
√
−input1, if input1 < 0.

logarithm (l) Thenatural logarithmofinput1: lninput1. The logarithm isonlydefined forpositivenumbers. mathcircuitbehaves
like this:

• If input1 = 0, a negative very large number is output.
• If input2 < 0,−ln −input1 is output.

round (rd) The integer number nearest to input1

floor (f) The largest integer number that is not greater than input1

ceil (c) The smallest integer number that is not less than input1

DROIDmanual for blue-6 249 Table of contents at page 2

16.37 matrixmixer – Matrixmixer for CVs

This circuit is a 4×4matrix mixer with four
inputs and four outputs that is operated by
push buttons. Each of the 16matrix nodes
has a toggle button for adding or removing
one specific input to or from one specific
output. The mixing is always done with unity gain. This
means that each output is the sum of all inputs that are
enabled on its path.

The following picture shows amatrixwith the four inputs
I1 … I4 and the four outputs O1 … O4. As you can see the
button 23 mixes input 2 to output 3.

If youhavenotpushedanybuttonsyet, themixer enables
four buttons in a diagonal so that inputs I1 is connected
to output O1 and so on:

I1 11 12 13 14

I2 21 22 23 24

I3 31 32 33 34

I4 41 42 43 44

O1 O2 O3 O4

As an alternative operation, instead of summing the en-
abled signals you can compute themaximum signal. This
is usefulwhencombiningenvelope signals – e.g. fromdif-
ferent rhythmic patterns. Adding envelope signalswould
either make them “too loud” or even distort them.

The current state of the sixteen buttons is saved in the
’s internal flash memory.

Of course it is possible to use a smaller part of thematrix,
e.g. just 3×2, simply by not patching the according in-
puts, outputs and buttons. Here is an example of a 3×2
mixer:

[matrixmixer]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
button11 = B1.1
button12 = B1.2
button21 = B2.1
button22 = B1.3
button31 = B1.4
button32 = B2.3
led11 = L1.1
led12 = L1.2
led21 = L2.1
led22 = L1.3
led31 = L1.4
led32 = L2.3

This matrix looks like this:

I1 11 12

I2 21 22

I3 31 32

O1 O2

DROIDmanual for blue-6 250 Table of contents at page 2

Mixers withmore inputs / outputs

The four auxiliary inputs auxin1… auxin4 can be used to
creatematrixmixerswithmore than four inputs. You can

create amixer with 8 inputs and 4 outputs by sending the
four outputs of one matrix mixer into the four auxiliary
inputs of a second one.

If you want to create a mixer with more than 4 outputs
then simply use several mixers and feed the same inputs
to all of them.

Input Type Default Description

input1 ... input4 (i) 0.0 The up to four CV inputs that you want to mix

auxin1 ... auxin4 (a) Theseauxiliary inputswill bemixeddirectly into the fouroutputsoutput1…output4andareused for cascading several
matrix mixers into one with more than four inputs.

mixmax (m) 0 1 0.0 If this is 0.0, normalmixing is done (the enabled inputs CVswill be added). At a value of 1.0 instead each outputs is the
maximum of the enabled inputs. Any number in between will create a weighted average between these two values.

startvalue (sv) 1 2 3 1 This input selects in which state the matrix begins life. Also a trigger to clear will create that starting state. The
following three configurations can be selected with startvalue:

0 All buttons are cleared.

1 The buttons on the diagonal are active.

2 All buttons are set.

When set to 1, input1 is sent to output1, input2 to output2 and so on.

button11 ... button14
(b1)

These four buttons decide, to which of the four outputs input1 is being mixed.

button21 ... button24
(b2)

These four buttons decide, to which of the four outputs input2 is being mixed.

button31 ... button34
(b3)

These four buttons decide, to which of the four outputs input3 is being mixed.

button41 ... button44
(b4)

These four buttons decide, to which of the four outputs input4 is being mixed.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

DROIDmanual for blue-6 251 Table of contents at page 2

Input Type Default Description

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

output1 ... output4 (o) The four outputs

led11 ... led14 (l1) 0 1 The LEDs in the buttons button11 …button14

led21 ... led24 (l2) 0 1 The LEDs in the buttons button21 …button24

led31 ... led34 (l3) 0 1 The LEDs in the buttons button31 …button34

led41 ... led44 (l4) 0 1 The LEDs in the buttons button41 …button44

DROIDmanual for blue-6 252 Table of contents at page 2

16.38 midifileplayer – MIDI file player

This circuit can read MIDI files from your
Micro SD card and “play” them by creat-
ing respective CVs for gate, pitch, velocity,
pitch bend and other outputs, which you
can then route to synth voices in yourmod-
ular – or do other crazy stuff with that information.

MIDI files are organized in tracks. Each circuit of this type
can play just one track at a time. If youwant to playmore
tracks, use more midifileplayer circuits in parallel.

Just asMIDI streams,MIDI files contain channel informa-
tion for each note and each controller event. These chan-
nels are currently completely ignored. If you think you
can convinceme that this is bad and that you have a use-
ful interpretation of the channels within the scope of the
MIDI file player, please let me know.

Some limitations of the current implementation are:

• Just one track can be played at a time.
• The maximum length of a track is 6000 bytes.
Longer tracks cannot be loaded. Sorry. But this
is quite long and is enough for approximately 1500
note events. Note: The size of the total file can be
as large as you like.

• The channel information is ignored.
• Some meta events such as program change, all
notes off, etc. are not yet recognized. Many of
them just make sense in MIDI streams, not in files,
anyway.

Features of the current implementation:

• Up to eight voices in parallel with flexible voice al-
location algorithms

• Support for velocity, pitch bend, mod wheel, and
global volume

• You canoutput theoriginalMIDI clock fromthefile.
• You can adjust the tempo continuously.
• You can use external clocking (ignoring the tempo
of the file).

Getting started

Here is the simplest possible example: Copy your MIDI
file to the SD card and name it midi1.mid. And here is
the patch that plays the first track with a single voice:

[midifileplayer]
pitch = O1
gate = O2

Now patch O1 to the 1V/Oct of a synth voice and O2 to its
gate. This voice should then play the notes from the first
track of the file.

The playback starts immediately when the DROID starts.
Per default the track is looped. You can restart the play-
back with the reset input. And the other way round:
you get a trigger at endoftrackwhen the playback of the
track has finished.

Selecting file and track

You can have more than one MIDI file on your SD card.
The MIDI files on the card must be named midi1.mid,
midi2.mid, and so on. Gaps are allowed. You can have
up to 9999 MIDI files that way. The last one would have
the name midi9999.mid. Don’t use leading zeroes! The
file midi0001.mid cannot be played!

You can then select one of these files with the file pa-
rameter, so e.g. file = 17 would play midi17.mid. If
you omit that, midi1.midwill be played. If no such file is
present on the card, nothing will be played.

A MIDI file can contain several tracks. The track pa-
rameter specifies the number of the track in the file you
want to play. Hereby only the non-empty tracks will be
counted. This is important since many MIDI files have
tracks that just contain meta information and no note
events.

If you omit the track number, the first non-empty track
will be played. If your track number is out of range, the
last track in the file will be selected.

The parameters file and track are – of course – CV con-
trollable. So you can switch between files and tracks by
means of buttons, switches, external CV, you name it.
Whenever the file or track changes, loads the se-
lected track from the SD card into its memory. This is
also the casewhen the starts. Also a track change
restarts playback.

Note: loading a track from the SD card might take a cou-
ple of milliseconds. During that time won’t run
as usual. All inputs will be ignored and all outputs freeze.
So switching at a high rate might lead to unexpected re-
sults. If you need to have a playback started in perfect
timing, use the reset input as an exact trigger. If you do
not want to use a trigger but rather a play/stop gate, you
can use the speed input for that. Setting the speed to 0
stops playback and 1 starts it immediately.

DROIDmanual for blue-6 253 Table of contents at page 2

Polyphonic tracks

MIDI streams and files consist of note on and note off
events. So there is no length parameter in a note. It just
contains the note number (in semitones) and a velocity.
If the track contains situations where a new note starts
while another one is still on, the track is polyphonic, as
you need more than one synth voice to play correctly.

TheMIDIfileplayer allowsyou todefineup to eightvoices
for playing notes. Each voice consists of a pitchX and
a gateX output (and an optional velocityX output).
By patching these outputs the player knows how many
voices are available.

If the number of simultaneous notes exceeds the number
of attached voices, some notes have to be cut off or com-
pletely omitted. You can flexibly change the behaviour
in such a situation. See the description of the parameter
dropnotes for details.

Here is an example for playing with up to three voices:

[midifileplayer]
file = 2
track = 1
pitch1 = O1
pitch2 = O2
pitch3 = O3
gate1 = G1
gate2 = G2
gate3 = G3

Speed and Clocking

AMIDI file contains absolute timing information of when
to exactly play which note. For that purpose every note
event in the file has a relative time stamp, measured in

ticks. The player honors this information and plays the
tracks exactly in their original speed... unless... you
change it of course.

To do so you have two options. The first one is the speed
parameter. At 1.0 you get the original playing speed. 0.5
will play at half the speed and 2.0 at the double speed.
This can be mapped to a pot, of course (here I chose a
range from 0 to 2):

[midifileplayer]
pitch = O1
gate = O2
speed = P1.1 * 2

Turning the pot totally CCW will completely freeze the
playback.

If youneed the internal clockof theMIDI player inorder to
synchronize with the rest of your patch, you can get two
clocks running at different resolutions at the two outputs
clockout and midiclock. See their descriptions below
for details.

The second option is clocking the player externally. In
that case the tempo information from the MIDI file is ig-
nored. External clocking allows you to synchronize the
MIDI playback with the rest of your patch, which may
contain additional sequencers and stuff. Patch your ex-
ternal clock into theclock input. Eachclockwill thenplay
a 16th note’s time equivalent of content:

[midifileplayer]
pitch = O1
gate = O2
clock = G1

Note: this does notmean that the notes are quantized to
16th notes. You still have the complete resolution.

Other controls and parameters

MIDI files may contain information about pitch bend, a
global volume (CC 7), the mod wheel (CC 1) and velocity
(per note). These are all available as CV outputs. See the
table of outputs for details. Most other CCs are currently
not available since they are very rarely used in MIDI files.
Future versions of the MIDI file player might give access
to these.

Error handling

Whenworkingwithfiles, errors can happen. TheMIDI file
might be missing, corrupted, whatever. In order to make
life easier for you, the MIDI file player can show you an
error status at the output error. Write the error to an R
register that is free, that will make one of the LEDs lit up
and show an error color.

The following patch shows the errors at the LED of input
1:

[midifileplayer]
pitch = O1
gate = O2
error = R1

Please see the table of outputs below for the various er-
rors and their color codes.

DROIDmanual for blue-6 254 Table of contents at page 2

Input Type Default Description

file (f) 1 2 3 1 Number of the MIDI file to play. 7will select midi7.mid.

track (tc) 1 2 3 1 Number of the track in the file to play, starting at 1. Empty tracks do not count. Any number smaller than 1 will be
interpreted as one. If the number is too big, the last track in the file is played.

clock (c) Patch an external clock here and the MIDI file will be played according to that clock. In order to be modular-friendly,
this is not a MIDI clock but one counting the sixteenth, which is typically the step resolution of analog sequencers.
This clock is then internallymultiplied in order to create the necessary resolution. Note: The input speed has no effect
when using an external clock.

reset (r) A trigger here sets the play back position to the start.

loop (lo) 1 When loopmode is active (set to 1), the track will start over again immediately when it has reached its end. This is the
default. Otherwise playback stops at the end of the track.

end (e) 1 2 3 + If you set this value, it defines the playing end of the track. This is set in quarters as counted from the start. Setting
the end beyond the end of the track will insert some pause.

speed (sp) 1.0 Change the relative speed of the playback with this setting. At 1 the speed is unchanged. 1.5makes the speed 50%
faster, 0.5 plays at half speed. At 0 the playing is completely frozen. Note: speed is being ignored when using the
input clock.

channel (ch) 1 2 3 + Only execute / play commands from a certain MIDI channel. There are 16MIDI channels. It ranges from 1 to 16.

tuningmode (tm) off If set to 1, all pitch outputs will go to the CV selected for tuningpitch (which defaults to 2 V), and all gate outputs will
play gates at 120 BPM. This helps getting all attached voices tuned when working with many voices.

tuningpitch (tp) � 1V
Oct 2V This pitch CV will be output while the tuning mode is active.

transpose (tr) � 1V
Oct 0V Transposes all output pitches by this value by adding the value. So in order to transpose one octave down, set this

input to -1V or -0.1. Changes in the transposition are immediately reflected, even for currently already active notes.

holdvelocity (hv) 0 If this is set to 1, the velocity output for a voicewill not be affected by note off events. It’s just altered at the beginning
of new notes. The velocity is kept after the note ends. This way during the release phase of an envelope triggered by
the gate, the original velocity still lasts on. Inmost cases the note off velocity is set to 0, whichwould immediately cut
off the release phase when the velocity is patched into a VCA.

pitchbendrange (pbr) � 1V
Oct

1
6V Sets the value to the desired maximum that pitchbend should output, and likewise it’s negative counterpart at its

minimum value. At the middle position it always outputs 0. This defaults to 2
12 V, which corresponds to one whole

tone. Note: setting this to a negative value is allowed and will invert pitch bend.

bendpitch (bp) 1 When set to 1 (which is the default), the pitch bend will directly be applied to all output pitches. Alternatively you can
set it to 0 and use the output pitchbend, for using it elsewhere.

DROIDmanual for blue-6 255 Table of contents at page 2

Input Type Default Description

roundrobin (rr) 0 Normallywhen looking for a free output for playing the next note, this circuitwill start from output1 in its search. This
way, if there are not more notes than outputs at any time, the notes played first will always be played at the lowest
numbered outputs. This leads to a deterministic behaviour when it comes to playing things like chords. The same
voice will always be used for the first note in the stream of MIDI events.

When you switch roundrobin to 1, this changes. Now the outputs are scanned in a round-robin fashion, like in a
rotating switch. That way every output has the same chance to get a new note. Here it can evenmake sense to define
multiple voices even if the track ismonophonic. When you use envelopeswith longer release times, you can transform
such a melody into chords with simultaneous notes.

Note: When all outputs are currently used by a note, roundrobin has no influence. Here voiceallocation selects
which of the notes will be dropped.

voiceallocation (va) 1 2 3 0 When the MIDI stream, at any given time, needs to play more notes than you have voices assigned, normally the
“oldest” notes would be cancelled. This behaviour can be configured here by setting voiceallocation to one of the
following values:

0 The oldest note will be cancelled (default)

1 The new note will not be played and simply be omitted

2 The lowest note will be cancelled

3 The highest note will be cancelled

notegap (ngp) 0.0 When your MIDI devices plays a note so “long” that it lasts exactly until the next note begins – or if due to a lack of
used pitch outputs one currently played note has to be replaced with a new one, the gate output will have no time to
go low for a sufficient time between the two notes. In effect it won’t trigger any envelope for the new note but will
play “legato”.

If you don’t like this, you can use notegap. This input specifies a number ofmilliseconds that the gate will be forced
down before the new note begins. This has the drawback of introducing some latency, of course! So I suggest that you
start with notegap = 1 and then check out if your envelope is fast enough to trigger. If not, increase the value.

If you are using ’s own contour circuit or trigger something else internally in your patch, you can use notegap
= 0.1. That is sufficient and introduces barely any latency. A value of 0.0 keeps the default of the legato mode.

Note: the notegap parameter does not affect the trigger outputs.

ccnumber1 ... ccnumber4
(cn)

1 2 3 0 You can listen to up to four CCs (control changes). For example if you are interested in the current value of CC#17, set
ccnumber1 = 17 and use the output cc1 for getting the value of CC 17.

DROIDmanual for blue-6 256 Table of contents at page 2

Input Type Default Description

lowestnote (ln) 1 2 3 0 With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.

highestnote (hn) 1 2 3 127 Sets an upper limit to the note being played, similar to lowestnote. The “Notegates” are not being affected by this
bound.

note1 ... note16 (n) 1 2 3 + Selects up to 16 individual notes for which you can get a dedicated gate signal. Per default these values are set to
0 for note1 (meaning C-2), 1 for note2 (meaning C♯-2) and so on. For each of these notes you get a corresponding
gate output (see notegate1, notegate2, etc.). These gates are high as long as the selected notes are being hold.
One application is to use just one midifileplayer or midiin circuit for sequencing up to 16 drum voices. Another
application is to use a MIDI keyboard or controller as a button expander – just like a P2B8 or B32.

Output Type Description

clockout (co) Outputs a steady clock of 1 tick per 16th note.

midiclock (mc) Outputs a steady MIDI clock, i.e. 24 ticks per quarter note of the tune. This is 6 times faster than clock.

endoftrack (et) Outputs a trigger when the end of the track is reached.

error (er) This output will be set to a value other than zero in case of an error while loading and parsing the MIDI file. This is
intended for wiring it to one of the R registers. Here different errors will be displayed as different colors. Here is the
list of all possible values of error:

0 black – Everything is fine.

-1 white – The SD card or MIDI file is missing.

1 magenta – The file is corrupted, garbled or noMIDI file.

0.75 orange – The file does not contain any non-empty track.

0.25 cyan – the track is too long (max 6000 bytes are allowed).

pitch1 ... pitch8 (p) � 1V
Oct Pitch outputs. Since MIDI tracks can be polyphonic – i.e. play several notes at the same time – you can assign up to

eight outputs here. The notes will be distributed to the defined outputs according to the settings roundrobin and
voiceallocation.

velocity1 ... velocity8
(v)

0 1 For each voice there is an optional velocity output, which translates the MIDI velocity into values from 0 to 1.

DROIDmanual for blue-6 257 Table of contents at page 2

Output Type Description

pressure1 ... pressure8
(pr)

0 1 MIDI provides two different messages for sending ”after-touch” information, i.e. information about how strong a
key is pressed down after the initial hit. Some keyboards just have one pressure sensor in total and send the current
maximum pressure information of all keys in one message (“channel pressure”). Others have one pressure sensor per
key and send “polyphonic key pressure” messages. This circuit maps both to a pressure output per note that is being
played. So if your keyboard (or sequencer or DAW or whatever) sends polyphonic key pressure events and you use
multiple pitchX outputs, wire the individual pressureX outputs to wherever you like. Otherwise you can simply use
pressure1 for all notes (which can be abbreviated with pressure), since it is the same for all note outputs anyway.
pressure outputs a value from 0 to 1.

gate1 ... gate8 (g) Gate outputs for the up to eight simultaneous note outputs.

trigger1 ... trigger8 (t) Trigger outputs for the up to eight simultaneous note outputs. The difference to the gate outputs is, that these just
send a short trigger of 5ms at the start of the note. This can be interesting in situations where the notes have no gaps
in between so that gate will never go low.

cc1 ... cc4 () 0 1 Outputs the current value of the four CC number that are defined with the inputs ccnumber1 ... ccnumber4. CCs have
a range from 0 to 127, but this is converted in the range 0.0 .. 1.0 here, in order to make it easier to use that as a CV.
If you need the raw number, multiply the output with 127. Note: as long as no CCmessage with the selected number
happened, this output will be set to 0.

cctrigger1 ... cctrigger4
(ct)

These outputs send a trigger whenever a CC event matching the corresponding ccnumber is processed. Some devices
uses triggers in such a way – as events rather then indicating the change of a continous value. So if you set ccnumber2
= 17, the output cctrigger2 sends a trigger whenever CC#17 is received.

notegate1 ... notegate16
(ng)

Outputs a high gate whenever the corresponding note (which is selected by note1 through note16) is currently being
played.

pitchbend (pb) Outputs the current pitch bend value as a bipolar voltage. The range can be set with pitchbendrange.

programchange (pc) Sends a trigger whenever aMIDI program changemessage arrives. Just before sending the trigger sets program to the
new program number (something from 0 to 127). Note: This trigger is also being output when the program change
messages sends the same program number as previously, i.e. if there is no actual change.

program (pm) 1 2 3 The number of the last program change. This starts at 0.

bank (ba) 1 2 3 Outputs the number of the currently selected bank – from0 to 16384. MIDI defines theMSB of the bank to be changed
with CC#0 and the LSB with CC#32. That means if you just use CC#0, you will only be able to select the banks 0, 128,
256, and so on. As long as no bank select CC has been received, bankwill output 0.

modwheel (w) 0 1 Output the current state of themodwheel level – within the range from 0.0 to 1.0. Themodwheel is changed byMIDI
control change 1.

DROIDmanual for blue-6 258 Table of contents at page 2

Output Type Description

volume (vo) 0 1 Outputs the current global volume as set by MIDI control change 7.

portamento (po) This output gives you access to the current state of the “portamento pedal” (MIDI CC 65). You can use it to enable an
external slew circuit for creating portamento effects.

soft (so) This output gives you access to the current state of the “soft pedal” (MIDI CC 67). It is 1while the pedal is hold and 0
otherwise.

DROIDmanual for blue-6 259 Table of contents at page 2

16.39 midiin – MIDI to CV converter

This circuit converts incoming MIDI data
into CV, gate and trigger signals. It needs
theX7 expander in order towork (see page
77 for general information about the X7).

There are various useful applications of
this circuit, some of which are:

• Attaching an external keyboard to your modular.
• Using an external hardware sequencer for playing
melodies and beats in your modular.

• Use an external MIDI controller to influence your
patch.

• Use your phone or tablet as a MIDI controller to in-
fluence your patch (via USB).

• Connect two DROIDs (both with X7) and exchange
real time data.

The X7 MIDI implementation is very comprehensive and
gives you convenient access tomost of theMIDI features.
Please refer to the table of inputs and outputs for details.
Here are just some very basic examples:

Basic operation

The basic operation is quite simple. Per default midiin
listens on all available ports, both TRS and USB. The first
port to receive MIDI data is used. The following exam-
ple controls one synth voice by convertingMIDI note on /
note off messages into CV / gate signals:

[midiin]
pitch = O1
gate = O2

It’s really as simple as that! Connect your MIDI key-
board or sequencer with the X7MIDI input, wire O1 to the
1V/Oct input of a synth voice and O2 to its gate input and
enjoy your music!

You can also precisely specify which ports to receive data
from. All details are explained below.

Polyphonic patches

Do you have more than one synth voice to control? Then
you can play several notes at the same time by using up
to eight pitch and gateoutputs. Here is an examplewith
three voices, which uses a G8 expander for the gates:

[midiin]
pitch1 = O1
pitch2 = O2
pitch3 = O3
gate1 = G1
gate2 = G2
gate3 = G3

Here the parameters roundrobin and voiceallocation
are interesting. roundrobin influences which of the
three outputs should be used for the next note, in situa-
tions where more than one is free. voiceallocation, in
contrast, controlswhat should happen if theMIDI stream
wants to play more simultaneous notes than you have
setup in midiin. The default is to cancel the oldest cur-
rently playing note, but you can change that behaviour in
various ways.

Sequencing drums and triggers

When you use aMIDI sequencer for triggering drums, of-
ten each drum voice (bass drum, snare drum, etc.) is
triggered by a certain note, for example C-2 for the bass
drum, C♯-2 for the snare drum and so on. In this case it
is more convenient to use the notegate outputs. Check
the following example:

[midiin]
note1 = 24
note2 = 25
notegate1 = O1
notegate2 = O2

Now whenever note 24 is played by the sequencer,
notegate1 will trigger. The note numbers range from 0
to 127, with 0 being the lowest note and 127 the high-
est. TheMIDI standard specifies that note 0 is usually C-2
(twooctaves belowC0). So note 24would beC0 andnote
25 C♯0.

Another application of note gates is to use keys on aMIDI
keyboard or touch pads of aMIDI controller as buttons in
your patch! In fact the button circuit can bewired
to such note gates. It’s just that you don’t have a corre-
spondingLED.But you canuse the ’s ownLEDs for
that.

The following example uses the note 24 in order to toggle
a (virtual) button and use the first input LED of the mas-
ter as LED for the button:

[midiin]
note1 = 24
notegate1 = _NOTE24

DROIDmanual for blue-6 260 Table of contents at page 2

[button]
button = _NOTE24
led = R1
output = _SOMETHING # ...

Please note: midiout has similar note1 ... note8 inputs.
But there thepitches are specified in1V/Oct. Sodon’tmix
them up!

Start, Stop and Clock

MIDI sequencers usually send a steady MIDI clock at 24
PPQ, which means 24 pulses per quarter note, which in
turn means 6 pulses per 16th note, which is the typical
clock speed for modular systems. But also 48 PPQ and
96 PPQ are possible.

You get easy access to the clock by various clock outputs
running at different speeds. The jack labelled just clock
outputs the 16th note clock. The following example just
sends that clock to the O1 output:

[midiin]
clock = O1

Hereby it is assumed that the MIDI clock is running at
24 PPQ. If its running faster, simply use one of the other
clock outputs, which divides down the clock. Or use
clocktool (see page 162) for dividing yourself.

Also the START and STOP messages of MIDI sequencers
are accessible, either as two separate triggers, or as a run-
ning state. For example you can use the start output as
a reset signal for some circuit:

[midiin]
clock = _CLOCK
start = _RESET

[sequencer]
clock = _CLOCK
reset = _RESET
...

Getting CCs

MIDI does not only transport note events but also con-
trollers. Most of these are continuous values, much like
CVs. midiin gives you access to the current value of a
couple of standard controllers like volume and modwheel
with dedicated outputs. And in addition up to four cus-
tomCCs canbeoutput. All such controllers are converted
into values from 0 to 1 (or 0 V to 10 V if you output them
directly):

[midiin]
volume = O1
modwheel = O2
ccnumber1 = 10 # get update from CC#10
cc1 = O3 # send current CC value to O3

Usingmultiplemidiins

Youare not restricted toonemidiin circuit but canuseup
to 32 of these in your patch. There are different reasons
whymultiple ones can be useful, e.g.:

• You want to control different voices from different
MIDI channels

• You want to fetch more than four CCs.

Allmidiin circuitswill get their owncopyof theMIDIdata
stream and can do their own things with it. You might
want to use channel = ... in order to just get only the
events of a specific MIDI channel.

Pedals

The MIDI standard defines five different types of food
pedals. The state of these – up or down – is transmitted
bymeans of five different control changes (CCs). midiin
automatically interpretes themcorresponding to their in-
tended meaning as follows:

• Damper pedal (CC 64): While down, notes still
linger on, even if they end. Internally, the “note
off” eventof all noteswill bedelayeduntil thepedal
is up. This pedal is sometimes also called “sustain
pedal”, since it makes notes sustain.

• Portamento pedal (CC 65): Sets the portamento
output to 1 while down. You can use that output
for enabling a slew limiterwith the circuit slew (see
page 355).

• Sostenuto pedal (CC 66): Sostenuto is the smarter
version of sustain. Such a pedal is found as the
middle of three pedals on grand pianos. When it
goes down, all notes that are currently played are
sustained as long as the pedal is held. But new
notes, that start during that period, at not sus-
tained. That’s the difference. The midiin circuit
automatically makes CC 66 behave in exactly that
way. That, of course, just makes sense in a poly-
phonic patch, where you have enough voice that
can play the sustained notes.

• Soft pedal (CC 67): Sets the soft output to 1while
held.

• Legato pedal (CC 68): While down, ties conse-
qutive notes together by keeping gate at 1 be-
tween notes.

DROIDmanual for blue-6 261 Table of contents at page 2

Port selection

The midiin circuit can receive up to twoMIDI streams in
parallel – one from a USB jack and one from a TRS jack.
Merging together multiple streams from two USB jacks
or two TRS jacks is currently not possible.

The two inputs usb and trs define from which physical
ports (jacks) MIDI data should be processed. TRS stands
for “tip ring sleeve”. By this we mean the 3.5 mm MIDI
input jack on the X7 or the MASTER18.

For eachof the jack types “USB”and “TRS”youcanchoose
one of three options:

• process data from a specific port
• autodetection: process data fromtheport that has
received MIDI input first

• don’t process data

For processing data from a specific port, specify trs =
or usb = with the number of the port. The numbers de-
pend on your hardware configuration.

MASTER + X7:

usb = 1 USB port on the X7

trs = 1 TRS port on the X7

MASTER18:

usb = 1 USB port on the MASTER18

trs = 1 TRS port MIDI1 on the MASTER18

trs = 2 TRS port MIDI2 on the MASTER18

MASTER18 + X7:

usb = 1 USB port on the MASTER18

usb = 2 USB port on the X7

trs = 1 TRS port MIDI1 on the MASTER18

trs = 2 TRS port MIDI2 on the MASTER18

trs = 3 TRS port on the X7

Autodetection is selectedbyusing theport number10. In
this case watches all ports (of the selected type)
for incoming MIDI data. As soon as it sees data on one
port it locks in to this port and ignores all other ports for
the while. After no MIDI data is seen on the locked port
for a couple of seconds, auto detection happens again, so
you can e.g. unplug a device from port 1 and plug it into
port 2 and after a couple of seconds things work again.

By setting trs = 0 or usb = 0, this type of port is deac-
tivated.

If you just specifyoneoftrsandusb, theotheronewill be
deactivated – unless you set the port to 0, which sets the
other port to auto detection. Sounds complicated? It’s
done that way to meet most peoples expectations! Let’s
view a couple of examples.

Guess you have aMASTER and anX7. The default is to do
auto detection on both ports. For this you don’t need to
specify neither trs nor usb

[midiin]
pitch = O1
gate = O2
...

The next example just processes data from the USB port
of the X7:

[midiin]
usb = 1

Process just data from the TRS port:

[midiin]
trs = 1

Deactivating USB automatically sets TRS to auto detec-
tion, if trs is omitted. So the following example does the
same, since the X7 has just one TRS port:

[midiin]
usb = 0 # disable USB, enable TRS

Now let’s assume that you have a MASTER18 plus X7.
The following example just processes data from the X7’s
TRS port:

[midiin]
trs = 3

And here is how to process data from the USB port on
theMASTER18 plus data from that TRS port that receives
MIDI data first:

[midiin]
usb = 1
trs = 10 # auto detection

DROIDmanual for blue-6 262 Table of contents at page 2

Input Type Default Description

trs () 1 2 3 + Selects a TRS port to use (3.5 mm jack). trs = 0 disables TRS, trs = 10 enables auto detection. See the manual of
midiin for details on port selection.

usb () 1 2 3 + Selects a USB port to use. usb = 0 disables USB, usb = 10 enables auto detection. See the manual of midiin for
details on port selection.

initialrunning (ir) 1 2 3 2 This parameter sets which “running” state is assumed when your starts. The idea behind this parameter is,
that at this point of time you cannot know the real running state of theMIDI stream, since e.g. the might have
started after the sequencer at the sending end of the line.

You have three ways to set this: start in stopped state, start in running state and an inbetween “automatic” mode. In
the auto mode, you start in stopped state but automatically switch to running as soon as a note on event is received.
At that moment a MIDI START event is simulated.

0 Start stopped state

1 Start in running state

2 Automatic: start in stopped state, switch to running on first “note on”

Note: as this parameter is just read once the absolute system start, you cannot assign a dynamic CV input or control
here.

systemreset (sr) A trigger here resets thewholeMIDI state of this circuit. It does the same as aMIDI RESETmessage: It stops all playing
note, resets the controllers, the states of the pedals and so on.

channel (ch) 1 2 3 + Only execute / play commands from a certain MIDI channel. There are 16MIDI channels. It ranges from 1 to 16.

tuningmode (tm) off If set to 1, all pitch outputs will go to the CV selected for tuningpitch (which defaults to 2 V), and all gate outputs will
play gates at 120 BPM. This helps getting all attached voices tuned when working with many voices.

tuningpitch (tp) � 1V
Oct 2V This pitch CV will be output while the tuning mode is active.

transpose (tr) � 1V
Oct 0V Transposes all output pitches by this value by adding the value. So in order to transpose one octave down, set this

input to -1V or -0.1. Changes in the transposition are immediately reflected, even for currently already active notes.

holdvelocity (hv) 0 If this is set to 1, the velocity output for a voicewill not be affected by note off events. It’s just altered at the beginning
of new notes. The velocity is kept after the note ends. This way during the release phase of an envelope triggered by
the gate, the original velocity still lasts on. Inmost cases the note off velocity is set to 0, whichwould immediately cut
off the release phase when the velocity is patched into a VCA.

DROIDmanual for blue-6 263 Table of contents at page 2

Input Type Default Description

pitchbendrange (pbr) � 1V
Oct

1
6V Sets the value to the desired maximum that pitchbend should output, and likewise it’s negative counterpart at its

minimum value. At the middle position it always outputs 0. This defaults to 2
12 V, which corresponds to one whole

tone. Note: setting this to a negative value is allowed and will invert pitch bend.

bendpitch (bp) 1 When set to 1 (which is the default), the pitch bend will directly be applied to all output pitches. Alternatively you can
set it to 0 and use the output pitchbend, for using it elsewhere.

roundrobin (rr) 0 Normallywhen looking for a free output for playing the next note, this circuitwill start from output1 in its search. This
way, if there are not more notes than outputs at any time, the notes played first will always be played at the lowest
numbered outputs. This leads to a deterministic behaviour when it comes to playing things like chords. The same
voice will always be used for the first note in the stream of MIDI events.

When you switch roundrobin to 1, this changes. Now the outputs are scanned in a round-robin fashion, like in a
rotating switch. That way every output has the same chance to get a new note. Here it can evenmake sense to define
multiple voices even if the track ismonophonic. When you use envelopeswith longer release times, you can transform
such a melody into chords with simultaneous notes.

Note: When all outputs are currently used by a note, roundrobin has no influence. Here voiceallocation selects
which of the notes will be dropped.

voiceallocation (va) 1 2 3 0 When the MIDI stream, at any given time, needs to play more notes than you have voices assigned, normally the
“oldest” notes would be cancelled. This behaviour can be configured here by setting voiceallocation to one of the
following values:

0 The oldest note will be cancelled (default)

1 The new note will not be played and simply be omitted

2 The lowest note will be cancelled

3 The highest note will be cancelled

DROIDmanual for blue-6 264 Table of contents at page 2

Input Type Default Description

notegap (ngp) 0.0 When your MIDI devices plays a note so “long” that it lasts exactly until the next note begins – or if due to a lack of
used pitch outputs one currently played note has to be replaced with a new one, the gate output will have no time to
go low for a sufficient time between the two notes. In effect it won’t trigger any envelope for the new note but will
play “legato”.

If you don’t like this, you can use notegap. This input specifies a number ofmilliseconds that the gate will be forced
down before the new note begins. This has the drawback of introducing some latency, of course! So I suggest that you
start with notegap = 1 and then check out if your envelope is fast enough to trigger. If not, increase the value.

If you are using ’s own contour circuit or trigger something else internally in your patch, you can use notegap
= 0.1. That is sufficient and introduces barely any latency. A value of 0.0 keeps the default of the legato mode.

Note: the notegap parameter does not affect the trigger outputs.

ccnumber1 ... ccnumber4
(cn)

1 2 3 0 You can listen to up to four CCs (control changes). For example if you are interested in the current value of CC#17, set
ccnumber1 = 17 and use the output cc1 for getting the value of CC 17.

lowestnote (ln) 1 2 3 0 With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.

highestnote (hn) 1 2 3 127 Sets an upper limit to the note being played, similar to lowestnote. The “Notegates” are not being affected by this
bound.

note1 ... note16 (n) 1 2 3 + Selects up to 16 individual notes for which you can get a dedicated gate signal. Per default these values are set to
0 for note1 (meaning C-2), 1 for note2 (meaning C♯-2) and so on. For each of these notes you get a corresponding
gate output (see notegate1, notegate2, etc.). These gates are high as long as the selected notes are being hold.
One application is to use just one midifileplayer or midiin circuit for sequencing up to 16 drum voices. Another
application is to use a MIDI keyboard or controller as a button expander – just like a P2B8 or B32.

Output Type Description

clock (c) If the MIDI sender sends aMIDI clock, you get a 16th note clock output here. This is the same as the clock16 jack and
just a convenient abbreviation.

clock8 (c8) Gets an 8th clock here (like clock divided by 2)

clock8t (c8t) Gets a 8th triplets clock here. This is faster than clock8 but slower than clock.

clock16 (c16) The same as clock: a clock running at 16th notes.

DROIDmanual for blue-6 265 Table of contents at page 2

Output Type Description

clock4 (c4) A clock at the speed of quarter notes.

midiclock (mc) Here you get the originalMIDI clock. This is 6 times faster than clock and 24 times faster than clock4. This is because
the MIDI clock is specified to run at 24 PPQ, i.e. 24 pulses per quarter note.

start (st) This jack sends a trigger when aMIDI STARTmessage arrives.

continue (co) This jack sends a trigger when aMIDI CONTINUEmessage arrives.

stop (sp) This jack sends a trigger when aMIDI STOPmessage arrives.

running (ru) This jack remembers the current running state according to previous START and STOPmessages.

active (a) If the sending device supports active sensing, this output is high as long as a device is connected. Otherwise its high
if at least one MIDI message has been received.

pitch1 ... pitch8 (p) � 1V
Oct Pitch outputs. Since MIDI tracks can be polyphonic – i.e. play several notes at the same time – you can assign up to

eight outputs here. The notes will be distributed to the defined outputs according to the settings roundrobin and
voiceallocation.

velocity1 ... velocity8
(v)

0 1 For each voice there is an optional velocity output, which translates the MIDI velocity into values from 0 to 1.

pressure1 ... pressure8
(pr)

0 1 MIDI provides two different messages for sending ”after-touch” information, i.e. information about how strong a
key is pressed down after the initial hit. Some keyboards just have one pressure sensor in total and send the current
maximum pressure information of all keys in one message (“channel pressure”). Others have one pressure sensor per
key and send “polyphonic key pressure” messages. This circuit maps both to a pressure output per note that is being
played. So if your keyboard (or sequencer or DAW or whatever) sends polyphonic key pressure events and you use
multiple pitchX outputs, wire the individual pressureX outputs to wherever you like. Otherwise you can simply use
pressure1 for all notes (which can be abbreviated with pressure), since it is the same for all note outputs anyway.
pressure outputs a value from 0 to 1.

gate1 ... gate8 (g) Gate outputs for the up to eight simultaneous note outputs.

trigger1 ... trigger8 (t) Trigger outputs for the up to eight simultaneous note outputs. The difference to the gate outputs is, that these just
send a short trigger of 5ms at the start of the note. This can be interesting in situations where the notes have no gaps
in between so that gate will never go low.

cc1 ... cc4 () 0 1 Outputs the current value of the four CC number that are defined with the inputs ccnumber1 ... ccnumber4. CCs have
a range from 0 to 127, but this is converted in the range 0.0 .. 1.0 here, in order to make it easier to use that as a CV.
If you need the raw number, multiply the output with 127. Note: as long as no CCmessage with the selected number
happened, this output will be set to 0.

DROIDmanual for blue-6 266 Table of contents at page 2

Output Type Description

cctrigger1 ... cctrigger4
(ct)

These outputs send a trigger whenever a CC event matching the corresponding ccnumber is processed. Some devices
uses triggers in such a way – as events rather then indicating the change of a continous value. So if you set ccnumber2
= 17, the output cctrigger2 sends a trigger whenever CC#17 is received.

notegate1 ... notegate16
(ng)

Outputs a high gate whenever the corresponding note (which is selected by note1 through note16) is currently being
played.

pitchbend (pb) Outputs the current pitch bend value as a bipolar voltage. The range can be set with pitchbendrange.

programchange (pc) Sends a trigger whenever aMIDI program changemessage arrives. Just before sending the trigger sets program to the
new program number (something from 0 to 127). Note: This trigger is also being output when the program change
messages sends the same program number as previously, i.e. if there is no actual change.

program (pm) 1 2 3 The number of the last program change. This starts at 0.

bank (ba) 1 2 3 Outputs the number of the currently selected bank – from0 to 16384. MIDI defines theMSB of the bank to be changed
with CC#0 and the LSB with CC#32. That means if you just use CC#0, you will only be able to select the banks 0, 128,
256, and so on. As long as no bank select CC has been received, bankwill output 0.

modwheel (w) 0 1 Output the current state of themodwheel level – within the range from 0.0 to 1.0. Themodwheel is changed byMIDI
control change 1.

volume (vo) 0 1 Outputs the current global volume as set by MIDI control change 7.

portamento (po) This output gives you access to the current state of the “portamento pedal” (MIDI CC 65). You can use it to enable an
external slew circuit for creating portamento effects.

soft (so) This output gives you access to the current state of the “soft pedal” (MIDI CC 67). It is 1while the pedal is hold and 0
otherwise.

DROIDmanual for blue-6 267 Table of contents at page 2

16.40 midiout – CV toMIDI converter

This circuit allows you to “play” notes via
MIDI on an external hardware or software
synth. You also can send all sorts of other
MIDI events. You need the X7 expander for
that to work (see page 77).

TheMIDI implementation of midiout is very comprehen-
sive. Please look at the table of input jacks for all fea-
tures. Here I just want to show some basic examples to
get you started quickly. Fun fact: This is the only cir-
cuit that does not have any outputs, because all output
is done via MIDI!

Basic operation

Easy things should be easy and complex things should be
possible. Sowe startwith the easy things. Here is a patch
that converts a CV / gate input from I1 / I2 into a stream
ofMIDI notes and sends themout via the3.5mmTRS jack
onMIDI channel 1:

[midiout]
pitch = I1
gate = I2

Every time the gate input at I2 goes from off to on, the
current pitch (1V/Oct) is read from I1. Then one MIDI
“note on” event is being created. The “velocity” of that
note is set to the default value of 1.0, which is the max-
imum (every MIDI note event has a velocity, which is
meant to reflect the speed at which the key of the key-
board has been pressed).

You can specify any velocity you like with the jack
velocity. Let’s randomize that. Since the velocity jack

is just read just at the note starts, we don’t need a sample
and hold here:

[random]
minimum = 0.5 # minimum allowed velocity
maximum = 1.0 # maximum allowed velocity
output = _VELOCITY

[midiout]
pitch = I1
gate = I2
velocity = _VELOCITY

Note: the range of the velocity goes from 0.0 to 1.0 – just
as all other parameters in midiout do. Internally MIDI
uses the integer numbers 0 to 127.

Output selection

You can send yourMIDI stream either via the 3.5mmTRS
jack of the X7 (TRS stands for “tip ring sleeve” – the struc-
tureof the stereo3.5mmplug)or via theUSB-Cport. This
is controlled by the parameters usb and trs.

Per default the stream is sent via TRS. As soon as you use
either usb or trs you set this explicitely. Here is a com-
plete table of all possible usages of these inputs (empty
cells mean that the parameter is not used):

Uses TRS only (default)

usb = 1 Uses USB only

usb = 0 Uses TRS only (default)

trs = 1 Uses TRS only (default)

trs = 0 Uses USB only

usb = 0 trs = 1 Uses TRS only (default)

usb = 1 trs = 0 Uses USB only

usb = 1 trs = 1 Uses both TRS and USB

usb = 0 trs = 0 Mute! does not sendMIDI.

Note: MIDI via USB has a much higher data rate then via
TRS. If you use both USB and TRS at the same time, USB
will run at the same (lower) data rate as TRS. This might
lead to fewer updates for CCs and similar. The reason is
that the midiout circuit does not make a separate book
keeping for USB and TRS but creates just one common
MIDI data stream. If that’s an issue for you, duplicate
your midiout circuit and create one instance for TRS and
one for USB. Then they create two separateMIDI streams
that are optimized for the specific maximum data rates
of their output ports.

If you have aMASTER18 – especially if combinedwith the
X7 – you can havemore than one port of a type. When se-
lecting the target ports you can use numbers greater than
1 in this case.

The upper table still applies in the following way: If you
don’t specify the port explicitely, the first port is used.
For example if you specify usb = 0 and not trs, the port
MIDI1 on the MASTER18 is used.

Here is how the MIDI ports are numbered in the various

DROIDmanual for blue-6 268 Table of contents at page 2

hardware configurations:

MASTER + X7:

usb = 1 Send to the USB port on the X7

trs = 1 Send to the TRS port on the X7

MASTER18:

usb = 1 Send to the USB port

trs = 1 Send to the port MIDI1

trs = 2 Send to the port MIDI2

trs = 10 Send to both MIDI1 and MIDI2

MASTER18 + X7:

usb = 1 Send to USB port on the MASTER18

usb = 2 Send to USB port on the X7

usb = 10 Send to both USB ports

trs = 1 Send to MIDI1 on the MASTER18

trs = 2 Send to MIDI2 on the MASTER18

trs = 3 Send to the TRS port on the X7

trs = 10 Send to all three TRS ports

Polyphonic patches

One great motivation for doing CV to MIDI at all is
playing polyphonic music on hardware synths, because
polyphony in Eurorack is quite costly and very time and
space consuming. One midiout circuit can play up to
eight notes at the same timeand if that’s not enough, add
a second midiout circuit. For each simultaneous note
add one pair of pitch and gate jacks:

[midiout]
pitch1 = I1
pitch2 = I2
pitch3 = I3
gate1 = I5
gate2 = I6
gate3 = I7

If you work with velocity, each voice has its own velocity
input:

[midiout]
pitch1 = I1
pitch2 = I2
pitch3 = I3
gate1 = I5
gate2 = I6
gate3 = I7
velocity1 = 0.6
velocity2 = 0.8
velocity3 = 1.0

CC and other controllers

There are several continuous values that you can change
over time. The following example lets you control the
MIDI CC number 17 via input I3 (at a range from 0 V to
10 V) and the volume and modulation wheel with two
pots:

[midiout]
pitch = I1
gate = I2
ccnumber1 = 17
cc1 = I3
volume = P1.1
modwheel = P1.2

Note gates

Note gates are a convenient way to directly trigger cer-
tain notes. Here you select up to eight notes and get one
dedicated trigger for each. You select the note number
with note1, note2, etc. These are MIDI note numbers
from 0 to 127, where 0 is usually a C-2 (and 24 a C0).
Whenyousenda trigger into the correspondingnotegate
input, that note will be played.

[midiout]
note1 = 24
note2 = 25
notegate1 = I1
notegate2 = I2

This is sometimes convenient when triggering drum
voices.

Creating aMIDI clock

If you want to simulate a MIDI sequencer, you need to
provide aMIDI clock. This can be injected into the output
either by sending amodular clock that is running on 16th

notes into clock, or a rawMIDI clock into midiclock.

Example: You want your clock to run at 120 BPM. BPM
means beats perminute. And a beat isment to be a quar-
ter note. 120 quarter notes a minute means two quarter
notes a secondand thatmeanseight16th notes a second,
hence our clock needs to run at 8 Hz.

[lfo]
hz = 8 # 120 BPM
square = _CLOCK

[midiout]
clock = _CLOCK

DROIDmanual for blue-6 269 Table of contents at page 2

Note: The input jack clock receives 16th clocks. The ac-
tualMIDI clock is derived from that bymultiplying it by 6.
Thismeans that the circuit interpolates the clock bymea-
suring its speed and introducing five artifical clocks ticks
inbetween the original ticks. While thisworks reasonably
well for a steady clock, changes in clocks speed cannot be
picked up very fast.

So if you work with a clock that can change the speed,
better use the jack midiclock instead and directly supply
the MIDI clock (at a six times higher speed). Here is the
same example but nowwe directly create theMIDI clock:

[lfo]
hz = 48 # 120 BPM MIDI clock
square = _MIDICLOCK

[midiout]
midiclock = _MIDICLOCK

Start, Stop, Reset

MIDI sequencers alsooutput “start” and “stop”messages.
You can send themeither via triggers into start and stop
or use the input running for both. When running goes
high, a “start” message is sent, when it goes low a “stop”
message.

Pitch tracking

Pitch tracking is an advanced feature thatworks inmono-
phonic setups. Here midiout watches the input pitch
all the time and adapts the pitch of the currently played
note viaMIDpitchbendevents in order to reflect thepitch
changes. See the documentation of the pitchtracking
jack for details.

Pitch stabilization

MIDI output appears simple to implement, but isn’t when
you look at the details. One tricky problem is that many
modules that output pitch information are not very pre-
cise in timing. Sequencers oftenneeda coupleofmillisec-
onds for the pitch CV to reach its final value and stabilize
after the gate is being output.

The following diagram shows a gate signal going high
(blue) and a pitch signal with a small ramp reaching its
final destination shortly afterwards (red):

0 10 20 30 40 50 60

0

5

10

time(ms)

V
ol
ts

Pitch
Gate

I’ve seen a very similar situation indeed when I attached
an oscilloscope to the output of a very famous Eurorack
sequencer.

Now when you would issue “note on” right at the begin-
ning of the gate, you would obviously output the wrong
pitch. What you need to do is to firstwait for some time.
You need to delay the note event until the pitch is stable.
Of course this introduces some undesirable latency, so it
is crucial to keep that as short as possible.

The midiout circuit has two methods for doing
this. The first one is enabled per default and called
pitchstabilization. Here, as soon as the gate goes
high, it watches how pitch evolves over time. And it

delays the “note on” as long as the pitch is still mov-
ing. When it has stabilized – i.e. on the same level for
at least some very short time – the note event is issued
immediately. This keeps the latency at a minimum.

If that does not work out well for you, you can deactivate
this algorithm. One reason could be that your pitch never
stabilizes, since it is some ever evolving random data:

[midiout]
pitch = I1
gate = I2
pitchstabilization = 0

The second method is introducing a fixed delay of the
gate signal with the input triggerdelay. Using that pa-
rameter automatically disables pitch stabilization:

[midiout]
pitch = I1
gate = I2
triggerdelay = 3.5 # delay gate by 3.5 ms

Now the gate is delayed exactly 3.5 ms every time. You
need to try out various useful values yourself. The best
value depends on your sequencer (or whatever other
source you are using).

You can also activate both methods at once. This makes
sense in situations, where the pitch is stable for a very
short time after the gate but afterwards begins to move,
like in the following diagram:

DROIDmanual for blue-6 270 Table of contents at page 2

0 10 20 30 40 50 60

0

5

10

time(ms)

V
ol
ts

Pitch
Gate

As you can see, now after the gate comes high the
pitch lingers on for 2 ms at its old value until the ramp

starts. Here set the triggerdelay to 2 and explicitly set
pitchstabilization = 1:

[midiout]
pitch = I1
gate = I2
triggerdelay = 2
pitchstabilization = 1

Sending notes by number

If you are familiar with MIDI, you sometimes might want
to send a certain note number rather than a pitch. MIDI

knows notes from 0 (C-2) to 127. To do this, divide your
number by 120 before sending it to pitch.

[midiout]
pitch = _SOMENUMBER / 120
gate = _SOMEGATE

Why not 127? Because the pitch input counts notes by
semitones. And one semitone in modular is 1

12 V, which
in Droid means 1

120 . Dividing by 127 will be slightly off
and send wrong note numbers.

Input Type Default Description

channel (ch) 1 2 3 1 Selects theMIDI channel to send the events on. Default is to send on channel 1. There are 16 channels. Make sure that
the receiving device listens to this (or to all) channels.

usb () + Set usb = 1 if you want to send theMIDI output to the USB-C port. You can set trs = 1, as well, for sending the data
to both outputs. If you don’t use usb nor trs, the output will be sent to the TRS output only.

trs () + This controls wether theMIDI data is sent via the TRS output of the X7. If you justwant the TRS output, you don’t need
this, because that is the default. If you want the output both on USB and TRS, you need to set usb = 1 and trs = 1
at the same time.

pitch1 ... pitch8 (p) � 1V
Oct 0V Pitch of the notes to be played in modular style (1 V/octave). The range is from -2 V (MIDI note 0, usually C-2) to

8.583 V (MIDI note 127, usually G9). You can use up to eight pitch inputs for playing up to eight notes in parallel.
pitch1 can be abbreviated with just pitch.

gate1 ... gate8 (g) A positive edge into the gate jacks trigger note on messages (starts the note at the pitch set by the corresponding
pitch input). A negative edge ends the currently played note.

velocity1 ... velocity8
(v)

0 1 1.0 The velocities for the up to eight notes. The velocity value is just picked up at the start of the note (at the positive edge
of the corresponding gate inputs. It ranges from 0.0 to 1.0. A value of 0.0 is practically the same as “note off”. The
default velocity is 1.0.

noteoffvelocity1 ...
noteoffvelocity8 (nv)

0 1 + MIDI also sends a velocity at the end of a note. The idea is to model the speed with which a key is being released. This
is rarely used. If you don’t use these jacks, the velocity for “note off” events is the same as that for “note on” events.

DROIDmanual for blue-6 271 Table of contents at page 2

Input Type Default Description

pressure1 ... pressure8
(pr)

0 1 + Sends key pressure events for individually played notes via theMIDI event “polyphonic key pressure” (this is not aCC!).
These values are not processed at the time of note on/off events but all the time and can also change while a note is
already being played. This corresponds to “aftertouch” key pressure on keyboards that have a pressure sensor per key.

If nothing is patched here, no pressure events are sent.

channelpressure (cp) 0 1 + Whenever this CV changes, sends a MIDI channel pressure event, also known as “aftertouch”. This corresponds to
keyboards that just have one global pressure sensor and not one per key.

If nothing is patched here, no channel pressure events are sent.

pitchstabilization (ps) 1 Enables or disables pitch stabilization. It is on per default and can be disabled by setting this jack to 0. Pitch stabiliza-
tion fixes timing issues where the input pitch needs some time for reaching the target pitch after a gate.

triggerdelay (td) 0.0 Introduces a delay between in the incoming gate signal (just the positive edge) and the “note on” event. This can tackle
the problemwhen your pitch input (sequencer etc.) needs some time after the gate in order to reach and stabilize the
target pitch. The delay is specified inmilliseconds, so a typical useful value would be 5 (5ms). This is an alternative to
the automatic pitchstabilization. Note: triggerdelay disables pitchstabilization, as long as that is not set
to 1 explicitly. If both are used at the same time, the triggerdelay happens before the pitch stabilization. So it is a
minimum delay.

lowestnote (ln) 1 2 3 0 With this input you can restrict the notes being played by setting a lower bound. In MIDI the notes range from 0 (C-2)
to 127 (G9). By setting lowestnote to 24 (C0), all notes below this note are simply ignored. This allows for example for
a keyboard split by using a second circuit with a highestnote of 23. Note gates are not being affected by this bound.

highestnote (hn) 1 2 3 127 Sets an upper limit to the note being played, similar to lowestnote. Note gates are not being affected by this bound.

notegate1 ... notegate16
(ng)

You can define up to 16 notes that can be directly controlledwith a dedicated gate. This is convenient for playing drum
sounds directly from triggers and also for using DROID controllers as MIDI controllers. A trigger or gate to notegate1
will directly play the note whose pitch is set by note1.

note1 ... note16 (n) 1 2 3 + MIDI notes to played via notegate. The range is from 0 to 127. Per default the notes are set to the MIDI notes 0, 1, 2
... 15.

notegatevelocity1 ...
notegatevelocity16 (ngv)

0 1 1.0 Here you can set the velocities use by the notegates. In order to keep it simple, this velocity is used for note on and
note off events (nobody cares about the note off velocity anyway). If you do not use these jacks, the note gates will
always use the maximum velocity.

modwheel (w) 0 1 0.0 Sets the current value of the modulation wheel. Any change here sends a midi CC#1 with a new value for the modu-
lation wheel. The input range is 0.0 ... 1.0 and will be converted into the MIDI range of 0 ... 127. Note: in future we
might support CC#33, which is the LSB value of CC#1 and increases the resolution from128 to 16384 different values,
at the cost – however – of two additional bytes being sent.

DROIDmanual for blue-6 272 Table of contents at page 2

Input Type Default Description

volume (vo) 0 1 1.0 Sets the volumeof the target device. This is doneby sending theMIDICC#7 (VOLUMEMSB) andMIDICC#39 (VOLUME
LSB). Using these two CCs enables a 14 bit high resolution 16384 levels (not just 127). Some devices to not react to
CC#39 and simply ignore the LSB (least significant byte). The volume CV ranges from 0.0 (silent) to 1.0 (the default).

pitchbend (pb) 0.0 Bends the pitches of all currently played notes up and down by a range that is configured or elsewhere defined by the
device that plays our stuff. The range of this CV is -1.0 ... 1.0 for covering themaximum pitch bend range. Most times
that range is two semitones up and down. This CV does not behave in a 1V/oct way!

pitchtracking (pt) 1 2 3 0 Pitch tracking is an advanced feature that allows you to track continuous changes in the incoming pitch CV while the
note is already playing. It does this by listening to the input CV and converting any change into a MIDI “pitch bend”
change.

This feature has two limitations: First, there is just one global pitch bend value per channel, not one per note. So this
feature only works in a monophonic situation. Only the value of pitch1 is being tracked. When you play more than
one note per channel, funny things might probably happen. Also The maximum range is limited by the pitch bend
range of your target device. That is usually preset to 2 semitones up and down. If you can increase it, please also adapt
pitchbandrange so this circuit knows about it.

Pitch tracking has two levels: pitchbandrange = 1will alter the pitch of the current note within themaximum range
of pitch bend andwill clip any further changes. pitchbendrange = 2, in contrast, plays a newnote if the current range
is exceeded. Depending on your sound settings this “dent” might be audible or not.

0 pitch tracking is off

1 just use MIDI pitch bend

2 use new note on larger changes

Note: When you use pitch tracking at the same time as pitchbend, both pitch alterations will add up.

pitchbendrange (pbr) � 1V
Oct

1
6V Defines the range of the effect of pitch bend at the target device on a 1V/oct base. Note: You cannot change that actual

range here. You just can make sure that this circuit has the correct assumption of that range.

If your target device has a configuration for extending the range, and you have set that for example to 1 octave, set
pitchbendrange to 1 V. This allows pitchtracking to correctly adapt in-note pitch changes. Note: This has no effect
on the pitchbend CV.

ccnumber1 ... ccnumber8
(cn)

1 2 3 0 Specifies up to eight different CC numbers that can be continuously updated via the corresponding cc1 through cc8
inputs. The value needs to be an integer number from 0 to 127.

DROIDmanual for blue-6 273 Table of contents at page 2

Input Type Default Description

cc1 ... cc8 () 0 1 + The current value of the CCs that are specified with ccnumber1 through ccnumber8. The range is always from 0.0 to
1.0 (which is mapped to the number 0 to 127 on the MIDI wire).

If you don’t patch anything here, no CC events will be sent, of course.

cctrigger1 ... cctrigger8
(ct)

Usually midioutwill send out a new CC event every time the input value of a CC has changed (with some rate limit in
order not to to flood the MIDI stream).

When you use these inputs, an alternative method is enabled. Now CC events are created whenever a trigger arrives
here. Nomore updates will be sent automatically.

This is useful for target devices that use CCs just asmessages, i.e. as one time events and not for updating a continous
value.

updateccs (uc) A trigger here sends an update for all CCs that you have in use (used ccX inputs). Normally an update is just sent once
initially and then when the input CV at one of the cc inputs changes its value. With the trigger you can force updates.
This might be neccessary if the receiving device has lost memory of the current states of the CCs (e.g. due to a power
cycle).

Note: Unlike the cctriggerX inputs, this trigger does not change the way the CC inputs work. It is just a hint for
that forces one additonal update.

delayinitialccs (dc) 1.0 When the Droid starts it needs a short time until the X7 is operating and your PC / DAW is able to receive the MIDI
events via USB. Initial CC updates during that short time period might get lost and you are missing the correct CC
states (which are updated later only on changes).

In order to avoid that, the Droid wait a short time after starting before it sends the first CC events. That delay can be
tuned here. It is a time in seconds.

bank (ba) 1 2 3 + Selects the current “bank”. SomeMIDI devices havemore than 128 programs (i.e., patches, instruments, preset, etc).
A MIDI Program Change message supports switching between only 128 programs. So, “Bank Select” (sometimes also
called bank switch) is sometimes used to allow switching between groups of 128 programs. Bank select uses theMIDI
CCs #0 (MSB) and #32 (LSB) together to form a number of 16384 different banks. The input value thus ranges from
1 to 16384. Most devices, however, restrict themselves to just 128 banks and just use the MSB (CC#0). If that is the
case, you need to set bank to 128 for bank 2, 256 for bank 3 and so on. This can be done by simply multiplying the
actual bank number with 128.

program (pm) 1 2 3 + Select the current “program”. This is a number from 1 to 128.

programchange (pc) A trigger here will send out a “program change” MIDI message even if the value of bank or program has not changed.

DROIDmanual for blue-6 274 Table of contents at page 2

Input Type Default Description

start (st) If you send a trigger here, the MIDI message START will be emitted. Don’t use this jack if you also use running. Note:
START/STOPmessages are not bound to a specific channel.

stop (sp) If you send a trigger here, the MIDI message STOP will be emitted. Don’t use this jack if you also use running. Note:
START/STOPmessages are not bound to a specific channel.

running (ru) This is an alternative to the jacks start and stop. It combines both into one “running” state. When this gate input
goes high, a STARTmessage is sent, when it goes low a STOPmessage. So you can work with a state rather than with
state changes. Note: START/STOPmessages are not bound to a specific channel.

systemreset (sr) A trigger herewill send theMIDI real-timemessage “RESET”, that is supposed to bring the device into some start state.

allnotesoff (ao) A trigger herewill send theMIDI CC#123 “ALLNOTESOFF”,which is essentially the same as releasing all currently held
keys.

allsoundoff (aso) A trigger here will send the MIDI CC#120 “ALL SOUND OFF”, which is supposed to make the device silent as soon as
possible.

damper (dp) 0 This gate input simulates a hold or damper pedal. This is done via the CC#64. If the gate goes to high, a value of 127 is
being sent, when it goes back to low, a value of 0. When the damper pedal is pressed, the device is supposed to hold all
currently played notes and not react to any subsequent “NOTE OFF” of those notes as long as the pedal is held. When
the pedal is released, all notes that had been held be the pedal should be released.

portamento (po) 0 Controls the portamento pedal. The receiver is meant to activate some kind of glide effect as long as this gate is high.

sostenuto (su) 0 This enables the sustain pedal. This is similar to but not exactly the same as the damper pedal as it just holds notes
that are pressed while the pedal goes down.

soft (so) 0 Controls the soft pedal. The receiving synth voice is meant to play notes softer while this pedal is hold down.

legato (lg) 0 Controls the legato pedal, which ties subsequent notes together.

clock (c) If you feed a steady clock here, aMIDI clock signal will be derived from this and sent through the outputwire. TheMIDI
beat clock or simplyMIDI clock is defined to send pulses at 24 PPQN: 24 pulses per quarter note. One quarter note has
four 16ths, so the MIDI clock is running at 6 pulses per 16th note, and in the modular environment it is very common
to work with 16th pulses as a master clock. So this clock jack is meant to retrieve a modular master clock, multiplies
this by 6 and creates a MIDI clock from it.

midiclock (mc) This is an alternative to clock: don’t use both at the same time. Here you can directly send theMIDI clock in 24 PPQN.

DROIDmanual for blue-6 275 Table of contents at page 2

Input Type Default Description

activesensing (as) 1 This is a switch that disables or enables active sensing. This is a MIDI feature where a MIDI sender emits one message
of the type “active sensing” every 300 ms. The receiver can use this in order to detect if the connection is still active
and also immediately reset (und turn all sound off) if it is not. Active sensing is enabled per default. You can disable it
here by setting activesensing = 0.

Note: If you have more than one midiout circuit sending to the same port, you should activate activesensing just
for one of them in order to avoid useless duplicate MIDI events.

updaterate (ur) 50.0 Specifies the maximum rate at which continuous controllers like the CCs, volume, pitchbend and channelpressure
are updated. This limitation is necessary in order not to flood the MIDI interface with too many updates because of
just minimal changes. This rate is specified in update per second and the default is 50. A zero or negative value will
completely stop all updates.

Note: depending on how many events are happening on your channel, fewer updates might be possible. MIDI over a
classical cable is limited to 3125 bytes per second. Events typically need 1, 2 or 3 bytes each.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

DROIDmanual for blue-6 276 Table of contents at page 2

16.41 midithrough – ForwardMIDI events from input to one ormore outputs

Use this circuit to forward MIDI data from
input ports to output ports. You can get
events from one TRS and one USB port and
forward to multiple TRS and multiple USB
ports (if you have an X7).

You specify the source and target of the events with the
four parameter fromusb, fromtrs, tousb and totrs.

The number of USB and TRS (3.5 mm tip ring sleeve jack)
ports depends on you hardware configuration. Here is
how your ports are numbered:

MASTER + X7:

usb = 1 USB port on the X7

trs = 1 TRS port on the X7

MASTER18:

usb = 1 USB port on the MASTER18

trs = 1 TRS port MIDI1 on the MASTER18

trs = 2 TRS port MIDI2 on the MASTER18

MASTER18 + X7:

usb = 1 USB port on the MASTER18

usb = 2 USB port on the X7

trs = 1 TRS port MIDI1 on the MASTER18

trs = 2 TRS port MIDI2 on the MASTER18

trs = 3 TRS port on the X7

In addition there is port auto detection and broadcast.
If you specify fromusb = 10 or fromtrs = 10, the first
port that actually sends events is used as input – until the
data stops for a second or more. If this is the case, auto
detection is redone and another port might be the lucky
one.

Setting tousb = 10 or totrs = 10 forwards the events
to all ports of the given type.

Examples

Forward MIDI events from the first USB port to the sec-
ond TRS port:

[midithrough]
fromusb = 1
totrs = 2

ForwardMIDI events from the first active TRS port to the
first TRS output:

[midithrough]
fromtrs = 10 # auto detect
totrs = 1

ForwardMIDI events from the second TRS port to all USB
and TRS ports:

[midithrough]
fromtrs = 1
totrs = 10 # all TRS ports
tousb = 10 # all USB ports

Note: All midiin (see page 260), midiout (see page 268)
and other midithrough circuits still work. When multi-
ple circuits send events to the same port, the events are
merged – as long as the output speed ofMID allows for all
the events.

Byusingmidioutandmidithroughwith the sameoutput
port, you cat thus “splice in” MIDI events to an existing
stream.

Notes:

• As of now, Sysex messages are not forwarded.
Sorry for that. If that’s becoming important we
might add this feature.

• If you forward fromUSB to TRSmake sure that you
do not sendmore than 3125 bytes per second. TRS
cannot output faster. It’s limited by the MIDI stan-
dard. If you sendMIDI data faster, some eventswill
get lost.

DROIDmanual for blue-6 277 Table of contents at page 2

Input Type Default Description

fromtrs (ft) 1 2 3 + Selects a TRS port to use as input (3.5 mm jack). fromtrs = 0 disables TRS, fromtrs = 10 enables auto detection.
See the manual of midiin for details on port selection.

fromusb (fu) 1 2 3 + Selects a USB port to use as input. fromusb = 0 disables USB, fromusb = 10 enables auto detection. See themanual
of midiin for details on port selection.

totrs (tt) 1 2 3 + Selects which TRSMIDI port to output to. See the manual of midiout for details on port selection.

tousb (tu) 1 2 3 + Selects which USBMIDI port to output to. See the manual of midiout for details on port selection.

DROIDmanual for blue-6 278 Table of contents at page 2

16.42 minifonion – Musical quantizer

This circuit is a very musical quantizer that
gently moves any input CV (pitch informa-
tion on a 1V/oct base) into selected notes
of a musical scale. Typically the input
CV is coming from a random source, LFO,
melody generator or sequencer.

In fact the Minifonion is very similar to each of the the
three quantizer channels in theAudiophile Circuit League
Sinfonion – justwithout theuser interface andmoreflexi-
ble. It has Sinfonion compatible CVs for the root note and
the scale selection so it can easily be combined with it as
long as you control the Sinfonion via CV and stick to the
first mode. But of course you do not need a Sinfonion in
order to use this circuit!

If you want to mimick a Sinfonion with the you
might also be interested in the circuits arpeggio (see
page 127) and chord (see page 154).

Here is the simplest possible application – a quantization
of some (random) input pitch at I1 to the seven notes of
a C lydian major scale.

[minifonion]
input = I1
output = O2

Now let’s change the root note to D (2 semitones above
C) and the scale to natural minor, so that we now quan-
tize to a Dminor scale:

[minifonion]
input = I1
output = O2
root = 2
degree = 7

And here is the table of the first 12 scales of the Minifo-
nion. These are exactly the same scales as those in the
first mode (called Chords) of the Sinfonion:

degree Abbr. Scale

0 lyd Lydian major scale (it has a ♯4)

1 maj Normal major scale (ionian)

2 X7 Mixolydian (dominant seven chords)

3 sus mixolydian with 3rd/4th swapped

4 alt Altered scale

5 hm5 Harmonic minor scale from the 5th

6 dor Dorian minor (minor with ♯13)

7 min Natural minor (aeolian)

8 hm Harmonic minor (♭6 but ♯7)

9 phr Phrygian minor scale (with ♭9)

10 dim Diminished scale (whole/half tone)

11 aug Augmented scale (just whole tones)

You find the complete table of all 108 scales on page 107.

If you are a Sinfonion user, please note that the inputs
rootanddegreeof theMinifonionarenotbasedonsemi-
tones like the Sinfonion, but simply expect whole num-
bers like 0, 1, 2 and so on (which corresponds to the CVs
0V, 10V, 20V, etc.). So if you want those CV inputs to be
compatible, you have tomultiply the values with the fac-
tor of 120 before sending them to the Minifonion:

[minifonion]

input = I1
output = O2
root = I2 * 120 # base on semitones
degree = I3 * 120 # base on semitones

DROIDmanual for blue-6 279 Table of contents at page 2

Input Type Default Description

input (i) � 1V
Oct 0V Patch the unquantized input voltage here

trigger (t) This jack is optional. If you patch it, theMinifonionwill work in triggeredmode. Here the output pitch is always frozen
until the next trigger happens.

bypass (b) off If you set this gate input to 1 then quantization is bypassed and the input voltage is directly copied to the output.

root (ro) 1 2 3 0 Set the root note here. 0means C, 1meansC♯, 2meansD and so on. If youmultiply the value of an input like I1with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0 C

1 C♯

2 D

3 D♯

4 E

5 F

6 F♯

7 G

8 G♯

9 A

10 A♯

11 B

12 C

DROIDmanual for blue-6 280 Table of contents at page 2

Input Type Default Description

degree (dg) 1 2 3 0 Set the musical scale. This is a number from 0 to 107. Below are the first 12 andmost important scales. You find a list
of all 108 scales on page 107.

0 lyd – Lydian major scale (it has a ♯4)

1 maj – Normal major scale (ionian)

2 X7 – Mixolydian (dominant seven chords)

3 sus – mixolydian with 3rd/4th swapped

4 alt – Altered scale

5 hm5 – Harmonic minor scale from the 5th

6 dor – Dorian minor (minor with ♯13)

7 min – Natural minor (aeolian)

8 hm – Harmonic minor (♭6 but ♯7)

9 phr – Phrygian minor scale (with ♭9)

10 dim – Diminished scale (whole/half tone)

11 aug – Augmented scale (just whole tones)

Note: Alltogether there are 108 scales. Please see page 107 for a complete list

select1 (s1) + Gate input for selecting the root note as being an allowed interval. When youwant to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. select1 ...
select13will be set to one.

select3 (s3) + Gate input for selecting the 3rd.

select5 (s5) + Gate input for selecting the 5th.

select7 (s7) + Gate input for selecting the 7th.

select9 (s9) + Gate input for selecting the 9th (which is the same as the 2nd).

select11 (s11) + Gate input for selecting the 11th (which is the same as the 4th).

select13 (s13) + Gate input for selecting the 13th (which is the same as the 6th).

DROIDmanual for blue-6 281 Table of contents at page 2

Input Type Default Description

selectfill1 (sf1) off Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 (sf2) off Selects the alternative 3rd (i.e. the 3rd that is not in the scale).

selectfill3 (sf3) off Selects the alternative 4th or 5th. In most cases this is the diminished 5th.

selectfill4 (sf4) off Selects the alternative 13th (i.e. the 13th that is not in the scale).

selectfill5 (sf5) off Selects the alternative 7th (i.e. the 7th that is not in the scale).

DROIDmanual for blue-6 282 Table of contents at page 2

Input Type Default Description

harmonicshift (has) 1 2 3 0 This input can reduce harmonic complexity by disabling some of the scale or non-scale notes. It is an idea first found
in the Sinfonion and also provided by the circuit sinfonionlink (see page 353).

harmonicshift is staged after the select... inputs and further filters out (disables) notes based on their relation to
the current scale. This means that first the 12 select... inputs select a subset of the 12 possible notes. After that
harmonicshift can reduce this set further (it will never add notes).

If harmonicshift is not zero, depending on its value some or more of the scale notes are disabled, even if they would
be allowed by select.... Or in other words: the harmonic material is reduced.

You also can use negative values. These create rather strange sounds by removing the simple chord functions instead
of the complex ones first.

Here are the possible values:

0 off – all selected notes are allowed

1 disable all fill notes (non-scale notes)

2 disable fills and 11th

3 disable fills, 11thand 13th

4 disable fills, 11th, 13thand 9th

5 disable fills, 11th, 13th, 9th and 7th

6 disable fills, 11th, 13th, 9th, 7th and 3rd

7 disable fills, 11th, 13th, 9th, 7th, 3rd and 5th

-1 disable the root note

-2 disable the root note and the 5th

-3 disable root, 3rd, 5th

-4 disable root, 3rd, 5th, 7th

-5 disable root, 3rd, 5th, 7th, 9th

-6 disable root, 3rd, 5th, 7th, 9th and 13th

-7 disable all scale notes (fill notes untouched)

DROIDmanual for blue-6 283 Table of contents at page 2

Input Type Default Description

noteshift (nos) 1 2 3 0 Shifts the resulting output note(s) by this number of scale notes up or down (if negative). So the output note still is
part of the scale butmay be a note that is none of the selected ones. Themaximum shift range is limited to -24 … +24.

selectnoteshift (sns) 1 2 3 0 Shifts the output note by this number of selected scale notes up or down (if negative). If you use noteshift at the
same time, first selectnoteshift is applied, then noteshift. The maximum shift range is limited to -24 … +24.

tuningmode (tm) off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch (tp) � 1V
Oct 0V This pitch CV will be output while the tuning mode is active.

transpose (tr) � 1V
Oct 0V This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or

adding a vibrato.

Output Type Description

output (o) � 1V
Oct Here comes your quantized output voltage

notechange (n) Whenever the quantization changes to a newnote a triggerwith the duration 10ms is output here. No trigger is output
in bypass mode.

DROIDmanual for blue-6 284 Table of contents at page 2

16.43 mixer – CVmixer

The main task of this circuit is simply
adding up to eight inputs. Furthermore
it can do simple operations like minimum,
maximum and average. Please note that
since every input can always be offset and
attenuated, it’s like amixerwith aCV controlled level and
CV controlled offset per input channel.

Minimal example, mixing together two inputs:

[mixer]

input1 = I1
input2 = I2
output = O1

Since every input can add an offset, mixing four inputs
can be done with two lines if you like:

[mixer]
input1 = I1 + I2
input2 = I3 + I4
output = O1

Please note that an unpatched input is (sometimes) not
the same as an input where 0.0 is being sent. The dif-
ference arises if you use minimum, maximum and average,
since these just consider the patched inputs.

If eight inputs are not enough then you can simply create
ameshbymixing together theoutputs of several submix-
ers.

Input Type Default Description

input1 ... input8 (i) 0.0 1st ... 8th mixing input

Output Type Description

output (o) Sum of all patched inputs

maximum (x) Maximum of all patched inputs of this circuit. This can e.g. be used for mixing together the envelopes from several
sequencer trackswithoutmaking them “louder” or distorting themwhen two sequencers play a note at the same time.

minimum (m) Minimum of all patched inputs of this circuit.

average (a) Average of all patched inputs of this circuit.

DROIDmanual for blue-6 285 Table of contents at page 2

16.44 motoquencer – Motor fader sequencer

This circuit allows you to build simple
but also very complex performance se-
quencers based on motorized faders. It
supports up to 32 steps and up to eightM4
controllers with up to 32 faders. The list of
features is long and diverse and aims at supporting cre-
ative live performances.

You probably will fail to map all existing inputs to con-
trols, so better don’t try and rather experiment with just
a fraction of those at a time.

Basic minimal example

Despite all the features, this sequencer is easy to get
started with. Here is the smallest possible example. You
always need a clock input. Here I get it from input I1.
You need to have at least one M4 unit attached to your

(and declared with [m4] in your patch). The mo-
tor sequencer automatically configures all your available
faders (up to 32) for the sequencer (you can change that
with firstfader and numfaders):

[m4]

[motoquencer]
clock = I1
cv = O1
gate = O2

As soon as your clock starts, you get a sequencewith one
step per available fader (which is four if you have just one
[m4] declared). The faders select notes from a C lydian
scale in two octaves. You will feel 15 notches. They cor-
respond to the 15 notes in this range. The touch buttons
below the faders switch on/off the gates.

The pitch is output at O1 and the gate at O2. Well –
this wouldn’t have needed expensivemotor faders, but it
works and shows a minimal application of motoquencer.

Switching pages

Your sequence canhavemore steps than youhave faders.
This is done by switching pages. In the following exam-
ple we assume that you have just one M4 but want a se-
quencer with 16 steps. Use the page input in order to set
the current page (group of 4 steps) that you want to see
and edit with your faders. These pages have the num-
bers 0, 1, 2 and 3. That number can nicely be output by
a buttongroup (see page 146) on a P2B8. Here is a fully
functional example of a 16 step sequencer with just four
faders:

[p2b8]
[m4]

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
output = _PAGE

[lfo]
hz = 20 * P1.1
square = _CLOCK

[motoquencer]
clock = _CLOCK

page = _PAGE
numsteps = 16
cv = O1
gate = O5

Repeats, Ratchets and Randomize

In the upper examples we just had two parameters per
step of the sequence: The pitch / CV and the gate. There
are some more. Altogether every step has the following
eight parameters:

0 pitch / CV

1 randomize CV

2 gate propability

3 repeats (up to 16)

4 gate pattern

5 ratchets (up to 8)

6 gate

7 skip

Each of these parameters has a number from 0 to 7 and
you can set the input fadermode to one of these in order
to switch the faders to control that parameter. Here are
some details about the various parameters:

Pitch / CV is the output pitch of each step. With the in-
puts cvbase and cvrange you can define a voltage range
for those CVs. Per default, the CV is quantized to a mu-
sical scale, but you can change that with quantize (see
below).

DROIDmanual for blue-6 286 Table of contents at page 2

Randomize CV is a number from 0 (fader at the bottom)
to 7 (fader at the top). 0 means randomization is off.
The other 7 steps will increasingly modify the step’s CV
by adding a different random offset each time the step is
played. At position 7 (the maximum), the offset is up to
cvrange, so if your CV is at maximum, this could double
up your CV range.

Gate propability also has 8 settings. Here the maximum
(fader at top position) is the default andmeans: this step
is always played, if the gate is on. The other seven set-
tingswill reduce the propability of this step being played.
The lowest setting still leaves a small chance. Turn off the
gate to silence a step completely.

But this propability is not simply a random chance. It has
several verymusical settings as you can see from the fol-
lowing table. Here you see the eight fader positions and
theirmeaning – 8 being the top position and1 the bottom
position:

Pos. Meaning

8 (top) played always 100%

7 random chance of 50% 50%

6 played every even turn 50%

5 played every odd turn 50%

4 random chance of 25% 25%

3 played every 4th turn 25%

2 random chance of 12% 12%

1 played if last randomwas positive –

The LEDs below the faders indicate the current setting
with different color and blink codes:

• Gates that are played always are blue with a con-

stant light.
• Random gates for 50%, 25% and 12% are in the
same blue but blink in various speeds.

• Gates of setting 1 (conditional random) are blink-
ing fast.

• Gates depending on the turn (3, 5 and 6) are in cyan
color and light steadily in the bars (turns) where
they are on and blink in the other bars.

The position 6 and 5 are very musical and can transform
a pattern of length 8 into an effectivemelody of 16 steps.
A step in position 6 is just played every second run of the
whole sequence. Position 5 is just the same but starts
with the first run and will then be played on run 3, 5, and
so on.

Position 4 is similar, but these steps will just be played
every fourth sequence run, so you can use it for playing
things like a pickup or break or the like. These “run coun-
ters” are reset by the reset input.

The bottom position of 1 is an addition for the true ran-
dom positions 7, 4 and 2: A step in position 1 is played,
whenever the most recent random decision of positions
7, 4 and 2 was positive. It allows you to create groups of
notes that are either played completely or not at all: Set
the first step of these to a randompropability of 50, 25 or
12%. And the remaining notes to position 1. Now when-
ever fate decides that thefirst note is beingplayed, sowill
all remaining ones. These steps do not need to be subse-
quent. You can have wholes.

Repeats changes the number of clock cycles one stepwill
last. It is a number from 1 (fader at the bottom) to 16
(fader at the top). This setting changes the total duration
of one sequence cycle. If you set repeats to 2 for one of
16 steps, your sequence will last 17 clock cycles.

Hints:

• While youmove the fader in thismode, the LEDbe-
low the fader helps you dialing in a specific num-
ber of repeats. It uses the following color scheme:
The numbers 4, 8, 12 and 16 are displayed red. The
numbers 2, 6, 10 and 14 are displayed yellow. The
remaining (odd) numbers are black (LED is off).

• When you change the number of repeats of a
step, the skip setting of that step is automatically
cleared (see below).

The Gate pattern decides how gates are played when re-
peats is 2 or larger. There are four gate patterns, which
you can feel in the fader. In the first setting (fader down)
just the first repetition of the step is “played” (i.e. a gate
signal sent). Setting 2 will play one gate per repetition.
Setting 3 plays one long gate. And setting 4 is like 3 but
lets the gate open when the step ends. This ties this step
to the next one. And this setting also has an effect when
repeats is just 1.

Pos. Gate pattern

4 (top) Tie this step to the next one

3 play one long gate

2 play all repetitions individually

1 Just the the first repetition

Ratches can be set from 1 (normal) to 8. It divides the
clock cycle of the step into equal time intervals in which
the step is repeated. If you set ratchets to 2, for example,
youwill get twonotes played at double time. Ratchets do
not change the duration of the sequence.

The remaining two settings are usually setwith the touch
buttons, but you can also use the faders.

Gate decides wether the step is “played”. If it is played,
its CV will be sent to the cv output and the gate signal is

DROIDmanual for blue-6 287 Table of contents at page 2

set to high for half a clock cycle (you can change all this,
no worries).

Steps with Skip enabled will be skipped. This shortens
the duration of the sequence. Note: if all steps are set to
skip, the sequencer repeats playing the most recent step
over and over. If you change the repeats of a step, the
skip is automatically removed.

So let’s now make an example where we use a button
group for setting fadermode:

[p2b8]
[m4]

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
button5 = B1.5
button6 = B1.6
button7 = B1.7
button8 = B1.8
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
led5 = L1.5
led6 = L1.6
led7 = L1.7
led8 = L1.8
output = _FADERMODE

[lfo]
hz = 20 * P1.1
square = _CLOCK

[motoquencer]
clock = _CLOCK
fadermode = _FADERMODE
cv = O1

gate = O5

Buttonmode

Very similar to the faders, also the touch buttons have
modes. These can be switchedwith buttonmode andhere
are the possible settings:

0 gates

1 start / end

2 gate pattern

3 skip

Three of these settings you already know from the
fadermode. When the buttons are set to gate pattern,
you cycle through the four steps each time you touch the
button (and the LED cycles through four colors).

Fun fact: You can set fadermode = 6 and buttonmode =
0. That way, both the button and the fader control the
gates. Try this out and touch the buttons: the fader will
move automatically.

The mode “start / end” cannot be set with the faders.
They set a sub range of the sequence to be played. Here
is what it means:

Start and end

Usually your sequence is played from the first to the
last step. But you can change this by setting a start
step and an end step. This can either be done manually
(with buttonmode = 1 or with the inputs startstep and
endstep.

In buttonmode = 1, the start step has a green LED and
the end step a red one. Both start and end can be at the
same step (creating a one step sequence). The LED will
then blink between red and green.

Touching a button changes the end step. You can set the
start step by first setting an end step and holding that
button and then – with a second finger – press another
step. That will be the start step.

If the start step is after the end step, the play order is re-
versed.

Quantization, root and scale

Per default, the CVs are quantized to the notes of a lydian
Cmajor scale, as is the default for many other circuits, as
well. This means that the faders have one artifical notch
for each scale note. You can feel the notes. This makes
it easy to change the note in exact steps without any dis-
play.

Aswithmany other pitch-aware circuits, like for example
minifonion (see page 279) or chords (see page ??), you
can use root and degree for changing the scale. See in
the table of inputs below for the different possible scales.
Note: root has no effect on the lower CV boundary. It’s
just for the selectionof the allowednotes. Usecvbase for
setting that.

Furthermore, there are the inputs select1, select3, ...
You can use them to further restrict the possible notes –
or even add notes that are not contained in the scale. Re-
fer to the minifonion (see page 279) circuit for a broader
discussion of these inputs.

Note: If you have set amelodywith the faders and reduce
the number of allowed notes afterwards, the faders will
possibly move to new positions. But as long as you don’t

DROIDmanual for blue-6 288 Table of contents at page 2

touch them, theywill internally “remember” their original
note. If you later re-add themissing notes, the faderswill
move back and your original melody is restored.

With the input quantize you can switch off the musi-
cal mode. quantize = 0 disables quantiziation and the
faders create a continous CV (the internal resolution is
127 steps, just like in aMIDI CC). And quantize = 1will
quantize to semitones (1

12 V steps).

Note: Themaximumnumber of notches is 201. But if you
selectmore than 25 notches, the force feedback is turned
off as the notcheswould get too small towork. This num-
ber of 25 “real” notches nicely matches the 25 possible
semitones of two octaves. If you increase that range, the
notches are switched off.

Direction, ping pong,movement patterns

The Motoquencer has quite a bunch of interesting fea-
tures for changing the order in which steps are being
played. Some of them, like the playing direction or “ping
pong”, are the usual suspects and common among se-
quencers. The “playing patterns” and “forms” go beyond
this and create interesting creative possibilities.

direction defaults to 0, which means “forwards”. Set
this to 1 (e.g. with a toggle button) to run the sequence
backwards.

direction = 1 # backwards

pingpong is another switch. Setting it to 1 enables “ping
pongmode”. Here the direction switches back and forth.
Dependingondirection, the sequence starts at the start
step or the end step, moves towards the other end and
then turns around in order to come back. Note: Since

the steps at the turning points are played just once, a se-
quence of 8 steps in ping pongmode has a duration of 14,
not 16.

pingpong = 1 # enable ping pong

pattern changes the way how the sequencer steps
through the sequence. Pattern 1 for example goes al-
ways two steps forwards (according to direction and
pingpong) and then one step backwards. Assuming
direction = 0 and pingpong = 0, the step orderwould
be 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6 and so on. The available
patterns aremuch the same as in the arpeggio (see page
127) circuitwith theadditionofpattern6, whichgoes for-
wards in small random steps.

pattern = 3 # set pattern 3

Forms like AAAB

Already confused? Then you probably won’t like the
“Forms” feature! Herewecreate longer sequencesbyfirst
dividing the steps into two (or threeparts), and thenplay-
ing these parts in certain orders.

The most useful form (except the trivial 0) is probably 1,
which is AAAB.Here the steps are divided into a first half,
which is called A, and a second half, which is called B. The
A part is always played thrice and then once the B part.
Assuming you have 8 steps (and all the other fancy stuff
is off), the step order would be 1, 2, 3, 4, 1, 2, 3, 4, 1, 2,
3, 4, 5, 6, 7, 8.

The patterns with the three parts A, B, and C divide the
steps into three equal sized parts. You better make sure
that you have 6 or 12 or 24 steps in that case, or else

your partswon’t have equal size (which on theother hand
could be funny anyway).

The forms can be combined with direction, pingpong
andpattern. Here steppingmodifications are always ap-
pliedwithin each individual part.

The forms can also be combined with the start and end
point. Here just the steps between start and end are di-
vided into parts.

Autoreset

In contrast to the all the upper modifications of the step
order, autoreset is super simple. It resets the whole
sequence (including parts) to the very beginning after a
specified number of clock ticks.

There are two typical applications: First, if you want to
make sure that the pattern repeats in some regular way
despite crazymodifications, setautoreset = 16and the
sequence will restart exactly very 16th clock tick. If it is
longer, it will be truncated. If it is shorter, it first repeats,
but then the repetition is truncated.

On the other hand you can make a regular sequence ir-
regular, if you set e.g. autoreset = 7 in a sequencewith
usually 16 steps, thus forcingpolymetric shiftswithother
parallel rhythms.

When you use the special gate “propabilities” odd and
even in combination with autoreset, please note that af-
ter a reset the odd / even count always starts with odd.

TheMetric Saver

The Metric Saver™ is a very musical feature that allows
you togobonkerswith all start, end, direction, pingpong,

DROIDmanual for blue-6 289 Table of contents at page 2

pattern, form, repeats, autoreset and skipswithout loos-
ing the sync to the rest of your music.

If The Metric Saver™ is turned on (which is the default),
the motoquencer automatically keeps track of the origi-
nal incoming clock count. As soon as – after a polymet-
ric journey – you come back to “normal”, it jumps to the
step thatwould have been the current one without those
alterations.

An example: You set autoreset to 7 in order to create
polymetric tension. Later you set it back to 0. Now the
sequence immediately jumps to the step where it would
have been without autoreset (this requires that none of
the other step changing features are in use). You snap
back to your original groove and are in sync again with
the rest of your modular “band”.

Note: The Metric Saver™ is only activated when really
allmodifications to the normal step order are turned off.
That also includes stepswhere “repeats” or “skip” is used,
since they also introduce time shifts.

I Feel Lucky

TheMotoquencer has a powerful systemof one time ran-
domization, which is called I Feel Lucky™. While set-
ting random CVs or gate propabilities is quite common
amongst sequencers, here we talk of something differ-
ent. By sending a trigger to a certain input, some of your
steps are randomly modified – and stay that way. If your
faders currently show these steps, you will immediately
see them moving around. And they stay there, so that
you canmanuallymodify the random decision if you like.
Those triggers are most times sent by buttons, but also
slowly running LFOs or using the startofsequence as a
trigger are fine.

Let’s make a simplified example:

[motoquencer]
... usual stuff goes here ...
luckychance = P1.1
luckyamount = P1.2
luckycvs = B1.1 # press to reroll CVs

All lucky operations honor the luckychance input. This
sets the relative number of steps that is affected by the
randomization. Setting it to 1 will affect all steps. At 0,
no step is affected. At 0.5 exactly half of the steps is af-
fected, randomly chosen fromall steps between start and
end.

A trigger to luckycvs sets a new random CV value for
each affected step. And with the pot luckyamount you
control the maximum CV that’s possible here.

You canuse thismechanismalso to reset things. A trigger
at luckycvs whith luckyamount = 0 and luckychance
= 1will bring all steps back to the CV set by cvbase.

Please have a look at the table of inputs for all the other
lucky... triggers and ... feel lucky!

Pitch accumulator

The pitch accumulator – or just short accumulator – is a
way toalter thenotesof certain steps inapredictableway
as the sequence goes on. It works like this:

First you turn it on by setting accumulatorrange to a
non-zero number. Let’s assume you set it to 4.

[motoquencer]
accumulatorrange = 4
...

If you do this, the fader in the fader mode ”pitch ran-
domization” changes itsmeaning slightly. The upper four

settings are now dedicated to the accumulator while the
lower three settings still do pitch randomization:

7 accumulator: shift up twice each turn

6 accumulator: shift up each turn

5 accumulator: shift down each turn

4 accumulator: shift down twice each turn

3 strong pitch randomization

2 medium pitch randomization

1 slight pitch randomization

0 randomization + accumulator off

Let’s assume you set a step to 6 (shift up each turn). Now
the note of this step is increased by one note every repe-
tition of the sequence. Every time it restarts from step 1,
the internal accumulator is increased by one and the note
is moved up one one within the selected scale notes.

If accumulatorrange = 4, the accumulator is reset after
the sequence has played four times and all notes are re-
stored to their original values. The same does an extern
reset signal.

With the four fader positions 4, 5, 6 and 7 of a step, you
can have the note moved up once or twice or on the con-
trary moved downwards once or twice per repetition.

If you enable a form like AAAB, the accumulator is in-
creased at the end of the complete form. So even if the
A part repeated three times, the accumulator-sensitive
steps change their note note for each repetition of A but
just at the and of the whole sequence.

DROIDmanual for blue-6 290 Table of contents at page 2

Multiple tracks

Each motoquencer circuit has just one CV and one gate
output. In many cases it is desirable to have several CVs
and maybe also additional gate outputs as part of a se-
quence. Also you probably want more sequencers using
the same faders, of course.

This is done by addingmore instances of motoquencer to
your patch. The easiest way is to use the select input
of each of these, in order to make sure that at every time
exactly one motoquencer is selected and gets access to
the motor faders. You really shouldn’t try selecting more
than one at the same time, or your faders will get crazy!

Here is an example with the two buttons B1.7 and B1.8
selecting one of two sequencers:

[p2b8]
[m4]

[buttongroup]
button1 = B1.7
button2 = B1.8
led1 = L1.7
led2 = L1.8

[lfo]
hz = 20 * P1.1
square = _CLOCK

[motoquencer]
clock = _CLOCK
select = L1.7
cv = O1
gate = O5

[motoquencer]
clock = _CLOCK
select = L1.8
cv = O2

gate = O6

This simple patch is a fully functional two-track four-step
sequencer. And as long as you don’t run out of RAM, you
can add as many tracks as you like.

One thing you have to have in mind: These sequencers
can easily go out of sync. Just play around with the start
or end step or skip or repeats. While that can be interest-
ing, sometimes it is not desirable. Maybe you just want
every step to have additional CV or gate values.

This can be done by linking two or more instances of
motoquencer togethery. To do that, add the following
line to the first instance:

linktonext = 1

At the next motoquencer in the patch, don’t wire clock
or reset or anything else that deals with stepping or di-
rection or faders. Just connect the outputs. The linked
sequencer is remote controlled.

Some inputs still apply for the linked sequencer. One ex-
ample is cvbase and cvrange. Any parameter that has
an influance on which step is played when, however, is
ignored. That task is done by the main sequencer.

Here is a complete example that adds one additional CV
and one gate to a sequencer. Note: The fader modes 10
and 16 give you access to themodes 0 and 6 of the linked
sequencer. Simply add10 for each sequencer in the chain.

[p2b8]
[m4]

[buttongroup]
button1 = B1.1
button2 = B1.2

button3 = B1.3
button4 = B1.4
button5 = B1.5
button6 = B1.6
button7 = B1.7
button8 = B1.8
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
led5 = L1.5
led6 = L1.6
led7 = L1.7
led8 = L1.8
output = _FADERMODE
value7 = 10 # CV of sequencer 2
value8 = 16 # gate of sequencer 2

[lfo]
hz = 20 * P1.1
square = _CLOCK

[motoquencer]
clock = _CLOCK
fadermode = _FADERMODE
linktonext = 1
cv = O1
gate = O5

[motoquencer]
cv = O2
gate = O6

If you need more than two CVs, you can create even
longer chains, for example:

[motoquencer]
clock = _CLOCK
fadermode = _FADERMODE
linktonext = 1
cv = O1

DROIDmanual for blue-6 291 Table of contents at page 2

gate = O5

[motoquencer]
linktonext = 1
cv = O2
gate = O6

[motoquencer]
cv = O3
gate = O7

Simply add a linktonext at every instance except the
last. And add 10 to fadermode for every sequencer. For
example fadermode = 25 selects fader mode 5 on the
third sequencer in the chain.

Here are some details, what linking exactlymeans for the
linked sequencer:

• The linked sequencer does not react to clock,
reset, startstep, endstep, form, direction,
pingpong, pattern, autoreset, shiftsteps or
any other potential means of influencing the play
order of the steps. Instead the current step number
of the linked sequencer will always be the same as
the step number of the main sequencer.

• If you use shiftsteps, luckyshuffle or
luckyreverse on the main sequencer, the exact
same rearrangement of steps will happen at the
linked sequencers.

• If the main sequencer plays repeats, so does the
linked one. The “repeats” setting of the linked se-
quencer’s steps are ignored.

• If the main sequencer skips a step, so does the
linked one. The “skip” property of steps in the
linked sequencer are ignored, as well.

• Ratches still work independently, since they don’t
change the step sequence.

• Also the gate pattern of the linked sequencer will
be applied.

• In the linked sequencer, holdcv has one additional
value: 2. If you set it to 2, the CV output of the
linked sequencer is synchronized to the gate of
the linked sequencer, not to that of the main se-
quencer.

• Don’t use select, fadermode and buttonmode on
the linked sequencer. They are ignored. In-
stead, for accessing the parameters of the steps
of the linked sequencer, add 10 to fadermode or
buttonmode. So while fadermode = 1 sets the
fader to the CV randomization of the main se-
quencer, so does fadermode = 11 for the linked
sequencer.

The following parameters are still valid for the linked se-
quencer:

• cvbase, cvrange and quantize
• gatelength
• holdcv (with the extra value 2)
• luckychance, luckyamount and all of the other
lucky... paramters, with the exception of
luckyskips, luckyrepeats, luckyshuffle and
luckyreverse.

Recording with a keyboard

Youcanuseakeyboard to record sequences intoyourmo-
toquencer. More precisely, you can attach a CV / gate in-
put for that purpose. That might very well come from a
keyboard attached to the X7, via the circuit midiin (see
page 260). But any other source is possible, as well.

The first step is attaching your recording source to
keyboardcv and keyboardgate. Here is an example:

[midiin]
cv = _CV

gate = _GATE

[motoquencer]
keyboardcv = _CV
keyboardgate = _GATE
...

After doing this, you should already be able to play with
your keyboard directly to the voice that’s attached to
the motoquencer. While a key is pressed (keyboardgate
is high), the keyboardcv has precedence over the se-
quence. But you can change that with the setting
keyboardmode.

To record your keyboard into a sequence, you need to
connect recordmode, maybe to a button (see page 141).
While recording is active and the keyboard gate is high,
the current sequencer stepwill be replacedwith your key-
baord note. Otherwise the steps are untouched. That
way you play more and more notes into the sequence.

In order to get rid of existing notes, either clear the se-
quence before recording (using the clear trigger), or
make use of the input recordsilence. Setting that to 1
will silence all steps when no key is pressed.

You also can route recordsilence to one key on your
keyboard using the notegate outputs of midiin. That
way you can actively “erase” notes by pressing that key.

While recording key presses the motoquencer tries to be
tolerant with respect to your timing. So keys pressed
slightly before or after the current clock tick are just fine.

Note: The sequencer can just record into its grid of
steps and quantized notes. So it’s not a free style MIDI
recorder. You cannot record notes that are faster than
your input clock. If you have enabled quantiziation, you
can just play notes from the current scale. So it needs
sometime toget familiarwith thiswayof recording. Nev-

DROIDmanual for blue-6 292 Table of contents at page 2

ertheless it’s a great tool for rapid composition. Espe-
cially because it’s easy to modify your melodies with the
faders after you have recorded them.

Recording & linked sequencers

When you have combined several motoquencers with
linktonext = 1, recording also works in the linked se-
quencers. Here are some hints:

• recordmode can be (and must be) set individually
on eachof themotoquencers. If youwant to record
into a linked sequencer, make sure that you set
recordmode there.

• Using the same value for recordmode for all se-
quencers means that they always record simul-
tanously.

• Also keyboardcv and keyboardgate are settings
that each sequencer instance has on its own. That
means that you can record different CVs with dif-
ferent gates on each sequencer at the same time.

• Using the samegate signal for thekeyboardgateof
all sequencers can make sense. E.g. if you want to
record paraphonic chords or pitches together with
modulation CVs.

Copy& paste

The copy&paste feature allowsyou to copyapart of your
sequence fromone page to another or fromone preset to
another. To do this, map the inputs copy and paste to
two buttons (you don’t need toggle buttons here, so no
button circuit is needed).

A trigger to copy copies the current page of the current
sequence into an internal clipboard. And paste copies
the clipboard to the current page of the current sequence.

By changing pages or presets between copy and paste,
you can copy parts of your sequence elsewhere.

There are also two alternative triggers for pasting.
pastefaders just pastes the faders of the currently se-
lected mode. pastebuttons is likewise for the buttons.
With that you can for example just copy the gate propa-
bilites from one page to another while leaving the rest of
the parameters as they are.

If youhave linked sequencers, thosewill automatically be
handled as well. Don’t connect the copy and paste trig-
gers there.

LED colors

Dependingon thebuttonmode, theLEDsbelowthe faders
have different colors. Here is an overview over all possi-
ble colors:

color meaning buttonmode

white currently played step always

blue enabled gate 0

green start step 1

red end step 1

cyan gate on the first repetition 2

pink gate on each repetition 2

orange hold gate over duration 2

yellow tie the gate to the next step 2

violet skip 3

DROIDmanual for blue-6 293 Table of contents at page 2

Input Type Default Description

firstfader (f) 1 2 3 1 First M4 fader of the sequencer (starting with 1). If you omit this, it starts at the first fader of your first M4.

numfaders (n) 1 2 3 Number of faders to use for your sequencer. The typical numbers are 4, 8, 16 and 32. 32 is the maximum (eight M4
units). If you omit this, all of your M4 faders will be used.

numsteps (ns) 1 2 3 Number of steps your sequence consists of (at maximum). The number of steps can be greater than the number of
faders. In that case use page for paging your faders so that you can edit all of the steps. Having the number of steps
less than the faders, makes no sense – it’s just a waste of faders. The maximum number of steps is 32.

If you don’t set this parameter, the number of steps will be set to the number of faders.

Note: changing this setting dynamically can provoke various surprising behaviours. For example the number of pages
(see parameter page) might be reduced. Or the endmarker is forciblymoved around. If youwant to change the length
of the sequence via CV, better use endstep or autoreset.

Another note: Setting numstepswill not restrict the number of faders. If you set numsteps = 4 but have eight faders
available, the circuit will use all these, even if faders 5, 6, 7 and 8 will be useless. You need to set numfaders = 4 in
this situation.

page (p) 1 2 3 0 Use this parameter, if you have less faders than steps. The first page is 0, not 1. For example if you have 4 faders but
16 steps, you can select between the four “pages” of four faders each, by settings bar to 0, 1, 2 or 3. The output of a
buttongroup (see page 146) with one button per page is a goodmatch for this parameter.

clock (c) Patch an input clock here. If you want to use ratcheting, that clock needs to be stable and regular, because the se-
quencer needs to interpolate the clock and create evenly distributed new beats within two clock ticks. If you don’t use
ratching, you can use any rhythm you like here – may it be shuffled, euklidean, the output from another sequencer or
whatever you like. Each clock tick will advance the sequence to the next step (or to the next repition of the current
step).

taptempo (tt) If your clock is not steady but might be stopped and restarted, you should patch a steady clock here. This avoids
problems with the computation of the gate length right after starting the clock. The tap tempo computation needs a
series of at least two clock pulses so the gate length of the first step is wrong after the clock has stopped for a while.

reset (r) A trigger here resets the sequencer to its start step. The next clock tick (or a tick that is roughly at the same time as
the reset) will play step 1. Note: If there is a resetwithout a clock tick at the same time, the sequencer will go to “step
0”, which is a special state where it waits for the clock to advance to the first step. Without that fancy logic, a reset
plus clock would skip step 1 and start with step 2.

DROIDmanual for blue-6 294 Table of contents at page 2

Input Type Default Description

run (ru) 1 If you set this input to0, the sequencerwill ignore all incoming clock ticks. It stops. Thedefault of1 is normal operation,
where it runs. This input is a better way to temporarily stop the sequencer than to stop the clock. The reason: for
computing the gate length and ratchets a steady input clock is needed. If you stop the clock, the next gate length
and ratches right after the next start will have the wrong duration since at least two clock ticks are neccessary for
computing its speed.

Note: This input is not a replacement for mute, since a muted sequencer leaves the clock running and advances steps.
It just mutes the gate output.

composemode (cm) Enabling “composemode”makes it easier tofind the right note in a step,when creatingmore complexmelodies. When
composemode is set to 1, the sequencer stops clocking. Instead – every time you change theCVof a step, it immediately
jumps to that step, outputs the changed CV and opens the gate for a short time, so you can listen to the changed note.

mute (m) If you set this to 1, the gate output of the sequencer is muted (will always be 0). Any changes of the CV output still
happen.

cvbase (cb) 0.0 Here you set the voltage the sequencer will output if the CV fader is at the bottom position. The allowed range is -1 …
1 (which is the same as the range from -10 V to +10 V, if you output the CV directly to an output).

cvrange (cr) 0.2 CV range of the faders. So the resulting CV lies somewhere between cvbase and cvbase + cvrange. The CV range
cannot be negative and is capped at 1. If you need a greater range, consider multiplying the output value of the cv
output of the sequencer.

invert (iv) 0 Inverts the CV or pitch output. This is like mirroring the fader position. Now if the fader is up, the output is low and
vice versa. In scale quantized mode, the melody still stays within the scale.

DROIDmanual for blue-6 295 Table of contents at page 2

Input Type Default Description

quantize (q) 1 2 3 2 Switches on quantization in two levels. At 0, the faders run freely and output a continous CV.

At 1, the output is quantized to semitones, which is 1
12V steps. Also the faders will get artifical notches – one for each

semitone. That is, unless your range is too large. The maximum number of notches with force feedback is 25, so if
your range exceeds two octaves (0.2), the notches are turned off.

At 2, the output is quantized to the scale that root and degree define. Furthermore the individual scale notes can be
switched on or off with the parameters select1, select3 and so on. Note: the root input does not select the lowest
note of the CV range. That is still set with cvbase. It is just used for selecting the scale.

0 no quantization

1 quantize to semitones (1/12V steps)

2 quantize to the scale set by root and degree

cvnotches (cn) 1 2 3 0 Usually the CVs of the steps are ment to be note pitches (when quantize is 1 or 2), or just free CVs (quantize = 0).
There is an alternative mode, however, that allows you to assign integer values like 0, 1, 2 and so on to each step.

To do this set cvnotches to a value of 2 or greater. This defines the number of discrete values (and hence notches)
for each step and put CVs of the sequence into notched mode. 1makes no sense, of course, since in this “pitch bend
mode” the faders would always return to the neutral position.

In notched mode the cv output does not output a pitch but a notch number starting from 0. cvbase, cvrange and
quantize are ignored.

The maximum number of notches is 127, but the haptic force feedback of the motor faders is disabled starting at 26.

shiftsteps (sh) 1 2 3 0 Shifts all your steps by that number to the left (negative numbers shift to the right). So if shiftsteps is 1, right after
a reset, the sequencer will not play step 1, but step 2. The shifting wraps around at the end of your sequence, so if you
have 24 steps and shift is 1, the sequencer will play step 1 instead of step 24.

Note: Other things like startstep, endstep, playmode, from and autoreset take place after shifting.

DROIDmanual for blue-6 296 Table of contents at page 2

Input Type Default Description

startstep (ss) 1 2 3 1 Sets the first step to be used. This means that after a reset or when the sequencer comes to the end of the sequence,
it will begin at this step.

There is also away for settings start and endwith buttons (see below at buttonmode). If you use the interactivemode,
the startstep and endstep settings will be overridden. The are reactived if you clear everything.

Note: startstep and endstep take place after applying shiftsteps.

endstep (es) 1 2 3 Sets the last of the steps to be played. The default is to play all steps. After playing the end step, the sequencermoves
on to the start step at the next clock tick.

If startstep is equal to endstep, the sequence just consists of one single step.

Settings startstep larger then endstep is allowed and reverses the playing order.

DROIDmanual for blue-6 297 Table of contents at page 2

Input Type Default Description

form (fo) 1 2 3 0 This is an advanced feature that allows you to slice your steps into two or three parts and create musical song forms
like AAAB or ABAC. Each of the parts A, B or C are then played according to the playmode.

The form AAAB, for example, creates a 32 step form from just 16 steps, by playing the first 8 steps three times and
then the second 8 steps once.

The following forms are available:

0 A (forms are basically deactivated)

1 AAAB

2 AABB

3 ABAC

4 AAABAAAC

5 AB

6 AAB

Notes:
• The splitting of the steps into parts takes place after accounting for startstep and endstep.
• Forms with A, B and C split the pattern into three parts. These parts can only be of equal size if the number of
steps is dividable by 3, of course.

• The pattern AB is really not the same as A, e.g when direction is set 1 (reverse). In that case each of the parts
is played backwards, but the parts themselves move forwards on your steps.

direction (d) 0 Sets the general direction inwhich the sequencermoves through the steps. 0means forwards and 1means backwards.

pingpong (pp) 0 If set to 1, the sequencer will change the direction every time it reaches the start or end of the sequence.

DROIDmanual for blue-6 298 Table of contents at page 2

Input Type Default Description

pattern (pt) 1 2 3 0 Selects one of a list of movement patterns. That way, the sequence steps are not played in linear order but in a more
sophisticated movement. Available pattern are:

0 go step by step to the sequence (normal) →

1 two steps forward, one step backward →→←

2 double step forward, one step backward ⇒←

3 double step forward, double step backward, single step forward ⇒⇐→

4 double step forward, single step forward, double step backward, single step forward ⇒→⇐→

5 random single step forward or backward ↔

6 go forward by a small random number of steps →× ?

7 random jump to any allowed (other) note ⇕

repeatshift (rs) 1 2 3 0 This is a number in the range -24 … +24. If you set this to non-zero, each repetition of a step shifts the played note by
that many notes within the selected scale notes. This only has effect on steps where the number of repeats is greater
than 1. Also it is only is applied when the quantize = 2.

ratchetshift (ras) 1 2 3 0 This is a number in the range -24 … +24. If you set this to non-zero, each ratchet of a step shifts the played note by
that many notes within the selected scale notes. This only has effect on steps where the number of ratchets is greater
than 1. Also it is only is applied when the quantize = 2.

If you combine ratchetshiftwith repeatshift, both shifts are added together. And the ratchet shifting is reset for
each repetition of the step.

accumulatorrange (ac) 1 2 3 + Using this parameter enables the pitch accumulator. The value sets the maximum value the accumulator can get. The
maximum is 16. If you set this to 0, the fadermode for pitch randomization still is in the special modewhere the upper
four positions control the impact of the accumulator.

Please consult the manual of motoquencer (see page 286) for details on the pitch accumulator.

DROIDmanual for blue-6 299 Table of contents at page 2

Input Type Default Description

constantlength (co) 0 This input enables a feature that (tries to) keep the actual length of the sequence constant. There are two levels. If
constantlength = 1, every change in the repeats of a step is compensated by changing the repeats in the following
steps. E.g. if you increase the number of repeats from 4 to 5 in step 3 (by moving the fader in the appropriate fader
mode), the repeats in step 4 are reduced by 1. If they are already 1, step 5 is tried an so on, until it wrap around to step
1.

The second level is constantlength = 2. Here also the skip setting of steps is honored andmodified in order to keep
the length constant. A skipped step essentially has the length 0 (or 0 repeats). The componsation is now done not
only when the repeats are changed but also when skip is switched on or off on a step.

All the compensation is only active with the range that is set with the start and end step.

autoreset (ar) 1 2 3 0 If set to non-zero, automatically issues a reset (just like a trigger to reset) every N clock ticks.

metricsaver (ms) 1 TheMetric Saver ™ helps you to reliably come back to your original metric and time after playing around with all sorts
of parameters that change the played number of steps in the sequence. These are: startstep, endstep (also when
changed interactively), form, direction, pingpong, pattern, autoreset and repeats and skips of individual steps.
Therefore it counts the actual number of clock cycles since the last external reset (or system start). And when all of
these features are deactivated, it snaps back the clock to the position it would have been by now if you never had
played around with all the funny stuff.

That way, during a live performance, you can safely play aroundwith all this polymetric and otherwise time disrupting
stuff and as soon as you clean up your mess – voila: you are back on track and in sync with the rest of the “band”.

The metric saver is turned on by default. But you can disable it by setting the parameter to 0.

DROIDmanual for blue-6 300 Table of contents at page 2

Input Type Default Description

fadermode (fm) 1 2 3 0 Switches the current meaning of the motor faders. You probably want to connect the output of a buttongroup (see
page 146) here. Here are the possible modes:

0 pitch / CV

1 randomize CV

2 gate propability

3 repeats (up to 16)

4 gate pattern

5 ratchets (up to 8)

6 gate

7 skip

buttonmode (bm) 1 2 3 0 Switches the current meaning of the touch buttons below the faders. You probably want to connect the output of a
buttongroup (see page 146) here. Here are the possible modes:

0 gates

1 start / end

2 gate pattern

3 skip

holdcv (hc) 1 This setting determines wether the CV output changes every time the sequencer moves to the next step or just when
that step is active (a gate is being played). The latter is the default. But if you set this to 0, the CV values of steps
without gates will also influence the output CV.

Note: regardless of this setting, the CV will never change inbetween. Any change of the CV faders, the cvbase and
cvrange and so on will only take effect when the next step is played. This also ensures that repeats or ratchets are
always in the same pitch.

defaultcv (dc) 0.0 Set the CV the steps should be set to on a trigger to clear. That value must be within the range set by cvbase and
cvrange, or it will be truncated to that range.

If you have set cvnotches, however, the value is expected to be an integer in the range 0 ... cvnotches - 1.

DROIDmanual for blue-6 301 Table of contents at page 2

Input Type Default Description

defaultgate (dfg) 1 Here you set to which state (on / off) the gates should be set on a trigger to clear.

clearskips (cs) A trigger here removes the “skip” setting from all steps.

clearrepeats (crp) A trigger here resets the number of repeats to 1 for each step.

clearstartend (cse) A trigger here clears the manual settings of the start and end step. So the sequence will be played in its full length
(again) .

gatelength (gl) 0.5 The gate length in input clock cycles. A value of 0.5 thus means half a clock cycle. A steady input clock is needed
for this to work. Please note that if the gate length is >= 1.0, two succeeding notes will get a steady gate, which
essentially means legato.

If you don’t use a steady clock, set this parameter to 0. This will output aminimal gate length of about 10ms (basically
just a trigger).

keyboardmode (km) 1 2 3 1 This input sets how a keyboard, that is hooked to keyboardcv, and keyboardgate should be used for directly playing
notes. You can set it to 0, 1 or 2.

0 ignore the keyboard inputs

1 keyboard and sequencer play together, keyboard has precedence

2 mute sequencer, just play keyboard

keyboardcv (kc) � 1V
Oct The pitch input of a keyboard. This is used for playing along with the keyboardmode or recording with recordmode.

keyboardgate (kg) Thegate inputof akeyboard. Apositive gate enabledplay along (seekeyboardmode) andalso recording, ifrecordmode
is set accordingly.

recordmode (rm) 1 2 3 0 Use this input to recordmelodies playedwith a keyboard (namely keyboardcv and keyboardgate) into the sequencer.
There are three possible settings:

0 don’t record

1 record, notes longer than one step will automatically tie steps via the gate pattern

2 record, don’t tie notes. Ignore the length of the input note

recordsilence (rsi) 0 When this input is set to 1while recording, silence will be recorded while keyboardgate is off. Otherwise you can just
add notes to the sequence.

DROIDmanual for blue-6 302 Table of contents at page 2

Input Type Default Description

copy (cy) A trigger here copies the current page of the sequence to an internal clipboard. The clipboard is not part of any preset
and is also not saved to the SD card. It can be used later for pasting it’s data to another preset or another page of a
sequence.

paste (pa) A trigger here copies the steps from the clipboard to the current page.

pastefaders (pf) This is like paste, but just the values of the faders of the current fadermode are copied.

pastebuttons (pb) This is like paste, but just the values of the faders of the current buttonmode are copied. Note: the buttonmode “start
/ end” is not supported by copy and paste.

linktonext (ln) 0 This settings allows you to createmotoquencer tracks that havemore than one CV or gate output for each step. If you
set this to 1, the next motoquencer circuit in your patch will by synchronized to this one. This means that it always
plays the same step number – including all fancy operating like shiftsteps, startstep, endstep, form, pattern and
autoreset. All those inputs and also clock and reset are ignored by the next motoquencer.

The same holds for the “repeats” and “skip” setting of the steps.

fadermode and buttonmode are extended to the next motoquencers by adding 10 for eachmotoquencer to follow. So
fadermode = 10will show the CV of next motoquencer in the faders. fadermode = 11 the CV randomization of the
next motoquencer. fadermode = 20 show the CV of the third linked motoquencer and so on.

Don’t set fadermode or buttonmode on the linked motoquencers. They will be ignored there.

Note: The linktonext setting cannot by dynamically changed. It needs to be fixed 0 or 1. You cannot use any button
or internal cable or other methods to change it while the patch is running.

luckychance (lc) 0 1 1.0 Sets tha chance for a step to be affected by the next “lucky” operation (see triggers below).

luckyscope (ls) 1 2 3 0 Determines which part of the sequence is affected by the “lucky” operations. Depending on this setting the following
steps are affected:

0 All steps between the current start and end step

1 All steps

2 All steps between start and end on the current page

3 All steps on the current page

luckyamount (la) 0 1 1.0 Sets the amount of change that a “lucky” operation does to a step. The meaning depends on the operation. See the
parameters below.

DROIDmanual for blue-6 303 Table of contents at page 2

Input Type Default Description

luckycvbase (lv) 0 1 0.0 This parameter affects only the operation luckycvs and luckyfaderswhen the fader mode is set to 0. It adds a fixed
amount of CV to the random result, so that lies in the range luckycvbase … (luckycvbase + luckyamount).

luckyfaders (lf) Moves the currently selected faders (according to fadermode) to new random positions. luckyamount sets the maxi-
mum value of the fader, where 1 allows the maximum.

luckybuttons (lb) Randomly toggles the currently selected buttons (according to buttonmode). luckyamount only has an effect when
the gate patterns are selected, since here, four different values are possible. luckamount restricts them if it is lower
than 1.

luckycvs (lcv) Replaces the affected steps’ CVs with a new random CVs. The lowest possible CV is cvbase. If luckyamount is 1, the
highest possible CV is cvbase + cvrange, otherwise it is cvbase + luckyamount× cvrange.

luckycvdrift (ld) Modifies the affected steps’ CV randomly up or down. They will stay in the CV range set by cvbase and cvrange.
luckyamount controls the amount of change.

luckyspread (lr) First computes the average CV of all steps. Then changes the CV values of the affected steps such that their distance
to the average increases or decreases. If luckyamount is greater than 0.5, the distance is increased. Otherwise it is
decreased.

luckyinvert (li) Inverts the CVs of the affected steps within the allowed CV range. luckyamount has no influence.

luckyrandomizecv (lrc) Sets the “randomize CV” values of the affected steps to random values (yes, this is double randomization). The
luckyamount sets the maximum randomization value that will be set.

luckygates (lg) Sets the gates of the affected steps randomly to on or off. The chance for on is determined by luckyamount. So with
luckyamount = 0 you clear all gates and with luckyamount = 1 you set all gates.

luckyskips (lk) Sets the “skip this step” setting of the affected steps randomly to skip or normal. The chance for skip is determined by
luckyamount.

luckyties (lt) Sets the “tie this step to the next” setting of the affected steps randomly to tie or normal. This is the same as setting
the gate pattern to the upper most position. The chance for tie is determined by luckyamount.

luckygatepattern (lgp) Randomizes the gate pattern of the selected steps (there are four different values: once, all, hold and tie). Use
luckyamount to reduce that set.

luckygateprob (lga) Sets the “randomize gate” values of the affected steps to random values (yes, this is double randomization). The
luckyamount sets theminimum randomization value that will be set (yes, this is inverted). So with luckyamount = 1
you disable randomization andmake the gates play always. With luckymount = 0 you set the gate propability to the
lowest possible value (still not 0).

DROIDmanual for blue-6 304 Table of contents at page 2

Input Type Default Description

luckyrepeats (lrp) Randomly sets the number of repeats of the affected steps to something between 1 and 16 (the maximum). The
luckyamount determines the maximum repetition number, where 1 stands for a maximum of 16 repetitions.

luckyratchets (lrt) Randomly sets the number of ratches of the affected steps to something between 1 and 8 (the maximum). The
luckyamount determines the maximum ratchet number, where 1 stands for a maximum of 8 ratchets.

luckyshuffle (lsh) Randomly swaps all affected affected steps (their playing order) together will all their attributes. luckyamount has no
influence.

buttoncolor (bc) 0.1 Set a user defined color for the gate buttons. This color is only used when buttonmode = 0. The main purpose of this
option is to allow a separate color for the gate button in a linked sequencer, that does something else than gates.

luckyreverse (lrv) Reverses the playin gorder of the affected steps. luckyamount has not influence.

root (ro) 1 2 3 0 Set the root note here. 0means C, 1meansC♯, 2meansD and so on. If youmultiply the value of an input like I1with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0 C

1 C♯

2 D

3 D♯

4 E

5 F

6 F♯

7 G

8 G♯

9 A

10 A♯

11 B

12 C

DROIDmanual for blue-6 305 Table of contents at page 2

Input Type Default Description

degree (dg) 1 2 3 0 Set the musical scale. This is a number from 0 to 107. Below are the first 12 andmost important scales. You find a list
of all 108 scales on page 107.

0 lyd – Lydian major scale (it has a ♯4)

1 maj – Normal major scale (ionian)

2 X7 – Mixolydian (dominant seven chords)

3 sus – mixolydian with 3rd/4th swapped

4 alt – Altered scale

5 hm5 – Harmonic minor scale from the 5th

6 dor – Dorian minor (minor with ♯13)

7 min – Natural minor (aeolian)

8 hm – Harmonic minor (♭6 but ♯7)

9 phr – Phrygian minor scale (with ♭9)

10 dim – Diminished scale (whole/half tone)

11 aug – Augmented scale (just whole tones)

Note: Alltogether there are 108 scales. Please see page 107 for a complete list

select1 (s1) + Gate input for selecting the root note as being an allowed interval. When youwant to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. select1 ...
select13will be set to one.

select3 (s3) + Gate input for selecting the 3rd.

select5 (s5) + Gate input for selecting the 5th.

select7 (s7) + Gate input for selecting the 7th.

select9 (s9) + Gate input for selecting the 9th (which is the same as the 2nd).

select11 (s11) + Gate input for selecting the 11th (which is the same as the 4th).

select13 (s13) + Gate input for selecting the 13th (which is the same as the 6th).

DROIDmanual for blue-6 306 Table of contents at page 2

Input Type Default Description

selectfill1 (sf1) off Selects the alternative 9th (i.e. the 9th that is not in the scale.

selectfill2 (sf2) off Selects the alternative 3rd (i.e. the 3rd that is not in the scale).

selectfill3 (sf3) off Selects the alternative 4th or 5th. In most cases this is the diminished 5th.

selectfill4 (sf4) off Selects the alternative 13th (i.e. the 13th that is not in the scale).

selectfill5 (sf5) off Selects the alternative 7th (i.e. the 7th that is not in the scale).

DROIDmanual for blue-6 307 Table of contents at page 2

Input Type Default Description

harmonicshift (has) 1 2 3 0 This input can reduce harmonic complexity by disabling some of the scale or non-scale notes. It is an idea first found
in the Sinfonion and also provided by the circuit sinfonionlink (see page 353).

harmonicshift is staged after the select... inputs and further filters out (disables) notes based on their relation to
the current scale. This means that first the 12 select... inputs select a subset of the 12 possible notes. After that
harmonicshift can reduce this set further (it will never add notes).

If harmonicshift is not zero, depending on its value some or more of the scale notes are disabled, even if they would
be allowed by select.... Or in other words: the harmonic material is reduced.

You also can use negative values. These create rather strange sounds by removing the simple chord functions instead
of the complex ones first.

Here are the possible values:

0 off – all selected notes are allowed

1 disable all fill notes (non-scale notes)

2 disable fills and 11th

3 disable fills, 11thand 13th

4 disable fills, 11th, 13thand 9th

5 disable fills, 11th, 13th, 9th and 7th

6 disable fills, 11th, 13th, 9th, 7th and 3rd

7 disable fills, 11th, 13th, 9th, 7th, 3rd and 5th

-1 disable the root note

-2 disable the root note and the 5th

-3 disable root, 3rd, 5th

-4 disable root, 3rd, 5th, 7th

-5 disable root, 3rd, 5th, 7th, 9th

-6 disable root, 3rd, 5th, 7th, 9th and 13th

-7 disable all scale notes (fill notes untouched)

DROIDmanual for blue-6 308 Table of contents at page 2

Input Type Default Description

noteshift (nos) 1 2 3 0 Shifts the resulting output note(s) by this number of scale notes up or down (if negative). So the output note still is
part of the scale butmay be a note that is none of the selected ones. Themaximum shift range is limited to -24 … +24.

selectnoteshift (sns) 1 2 3 0 Shifts the output note by this number of selected scale notes up or down (if negative). If you use noteshift at the
same time, first selectnoteshift is applied, then noteshift. The maximum shift range is limited to -24 … +24.

tuningmode (tm) off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch (tp) � 1V
Oct 0V This pitch CV will be output while the tuning mode is active.

transpose (tr) � 1V
Oct 0V This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or

adding a vibrato.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 4 presets, so this number ranges from 0 to 3.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

cv () The CV output (or pitch output, if you use quantize).

DROIDmanual for blue-6 309 Table of contents at page 2

Output Type Description

gate (g) The gate output.

startofsequence (ssq) Outputs a trigger whenever the sequencer starts playing from the beginning. This can be used for synchronizing with
other sequencers. An external resetwill also cause this output to trigger.

startofpart (spa) Outputs a trigger whenever a form part starts again. This is only interesting when you use form.

startstepout (sso) 1 2 3 Outputs the current start step. This is useful in case it has been interactively set with the buttons and you need that
information for another circuit.

endstepout (eso) 1 2 3 Outputs the current end step. This is useful in case it has been interactively set with the buttons and you need that
information for another circuit.

currentstep (cst) 1 2 3 Outputs the number of the step that is currently being played (starting from 0).

currentpage (cpg) 1 2 3 Outputs the number of the fader page that is currently played, i.e. the value youwould have to feed into page in order
to see the currently being played step.

accumulator (acc) 1 2 3 The current value of the pitch accumulator (an integer number in the range 0 … 16.

DROIDmanual for blue-6 310 Table of contents at page 2

16.45 motorfader – Create virtual fader inM4 controller

The circuit provides the most basic access
to motor faders and supports switching
between presets, overlayed functions and
force feedback.

For the basics about these ideas and the
M4 in general, please read the introduction to the M4 on
page 71.

Presets

Let’s start with presets and make a simple example with
one P2B8 and oneM4 controller. First we need to declare
both in our patch:

[p2b8]
[m4]

Let’s use thefirst fader as a simpleCV source to beoutput
on O1. And four buttons should select four different pre-
sets of that fader. Those are grouped into a button with
the circuit buttongroup (see page 146):

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
output = _PRESET

This circuit will switch between the values 0, 1, 2 and 3
and output that number to the intercal cable _PRESET.
Now let’s add the fader definition:

[motorfader]
fader = 1
preset = _PRESET
output = O1

That’s really all. fader = 1 selects the first motor fader
in your setup. All faders are simply enumerated, so fader
= 7would select the third fader on the secondM4.

The output O1 now always outputs the current setting of
the fader. The range is 0 V ... 10 V – just like with pots of
the controllers.

Hitting the buttons will switch to one of the four presets
andmove the fader to the position corresponding to cur-
rent value of that preset.

Faders withmultiple functions

Thesecondway touse themotor faders is toassignmulti-
ple functions to one fader and then switch between those
functions. The crucial difference to thepresets is, that for
every function there is a dedicated output.

Let’s now change our example so that we use one fader
controlling four CV sources, but without any presets for
the while. The start is the same (just we renamed the in-
ternal cable to _FUNCTION:

[buttongroup]
button1 = B1.1

button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
output = _FUNCTION

No we need a separate motorfader circuit for each func-
tion. And instead of choosing a preset, we need to select
each circuit when the active button selects its function:

[motorfader]
fader = 1
select = _FUNCTION
selectat = 0
output = O1

[motorfader]
fader = 1
select = _FUNCTION
selectat = 1
output = O2

[motorfader]
fader = 1
select = _FUNCTION
selectat = 2
output = O3

[motorfader]
fader = 1
select = _FUNCTION
selectat = 3
output = O4

As you can see: each fader has a selectat input match-

DROIDmanual for blue-6 311 Table of contents at page 2

ing one of the buttons of the buttongroup. And each
fader also sends its output to one of the main outputs of
the master.

There is one possible simplification: Instead of using
_FUNCTION and selectat, we also could use the LEDout-
puts of the button group directly:

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

[motorfader]
fader = 1
select = L1.1
output = O1

[motorfader]
fader = 1
select = L1.2
output = O2

[motorfader]
fader = 1
select = L1.3
output = O3

[motorfader]
fader = 1
select = L1.4
output = O4

Notches

Maybe the coolest feature of the M4 is the haptic feed-
back. The M4 uses its motors in order to give you force
feedback. This is done in various forms.

The most useful form is to use artifical “notches” or
“dents”. Try that out be setting notches to a number, e.g.
8:

notches = 8

This changes the behaviour of the fader in two ways:

1. The output value is now a discrete whole number
from 0 up to 7.

2. When you move the fader you feel eight artificial
dents. That’s really hard to explain. Try it out!

These notches are super helpful especially in live perfor-
mances. You instantly feel where your are. You don’t
need any visual feedback. You can very reliably set a
value without looking.

Themaximumnumber of notches is 201. But if you select
more than 25 notches, the force feedback is turned off as
the notches would get too small to work.

There are also two other variants of force feed back:

Binary switch

If you set notches = 2, you turn the fader into a binary
switch. The output will be 0 if the fader is in the bottom
position and 1 on the top. Justmove the fader away from
its position and it will immediately snap to the other side.

Pitch bendwheel

Setting notches = 1will convert the fader into a kind of
pitch bend wheel. It always wants to stay in the middle,
where it outputs a value of 0.5. If youmove it away from
the center position, it creates a force back to the center
that is thegreater thenearer youare to the toporbottom.
As soon as you release it, it snaps back to the middle.

Modifying one value with two virtual faders

The sharing of virtual faders is a bitmore tricky to explain
and you probably won’t need it. It means that you use
two motorfader circuits for controlling the same output
value. Why would you do this?

I have added that feature when building a motor fader
based MIDI control for my audio interface. I have one
mode where every of eight faders controls the main vol-
ume of one of eight voices.

And then I have a “drill down” for each voice, where the
first fader is the main volume, the second fader the head
phone, the third the volume of an aux channel and so on.

So now I can control the volume of voice 3 either with the
third fader in the “global” volume control or with the first
fader the drill down of voice 3. This leads to an output
collision since two circuits would try to modify the same
output, even if always just oneof the twomotor fader cir-
cuits is selected.

The solution to this problem is the sharewithnext in-
put. Put the two motorfader circuits next to each other
into your patch. Put a sharewithnext = 1 into the first
one. Don’t use the output there. Now both virtual
faders will control the output that is defined in the sec-
ond motorfader circuit:

DROIDmanual for blue-6 312 Table of contents at page 2

[motorfader]
fader = 1
select = _GLOBAL
sharewithnext = 1

[motorfader]
fader = 3
select = _DRILLDOWN_3

output = _VOLUME_3

Note: if you are using notches, make sure that both
motorfader circuits have the same number of notches!

Input Type Default Description

fader (f) 1 2 3 1 The number of the motor fader to use, starting with 1 for the first fader in the first M4. 5 selects the first fader in the
secondM4 and so on.

startvalue (sv) 0.0 This sets the value the fader gets when you start this circuit this first time or when a trigger to clear happens.

notches (n) 1 2 3 0 Number of artifical notches. 0 disables the notches. 1 creates a pitch bend wheel. 2 creates a binary switch with the
output values 0 and 1. Higher number create that number of notches. E.g. 8 creates eight notches and output will
output one of the value 0, 1, ... 8. The maximum allowed number is 25.

ledvalue (lv) Whenyouuse this input, itwill override the brightness of the LEDbelow the fader, but justwhen this circuit is selected.

And there is a special trick: When you use a negative value for ledvalue, it switches to a magical mode. Here the
LED is at full brightness when the current setting of the motorfader matches its startvalue, whereas the setting of
ledvalue is used (made positive) in all other cases.

ledcolor (lc) When you use this input, it will set the color of the LED below the fader, when the circuit is selected. If the LED is off,
this setting has now impact.

sharewithnext (sw) 0 If set to 1, the output outputwill not be used but the circuit shares it’s output with the next motorfader circuit.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 8 presets, so this number ranges from 0 to 7.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

DROIDmanual for blue-6 313 Table of contents at page 2

Input Type Default Description

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

output (o) Output the current value if the virtual motor fader (don’t use this if you are using sharewithnext).

button (b) This output provides you with the current state of the touch button below the fader, but only if the circuit is selected.
While you could do this with an extra button (see page 141) circuit, using this output is more convenient in some
situations. While the circuit is not selected, the output is set to 0.

DROIDmanual for blue-6 314 Table of contents at page 2

16.46 multicompare – Compare in input with up to eight possible values

With this circuit you can assign a different
output value for up to eight different input
values. It allows you to pick one of eight
signals basedon the current valueof the in-
put.

There is some overlap with switch (see page 361), but
there the offset needs to be an integer in the range 0, 1,
2, etc. without any “holes”. With multicompare you can
do a logic like the following:

• If the input is 5, use sawtooth

• If the input is 7, use triangle
• If the input is 98, use square
• else use sine

Here is an example:

[lfo]
sawtooth = _SAWTOOTH
triangle = _TRIANGLE
square = _SQUARE
sine = sine

[multicompare]
input = _WAVEFORMSWITCH # from somewhere
compare1 = 5
ifequal1 = _SAWTOOTH
compare1 = 7
ifequal1 = _TRIANGLE
compare1 = 98
ifequal1 = _SQUARE
else = _SINE
output = O1

Input Type Default Description

input (i) 0.0 A value to compare.

compare1 ... compare8 (c) Up to eight reference values to compare the input with.

ifequal1 ... ifequal8
(if)

The output values if the according comparison value is found at the input.

else (e) 0.0 Specifies the output value in case non of comparison values is found at the input.

Output Type Description

output (o) The vaue of the matching ifequal or else input.

DROIDmanual for blue-6 315 Table of contents at page 2

16.47 notchedpot – Helper circuit for pots (OBSOLETE)

This circuit has been superseded by the
new circuit pot (see page 329). It will be
removed in the next firmware version. If
you use it in your patch, better replace it.

pot can do all notchedpot can do and much more. So
notchedpotwill be removed soon.

This little circuit simulates a potentiometer with a notch
at the center. It helps you exactly selecting the center po-
sition by defining a range that is considered to be the cen-
ter. This range is called “notch” anddefaults to 10%of the

available range. You can set the size of the notch via the
notch input. Here is an example:

[notchedpot]
pot = P1.1
notch = 15%
output = _ACTIVITY

[algoquencer]
activity = _ACTIVITY
...

For a second use case there is the output bipolar. That
converts a normal pot into one with range from -1.0 to
1.0. This example also shows how to disable the notch, if
you do not need it here:

[notchedpot]
pot = P1.1
notch = 0
bipolar = O1 # Send -10V ... +10V to O1

Input Type Default Description

pot (p) 0 1 Wire your pot here, e.g. P1.1

notch (no) 0.1 Optionally set the notch size, if you do not like the default of 0.1. The maximum allowed value is 0.5. Greater values
will be reduced to that.

Output Type Description

output (o) 0 1 Your pot output comes here. It still goes from 0.0 to 1.0.

bipolar (b) Optional output with a range from -1.0 to 1.0, where the center notch is at 0.0.

absbipolar (ab) A variation of bipolar that always outputs a positive value, i.e. the pot will go 1 ... 0.5 ... 0 ... 0.5 ... 1

lefthalf (l) This output allows you to split the pot into two hemispheres. Here you get 1.0 ... 0.0 while the pot is in the left half.
In the middle and right of it you always get 0.

righthalf (r) This is the same but for the right half. It outputs 0 while the pot is in the left half and 0.0 ... 1.0 from themiddle to the
fully right position.

lefthalfinv (li) This outputs 1.0 - lefthalf, i.e. the value range 0.0 ... 1.0 ... 1.0 when the pot moves left→mid→ right.

righthalfinv (ri) This outputs 1.0 - righthalf, i.e. the value range 1.0 ... 1.0 ... 0.0 when the pot moves left→mid→ right.

DROIDmanual for blue-6 316 Table of contents at page 2

16.48 notebuttons – Note Selection Buttons

This simple utility combines 12 buttons,
just like radio buttons, into a selector for
a note such as C, C♯, D, D♯ and so on. It is
similar to buttongroup, but much simpler.
And it allows 12 buttons. The output is ei-
ther a number from 0 to 11 – or alternatively on a 1

12 Vper
semitone base. The latter one is ideal for sending it to ex-
ternal sequencers or quantizers as they often adopt that
scheme.

The following example uses all eight buttons of the first
controller plus the first column of the second controller
for selecting the twelve notes. It sends the currently se-
lected note to O7 in a 1 V per octave scheme:

[notebuttons]
button1 = B1.1
button2 = B1.2
button3 = B2.1
button4 = B1.3
button5 = B1.4
button6 = B2.3
button7 = B1.5
button8 = B1.6
button9 = B2.5
button10 = B1.7
button11 = B1.8
button12 = B2.7
led1 = L1.1
led2 = L1.2
led3 = L2.1
led4 = L1.3
led5 = L1.4
led6 = L2.3
led7 = L1.5
led8 = L1.6
led9 = L2.5
led10 = L1.7

led11 = L1.8
led12 = L2.7
semitone = O7

DROIDmanual for blue-6 317 Table of contents at page 2

Input Type Default Description

button1 ... button12 (b) Wire 12 buttons to these 12 inputs.

clock (c) When you use this jack, all button presses are quantized in time to the next clock pulse arriving here. That makes it
easier to switch the note exactly in time.

startnote (sn) 1 2 3 Specify the note that should be selected when the Droid starts and no state is loaded, or when a trigger to clear or
clearall happened. This is an integer number from 0 to 11.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

led1 ... led12 (l) Wire the LEDs in the buttons to these 12 outputs.

output (o) 1 2 3 Here you get a number from 0 to 11, according to the currently selected button.

semitone (st) � 1V
Oct Here you get the same as output, but divided by 120. When you patch this output to a CV output of the , like

O1, it will output the note as a semitone on a 1 V per octave scheme.

DROIDmanual for blue-6 318 Table of contents at page 2

Output Type Description

gate (g) This output is 1 as long as one of the buttons is held. You can use that together with the semitone output to use the
notebuttons as a CV/gate keyboard with 12 keys.

DROIDmanual for blue-6 319 Table of contents at page 2

16.49 nudge – Modify a value in steps using two buttons

This small utility allows you to modify a
value up and down in fixed steps using two
buttons. This value can be persistent so it
survives a power cycle.

Here is an example for a simple CV source
that outputs a value between -2 V and 2 V:

[nudge]
minimum = -2V
maximum = 2V
amount = 1V
buttonup = B1.1
buttondown = B1.3
ledup = L1.1
leddown = L1.3
output = O1

Note: If you press both buttons at the same time, the
value will be reset to its start value.

You can extend this into an octave switch by using the in-
put offset, which will be added to the output:

[nudge]
minimum = -2V
maximum = 2V
amount = 1V
buttonup = B1.1
buttondown = B1.3
ledup = L1.1
leddown = L1.3
output = O1
offset = I1

If you now feed someV/Oct source, such as the pitch out-
put of a sequencer, to I1, it will be shifted up and down
for up to two octaves.

Another application might be to fine tune an oscilla-
tor. Here you set the nudge steps (set by amount) a
lot smaller. Also it is allowed to leave out minimum and
maximum and thus make the possible range unrestricted.
Note: 1V / 1200 means essentially a step size of 1

1200
of an octave, which is 1

100 of a semitone, which is also
known as one cent:

[nudge]
amount = 1V / 1200
buttonup = B1.1
buttondown = B1.3
ledup = L1.1
leddown = L1.3
output = O1
offset = I1

A third application could be a button for selecting a cer-
tain input number for – let’s say – an euclidean rhythm
pattern:

[nudge]
amount = 1
buttonup = B1.1
ledup = L1.1
minimum = 3
maximum = 7
wrap = 1
output = _BEATS

[euklid]
clock = G1
length = 16
beats = _BEATS
output = G3

Note: Here only one button is wired. In addition wrap is
set to 1, which means that after reaching the maximum
value, the next value will be the minimum value. Here
each press of the button B1.1 forwards the number of
beats in the matter 3→ 4→ 5→ 6→ 7→ 3 and so on...

Understanding the LEDs

Bynudging thevaluebelowthe center value thebuttonup
LEDwill be off and the brightness of the buttondownLED
will gradually increase indicating how much the value is
set below this center value. It remains maximally bright
at the minimum.

Vice versa by nudging the value above the center value
the buttondown LED will be off and the brightness of
the buttonup LED will gradually increase indicating how
much the value is set above this center value. It remains
maximally bright at the maximum.

And if the value is exactly in themiddle between maximum
and minimum, both LEDs are maximally bright. Here you
have to have in mind that this must be exactly in the
middle. Of course, this only works if the distance be-
tween maximum and minimum is an exact odd number of
amounts.

DROIDmanual for blue-6 320 Table of contents at page 2

Input Type Default Description

buttonup (u) Button for nudging the value up by one step

buttondown (d) Button for nudging the value down by one step

amount (am) 0.1 Amount to modify the value by on each press. This must be a value> 0

startvalue (sv) 0.0 The value this circuit starts with or is being reset to if you use the clear input.

minimum (m) + The minimum possible value. If you do not wire this, the value can go down infinitely.

maximum (x) + the maximum possible value. If you do not wire this, the value can go up infinitely.

wrap (w) 0 Set this to 1 in order to have the value wrap around if the minimum or the maximum has been exceeded. Note: wrap
does only work if you set minimum and maximum.

offset (of) 0.0 This value is being added to the output.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

DROIDmanual for blue-6 321 Table of contents at page 2

Output Type Description

ledup (lu) Wire this to the LED in the button for nuding up. It will indicate the current value.

leddown (ld) Wire this to the LED in the button for nuding down. It will indicate the current value.

output (o) The output of the current value plus value if offset.

DROIDmanual for blue-6 322 Table of contents at page 2

16.50 octave – Multi-VCO octave animator

This circuit is used to control the pitches of
three oscillators by octave or even fifths. It
also allows a linear detune in order tomake
the common sound of the VCOs sound fat-
ter.

Here is an example for a setup where the octave spread-
ing and the detune is controlled with two pots:

[octave]
input = I1
output1 = O1
output2 = O2
output3 = O3
spread = P1.1
detune = P1.2

Patch the 1 V / octave inputs of three VCOs at O1, O2 and
O3. Tune all VCOs at exactly the same pitch. Patch the
pitch output from your sequencer, quantizer or whatever
to I1.

Nowwith the pot P1.1 turned fully left nothing changes.
All VCOs will get exactly the same pitch. As you turn up
thepot thepitchesof theVCOs2and3will start togetoc-
tavedupmore andmore until VCO2 is twooctaves above
VCO 1 and VCO 3 is four octaves above VCO 1.

If you add fifths = on then intermediate steps shift the
pitch by perfect fifths.

Note: Theoutputoutput1was implemented just for sake
of completeness. It passes through the input to output1,
since the pitch of VCO 1 is never detuned nor pitched up.
If you are running low in outputs then some use a passive
multiple or stacked cable and connect VCO 1 externally
the pitch and thus save one output.

Detune

In the example, if you turn P1.2, VCO 2 will be detuned
up and VCO 3 down. A very slight turn will get get you
the nice fat classical detune sound. The speciality here
is: the detune is linear. This means that the detune is al-
ways done by the same number of Hertz – regardless of
the current pitch. This is done by automatically adapting
the detune voltage to be less in higher pitches and greater
in lower pitches. The result is a beating independent of
pitch.

Animation

Since everything in is CV’able so is spread. A nice
application is to use a sequencer or clocked random gen-
erator for animating the octaving. Here is an example:

[random]
trigger = I1
output = _RANDOM

[octave]
input = I1
output1 = O1
output2 = O2
output3 = O3
spread = _RANDOM * P1.1

Now P1.1 controls the depth of random octave anima-
tion.

DROIDmanual for blue-6 323 Table of contents at page 2

Input Type Default Description

input (i) � 1V
Oct 0V The general pitch information on a 1 V / octave base to be used for the three VCOs.

spread (s) 0 The amount of octave spread between output1 and output3. At a value of 1.0 the spread is four octaves.

detune (d) 0 1 0.0 The amount of linear detuneofVCO2and3. This isnotona1V / octave base but corresponds to an absolute frequency
difference inHertz. The exact frequency difference cannot be set here, since that depends on howyouhave tuned your
VCOs. But the rule is the following: If input is a 0 V and detune is 1.0, the detune is by four semitones. And for an
input of 1 V (one octave higher) it is just two semitones, because that results in the same frequency difference. For
2 V (two octaves up) it ist just one semitone and for 3 V half a semitone (and so on). Best thing is to simply try out and
listen!

fifths (f) off Set this to 1 or on if you want to include perfect fifths as intermediate steps.

Output Type Description

output1 ... output3 (o) � 1V
Oct Outputs for the 1 V / octave of the three VCOs. output1 is an exact copy of input so you could omit that and rather

patch VCO 1 to the original pitch CV.

DROIDmanual for blue-6 324 Table of contents at page 2

16.51 once – Output one trigger after the Droid has started

This circuit outputs exactly one trigger af-
ter the Droid module has started. You can
set a delay for that to happen.

Example:

[once]
delay = 0.2 # 200 ms
trigger = _DO_ONCE

The applications are up to you. Maybe you
want to automatically start something when the Droid
starts or update someMIDI data or whatever weird other
idea you have in mind.

Input Type Default Description

delay (dl) 0.01 Set a delay in seconds after theDroid’s start before the trigger triggers. Note: the default value is 10ms, not zero. This
allows all attached controllers to have sent at least one update before and the real pot values etc. are available at the
circuits.

onlycoldstart (c) 0 If you set this input to 1, once just sends a trigger after a cold start, only. A cold start means that the Droid has been
powered up. Pressing the button for loading a new patch and does a warm start.

Output Type Description

trigger (t) The trigger is output here.

DROIDmanual for blue-6 325 Table of contents at page 2

16.52 outputcalibrator – Tune the calibration of your CV outputs

This circuit can be used for tuning the out-
put precision of the CV outputs of your
master. It’s main purpose is to provide a
calibration procedure for the MASTER18.

The eight CV outputs of the master need
to be exactly calibrated so that if you write e.g. 5 V in
your patch, the output actually outputs 5.000 V
and not something else. This due to the slight produc-
tion tolerances in electronic parts. For theMASTER there

is semi-automatic calibration procedure available in the
maintainance menu.

The MASTER18 does not have CV inputs, however, so
the calibration of the CV outputs has to be done manu-
ally with a precise voltmeter. Since the MASTER18 does
not have a maintainance menu either (it does not have
LEDs on the front panel), this circuit has been introduced
to give you access to the calibration settings.

You can use this circuit with the MASTER, as well. One

use case would be to adapt it to adapt an output to
some non-standard tracking which is not 1V/Octave.
This is a bad idea however, since this permanently de-
stroys your correct calibration. Better is to use the circuit
calibrator (see page 150) or apply some simplemath at
the outputs, if that is sufficient.

In theexamplepatchesof youfirmwarepackager youfind
an example patch that uses an E4 controller for the cali-
bration procedure.

Input Type Default Description

output (o) 1 2 3 1 Select the output to calibrate. This is a number from 1 to 8.

referencepoint (r) 1 2 3 0 For each output, two voltages need to be adjusted: 0 V and 5 V. Select either 0 for 0 V or 1 for 5 V.

nudgeup (nu) Increase the currently selected output voltage by one minimal step, to match the reference voltage.

nudgedown (nd) Decrease the currently selected output voltage by one minimal step, to match the reference voltage.

save (sv) A trigger here saves the changed calibration values to the internal flash of the master and the the SD card.

cancel (c) A trigger here restores the previous calibration values from the internal flash.

loaddefaults (ld) Atrigger here loads thedefault calibration values,which are not very precise, but a good startingpoint if yougot totally
lost.

Output Type Description

dirty (d) Outputs 1 if the current calibration has been changed and needs to be saved.

calibration (cl) Shows the difference between the current calibration of the selected output and reference voltage and its default cal-
ibration value.

uncalibrated (u) 0 1 Showsyou thepercentageof uncalibratedoutputs. If all eight outputs are calibrated (differ fromthedefault calibration
value) this outputs 0.

DROIDmanual for blue-6 326 Table of contents at page 2

16.53 polytool – Change number of voices in polyphonic setups

The polytool is an intelligent “transformer”
that can map melodies with N parallel
notes to synthvoiceswithMparallel voices
and can thus change the polyphony of a
melody.

This functionality is inspired by MIDI to CV interfaces
(such as midiin (see page 260)), which need to deal with
the almost unlimited possible polyphony of MIDI, where
127 parallel notes are possible and where the interface
needs to suffice with a fixed limited number of CV/gate
outputs.

The usage is very simple: patch your input voices
(CV/gate pairs) into pitchinputX and gateinputX.
And patch your output voices into pitchoutputX and
gateoutputX.

Here is an example for converting a three-fold polyphony

into a single voice. That voice is controlled by O1 and O2:

[polytool]
pitchinput1 = _PITCH_1
pitchinput2 = _PITCH_2
pitchinput3 = _PITCH_3
gateinput1 = _GATE_1
gateinput2 = _GATE_2
gateinput3 = _GATE_3
pitchoutput1 = O1
gateoutput1 = O2

See how the parameter voiceallocation determines,
which note should be played if there is more than one at
a time.

The polytool can also do the opposite: You input a se-
rial melody with just one note at a time and have that
mapped to multiple output voices that make the actual

audible soundof the notes overlap. This can evenbe used
to convert fast short arpeggios into chord pads.

The next example shows this. At pitchinput1 and
gateinput1 there is a melody, for example from a se-
quencer or from the circuit arpeggio (see page 127).
That is then played on two output voices:

[polytool]
pitchinput1 = _PITCH
gateinput1 = _GATE
pitchoutput1 = O1
pitchoutput2 = O2
gateoutput1 = O3
gateoutput2 = O4

Here the parameter roundrobin decides how the notes
will be distributed onto the two output voices.

Input Type Default Description

pitchinput1 ...
pitchinput16 (pi)

? The pitches of up to 16 input voices.

gateinput1 ...
gateinput16 (gi)

The gates of up to 16 input voices.

DROIDmanual for blue-6 327 Table of contents at page 2

Input Type Default Description

roundrobin (rr) 0 Normally when looking for a free output for playing the next note, this circuit will start from pitchoutput1 in its
search. This way, if there are not more notes than outputs at any time, the notes played first will always be played at
the lowest numbered outputs. This leads to a deterministic behaviourwhen it comes to playing things like chords. The
same voice will always be used for the first note in the stream of MIDI events.

When you switch roundrobin to 1, this changes. Now the outputs are scanned in a round-robin fashion, like in a
rotating switch. That way every output has the same chance to get a new note. Here it can evenmake sense to define
multiple voices even if the track ismonophonic. When you use envelopeswith longer release times, you can transform
such a melody into chords with simultaneous notes.

Note: When all outputs are currently used by a note, roundrobin has no influence. Here voiceallocation selects
which of the notes will be dropped.

voiceallocation (va) 1 2 3 0 When from the pitch inputs, at any given time, more voice are active than you have outputs assigned, normally the
“oldest” notes would be cancelled. This behaviour can be configured here by setting voiceallocation to one of the
following values:

0 The oldest note will be cancelled (default)

1 The new note will not be played and simply be omitted

2 The lowest note will be cancelled

3 The highest note will be cancelled

Output Type Description

pitchoutput1 ...
pitchoutput16 (po)

? The pitches of up to 16 output voices.

gateoutput1 ...
gateoutput16 (go)

The gates of up to 16 output voices.

DROIDmanual for blue-6 328 Table of contents at page 2

16.54 pot – Helper circuit for pots

This circuit adds plenty of functionality to
the controller pots in one circuit. It helps
with various tasks. It replaces the former
circuits notchedpot and switchedpot and
these are also themain applications of pot:
the simulation a precise center dent (notch) and the shar-
ing of one pot for several different functions.

This circuit is designed to build user interfaces. It is exe-
cuted at a lower speed. Don’t use it for other purposes.

Convert a knob to bipolar output voltage

Let’s start with some simple features. There are a cou-
ple of useful outputs, all of which you could do externally
by use of some math. The following example converts a
pot (which is ranging from 0 to 1) to a bipolar pot rang-
ing from -1 to +1 (or -10 V to +10 V if you send it to an
output):

[pot]
pot = P1.1
bipolar = O1 # Send -10V ... +10V to O1

Have a look into the table of jacks below about further
useful things like splitting the pot’s way in two halfs.

Center notch

pot can simulate apotentiometerwith anotchat the cen-
ter. It helps to exactly select the center position by defin-
ing a ”range of tolerance” that is considered to be the cen-
ter. This range is called “notch” and is given in a per-
centage of the available range. I suggest using 10% so

you don’t lose to much pot resolution, but it’s still easy
enough to hit the center reliably. Here is an example:

[pot]
pot = P1.1
notch = 10%
output = _ACTIVITY

[algoquencer]
activity = _ACTIVITY
...

Slope

Sometimes you want a bit more resolution at the smaller
values of the pot range. Maybe the pot controls a time
from 0.0 to 1.0 seconds. And in the low range, say about
0.1 seconds, you need finer control.

You can change the slope of the pot in a way that either
small valuesor valuesnear1.0are “strechedout”. Thede-
fault is slope = 1.0. Look at the following diagram for
the impact of different slope values:

0 20 40 60 80 100
0

0.25

0.5

0.75

1

pot movement(%)

ou
tp
u
t
v
a
lu
e

0.5
1.0
2.0
3.0

As slope value of 0.0 does not make sense, because the
pot would stick to 0.0 all the time, a minimum value of
0.001 is enforced.

If you are curious about the algorithm: This operation is
just xslope. So it’s not “logarithmic” or “exponential” but
polynomial.

Splitting the pot into two hemisperes

The jacks lefthalf, righthalf, lefthalfinv and
righthalfinv allow you to split the pot in the middle
into two ranges and use them for something completely
different. Let’s make an example:

[pot]
pot = P1.1
lefthalf = O1
righthalf = O2

Now let’s start with the pot in the center position. Both
outputs will be at 0.0. If you now turn the pot to the left,
just lefthalf (at O1) is going to rise until it reaches 1.0
at the left end of the pot range. righthalf is staying at 0
all the time.

At the right half of the pot range, likewiselefthalf stays
zero and righthalfwill raise from 0 to 1.

The jacks lefthalfinv and righthalfinv are similar,
but are 1.0 in the neutral position in the center and fall
to 0.0 at the edges.

DROIDmanual for blue-6 329 Table of contents at page 2

Virtual pots

This circuit can handle so called “virtual pots”. This is a
situation where the physical position of the potentiome-
ter does notmatch it output value. There are three situa-
tionswhere the pot circuit automatically switches to this
virtual mode:

• Whenyou share (overlay) pots using theselect in-
put

• When you you enable presets (using preset or
loadpreset)

• When you send a trigger to clear

If course you can even use combinations of this: Overlay
a pot with multiple functions, work with presets and set
a start value at the same time.

If none of these three feature are used, there is not virtual
pot and the physical position always counts.

In virtual mode, the last virtual value of the pot is always
saved to the SDcard and restored thenext timeyour start
your Droid.

The LED gauge

In virtual mode the “LED gauge” is automatically acti-
vated. This displays the current virtual value of a pot us-
ing the 16 LEDs of your MASTER. If you use pot with a a
continous value, it is displayed with a “dot” that is mov-
ing from the LED of O5 (0.0) over the LEDs of I2 and I3
(0.5) to the LEDof O8 (1.0). When you use discrete, val-
ues from0 to 15 are displayed using the LEDs in the order
from left to right and from top to bottom.

If you are using a MASTER18, your master does not have
an LED matrix. But if you have at least one B32 in your
patch, the gauge is displayed using the upper 4 × 4 half

of your first B32. Without a B32 you don’t have an LED
gauge on aMASTER18.

Sharing / overlaying pots

Potentiometers are valuable ressources and sooner or
later youwill run into a situationwhere youwish you had
more pots. So you come up with the idea of using one
pot formore thanone function and switchbetween those
with a button.

Previously offered the circuit switchedpot for
that taskbut thathad certain limitations andalsowasnot
consistent with other circuits.

Let’smake an example: Our task is to share pot P1.1 so it
sets individual releasevalues for fourdifferent envelopes.
First we need something to switch between these four.
We do this with a buttongroup (see page 146):

[p2b8]

[buttongroup]
button1 = B1.1
button2 = B1.2
button3 = B1.3
button4 = B1.4
led1 = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

Now at any given time, exactly one of the four buttons
(i.e. their LEDs) is active. Now we add four pot circuits
using the samepot. The trick is the select input. Each of
these four should be selected just if one specific button
is active. The output of each is being sent to one of the
envelopes:

[pot]
pot = P1.1
select = L1.1
output = _RELEASE1

[pot]
pot = P1.1
select = L1.2
output = _RELEASE2

[pot]
pot = P1.1
select = L1.3
output = _RELEASE3

[pot]
pot = P1.1
select = L1.4
output = _RELEASE4

Finally we can add the four envelopes:

[contour]
trigger = I1
release = _RELEASE1
output = O1

[contour]
trigger = I2
release = _RELEASE2
output = O2

[contour]
trigger = I3
release = _RELEASE3
output = O3

[contour]
trigger = I4
release = _RELEASE4
output = O4

DROIDmanual for blue-6 330 Table of contents at page 2

Nowyou can switch between the four envelopeswith the
buttons and use the pot to adjust the release time of the
selected envelope.

Hints:

• Don’t mix up B1.1 and L1.1. If youwould use B1.1
for the switching, you would need to hold the but-
tondownwhile turning theknob. Inwhich caseyou
wouldn’t need the buttongroup circuit.

• It is supported (andmaybe useful) to select several
of the ”virtual” pots at the same time. In such a sit-
uation the turning of the real knob will adjust all of
the selected values at the same time.

• Pots are nomotorized faders. So they cannot show
the current value correctly after switching. See be-
low for details.

• In certain cases the selectat input might come
handy: if you do the switching with one number
that changes, not a bunch of gate signals. See the
jack table below for details.

Working with presets

The pot circuit supports up to 16 presets. With the use
of the preset input you can select one of these. Set a
number from 0 to 15 there to switch between presets. A
change of that number immediately switches to another
preset.

As an alternative you can work in a triggered mode
by patching loadpreset and savepreset in addition.
Switching presets happens just on these triggers. In trig-
gered mode it’s like have one more preset: the current
“working” position of the pot.

On page 21 there is a whole chapter about presets. You
find examples and more hints there.

Using a start value

A trigger to clear will set the virtual position of the
pot to a defined start value (which you can adapt with
startvalue). This means that now the physical postion
of the pot is not anymore identical with the virtual posi-
tion. For that reason the pot runs in virtual mode as soon
as you connect the clear input.

In virtual mode the state of the virtual pot is saved to the
SD card, the pickup procedure (as described below) is ap-
plied and the LED gauge is active per default (MASTER
only).

Picking up the pots

When you use overlaying, presets or a start value, your
pots run in virtual mode. It means that the physical value
of the pot might not be identical with its output value.

As an example let’s assume that – using the upper exam-
ple with overlaying – you first press B1.1 and set decay
fully CW 1.0. Now you select B1.2. Because 0.5 is the
start position of every virtual pot that is the current value
of the second virtual pot. But the physical pot is at 1.0.

This is solved in the following way:

• If you turn the physical pot right, the value of the
virtual pot is always increased until both reach 1.0
at the same time.

• If the physical pot is already at 1.0when you select
a virtual pot, it cannot be increased further. You
first have to turn the pot left a bit and then right
again.

• If you turn the physical pot left, then the value of
the virtual pot is always decreased until both reach
0.0 at the same time.

• If the physical pot is already at 0.0when you select
a virtual pot, it cannot be decreased further. You
first have to turn the pot right and then left again.

If you really want even more details – here we go: Let’s
assume that the virtual pot is at 0.4 when you select it.
And let’s further assume that the physical pot is at po-
sition 0.8. When you turn it left, the physical pot has a
way of 0.8 to go until 0.0 and the virtual just 0.4. So
the virtual pot is moving with half of the speed, for both
to reach 0.0 at the same time. When you turn the pot
right, the virtual pot has 0.6 to go until maximum, while
the physical pot has just 0.2 left until it reaches its max-
imum. So now the virtual pot moves three times faster
than the physical.

This algorithm is different than the common “picking up”
of pots that you see in Eurorack land quite a lot in such
situations. I preferred my solution because it seems to
be more convenient – especially if you want to change a
value a little bit. Also it allows to have multiple virtual
pots to be selected at the same timewithout having their
values immediately snap to the same value.

By the way: it is also possible to select none of the pots.
Which is a convenient way to reset the physical pot to
the middle position so that you always have headroom
for movement left and right, before selecting one of the
virtual pots.

Pot circuits doingmath

Here is an important caveat for all you hardcore hackers
out there: The pot circuit is designed to interface with
real pots that real users turn. While you canmisuse a pot
circuit for doing some basic math, don’t do this. Rather
have a look at math (see page 248) and compare (see page
165).

DROIDmanual for blue-6 331 Table of contents at page 2

Why? In order to optimize the execution speed of your
patch, several user interface circuits are executed at just
12.5% of the normal speed. This saves valuable time for
the execution of more time critical circuits. So instead of
checking pots at sub-millisecond intervals, your master
rather spends its time in executing your sequencers with
a timing as precise as possible.

This means, that pot, button, buttongroup and similar
circuits are executed just every 8th loop cycle.

If you experience any trouble with this “UI slowdown”,
you can disable it by using a droid (see page 183) circuit:

[droid]
uislowdown = 0

DROIDmanual for blue-6 332 Table of contents at page 2

Input Type Default Description

pot (p) 0 1 0.0 Wire your pot here, e.g. P1.1

outputscale (os) 1.0 The final output is multiplied with this value. It’s a convenient method for scaling up and down the pot range.

notch (no) 0.0 By setting this parameter to a positive number you create an artificial “notch” of that size. We suggest using 0.1 (or
10%. The maximum allowed value is 0.5. Greater values will be reduced to that. Note: Using this in combination with
outputscale also moves the notching point. E.g. with outputscale = 2 the notch will be at 1.0.

discrete (d) 1 2 3 Setting this value to 1 or larger switches the pot over to select a discrete integer number, rather than a continous value.
For examplediscrete = 5makes thepotoutputoneof the exactvalues0, 1, 2, 3or4. This is ideal for selectingpresets
and similar. If you enable ledgauge (highly recommended), it shows you the value by using the LEDs of the master in
an adapted way.

The maximum allowed number is 16.

When using discrete, the startvalue input is interpreted as a discrete number. So for example if you have discrete
= 5, you can use startvalue = 3 to set the selected value to the number 3 after a trigger to clear. A potential
outputscale is applied afterwards.

Notes: The options notch and slope do not work in discrete mode. outputscale is still applied, though. All outputs
other than output are dead and output 0.0. discrete = 1 does not really make sense, since there is just one value to
select from and the output will always be 0.0.

slope (sl) 1.0 Changes the resolution of the pot in lower or higher ranges. Set slope to 2 or more, if you want small values near 0.0
to be “zoomed in”. Set slope to 0.5 or 0.3 if you want to zoom in value nears 1.0.

DROIDmanual for blue-6 333 Table of contents at page 2

Input Type Default Description

ledgauge (g) + The “LED gauge” uses the 16 LEDs of theMASTER in order to indicate the current value of the pot (not available on the
MASTER18). This is especially useful for “virtual” pots – i.e. those pots that you get when you use select in order to
layer several different functions onto one pot. In that situation the position of the physical pot can be different than
that of the virtual one, so the gauge shows you the effective virtual value.

Furthermore, by illuminating the inner four LEDs, the gauge showswhen the pot hits exactly 0.5. This can only happen
if you use the notch parameter. Otherwise its practically impossible to hit exactly.

If you have a MASTER18, the gauge is displayed in the upper 16 LEDs of your first B32, if you have one.

The LED gauge is automatically activated if you use select. If you don’t like the LED gauge, you can turn it off with
ledgauge = off. Otherwise ledgauge set’s the color of the indicator in the sameway as the R-registers do and at the
same time enables the gauge even if you don’t use select.

Here are some color examples that you can use for the value of ledgauge:

0.2 cyan

0.4 green

0.6 yellow

0.73 orange

0.8 red

1.0 magenta

1.1 violet

1.2 blue

The colors repeat over in a kind of wheel at 1.2, so e.g. 1.4 creates the same color as 0.2.

startvalue (sv) 0 1 0.5 This parameter defines the value your potwill getwhen there is a trigger toclear. This is the valuebeforeoutputscale
is applied.

If you use discrete, the parameter does not expect a fraction but a discrete number in the range of the discrete values
(0, 1, 2, etc.

DROIDmanual for blue-6 334 Table of contents at page 2

Input Type Default Description

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 1 2 3 + This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (lp) A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) A trigger here saves a preset.

clear (cl) A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD cardwhen theDroid
starts.

Output Type Description

output (o) 0 1 Your pot output comes here.

bipolar (b) Optional outputwith a range from-1.0 to1.0,where the center notch is at 0.0 (or from-outputscale to+outputscale
if that is used).

absbipolar (ab) Avariation of bipolar that always outputs a positive value, i.e. the potwill go 1 ... 0.5 ... 0 ... 0.5 ... 1 (if outputscale
is not used).

lefthalf (l) This output allows you to split the pot into two hemispheres. Here you get outputscale ... 0.0 while the pot is in the
left half. In the middle and right of it you always get 0.

righthalf (r) This is the same but for the right half. It outputs 0 while the pot is in the left half and 0.0 ... outputscale from the
middle to the fully right position.

lefthalfinv (li) This outputs 1.0 - lefthalf, i.e. the value range 0.0 ... 1.0 ... 1.0 when the pot moves left→mid→ right (and the
scaled by outputscale).

DROIDmanual for blue-6 335 Table of contents at page 2

Output Type Description

righthalfinv (ri) This outputs 1.0 - righthalf, i.e. the value range 1.0 ... 1.0 ... 0.0 when the pot moves left→mid→ right (and the
scaled by outputscale).

onchange (c) This output emits a trigger whenever the pot is turned in either direction.

DROIDmanual for blue-6 336 Table of contents at page 2

16.55 quantizer – Non-musical quantizer

This quantizer circuit is very simple. It
reads an input voltage, quantizes it to the
next discrete step that you configured and
outputs it.

You can use it for musical purposes by set-
ting the number of steps to 12 per Volt (which is default).
It will quantize the input to semitones.

The following example scales down a pot P1.1 to 1 V (i.e.
one octave) and then quantizes it to semitones. Since 12
is the default value for steps this parameter can be omit-

ted here:

[quantizer]
input = P1.1 * 1V
output = O1

Note1: In fact you can select 13 semitones here because
if you turn the pot fully CW it will output 1, which will be
scaled to1Vand thenquantized to1V–which is the13th

semitone above the lowest possible note.

Note2: if you are looking for a more musical quantizer
then have a look at the Minifonion circuit.

You can use the Quantizer circuit as a sample & hold cir-
cuit if you set steps to 0 and use the trigger input:

[quantizer]
input = I1
steps = 0
trigger = I2
output = O1

Input Type Default Description

input (i) 0.0 Patch the unquantized input voltage here

trigger (t) This jack is optional. If you patch it, the quantizer will work in triggered mode. Here the output pitch is always frozen
until the next trigger happens.

steps (s) 1 2 3 12 Number of steps that one Volt should be divided in. The default is 12 andwill quantize the input voltage to semitones.
The number of steps is related to a value of 1 V which means 0.1. It is allowed to use a fractional number here. E.g.
the value 1.2will quantize to 12 steps per 10 V (whichmeans 12 steps per 1.0, which canmake sense. A value of 0 (or
lower) will basically mean an infinite number of steps and thus practically disable quantization.

bypass (b) 0 If you set this gate input to 1 then quantization is bypassed and the input voltage is directly copied to the output.

direction (d) 1 2 3 1 This parameter selects which value is chosen if the input value lies between two allowed quantized values (which is
almost always the case). The default is to choose the nearest value.

0 quantized down

1 quantize to nearest allowed value

2 quantize up

DROIDmanual for blue-6 337 Table of contents at page 2

Output Type Description

output (o) Here comes your quantized output voltage

changed (c) Whenever the quantization changes to a new output value a trigger with the duration 10ms is output here. No trigger
is output in bypass mode.

DROIDmanual for blue-6 338 Table of contents at page 2

16.56 queue – Clocked CV shift register

This circuit implements a shift register (a
queue)with 64 cells. Each cell contains one
CV value. At each clock impulse the CVs
each move one cell forwards. The last CV
is dropped. And the current input value is
copied to the first cell.

There are eight outputs, which you can place at any of the
64 cells you like. If you do not specify any placement, the
outputs are placed at the first eight cells – und thus the
information in the remaining 56 cells is not being used.

The followingexample readsCVs fromthe inputI1. O4al-
ways shows the CV value that was seen at the input four
cycles previously:

[queue]
input = I1
clock = I2
output4 = O4

The next example places three outputs at the positions 3,
24 and 64:

[queue]
input = I1
clock = I2
outputpos1 = 3
outputpos2 = 24
outputpos3 = 64

output1 = O1
output2 = O2
output3 = O3

Please note:

• Since the DROID is very precise in processing CV
voltages you can use the queue in order to delay
melodies from sequencers etc.

• As always also the inputs outputpos1 ...
outputpos8 may be CV controlled and change
in time.

Input Type Default Description

input (i) 0.0 This CV will be pushed into the first cell of the shift register whenever a clock occurs.

clock (c) Each clock signal at this jack will move the CV content from every cell of the shift register to the next cell. The CV in
the last cell will be dropped.

outputpos1 ... outputpos8
(op)

1 2 3 + Specifies the position of each of the eight outputs – i.e. which cell of the shift register it should output. Allowed are
values from 1 up to 64. These jacks defaults to 1, 2, ... 8, so if you do not wire them the eight outputs reflect the first
eight positions of the shift register.

Output Type Description

output1 ... output8 (o) Eight outputs for eight different positions of the register. If you do notwire outputpos1 ... outputpos8, these outputs
show the content of the 1st, 2nd, ... 8th cell.

DROIDmanual for blue-6 339 Table of contents at page 2

16.57 random – Random number generator

A random number generator with clocked
andunclockedmode, that can either create
voltages at discrete steps and completely
free values.

This circuit creates random numbers be-
tween two tunable levels minimum and maximum. In
clockedmode each clock creates and holds a new random
value. In unclocked mode the random values change at

the maximum possible speed (about 6000 times per sec-
ond).

Simple example for clocked random numbers between
0.0 and 1.0 (1.0 translates into 10 V at the output):

[random]
clock = I1
output = O1

Example for creating random output voltages between
1 V and 3 V:

[random]
clock = I1
output = O1
minimum = 1V
maximum = 3V

Input Type Default Description

clock (c) Optional triggger: if this input is used then the output holds the current random number until the next clock impulse
(sample & hold)

minimum (m) 0.0 Minimum possible random number

maximum (x) 1.0 Maximum possible random number

steps (s) 1 2 3 0 Number of different voltage levels. If this is set to 0 (default), any voltage can appear, there is no limit. If this is 1,
then there is no random any more since there is only one allowed step (which is the average between minimum and
maximum. At 2 the only two possible output values are minimum and maximum. At 3 the possible levels are minimum,
minimum+maximum

2 and maximum and so on...

Output Type Description

output (o) Output of the random number / voltage

DROIDmanual for blue-6 340 Table of contents at page 2

16.58 recorder – Record and playback CVs und gates

Record and playback themovement of one
CVs, eight gates and one integer numbers
in the range 0 to 255, with permanent stor-
age on the SD card.

Note: This circuit is still experimental. In a future firmware
version it might be changed or removed. Also the file for-
mat on the SD card for the saved recordingsmight change
andanewversionmightnotbeable to loadold recordings.

Basic usage

The typical interface to the recorder is to use the three
buttons “Record”, “Play” and “Stop”. The stop button is
optional if you are low in buttons. Here is a simple exam-
ple patch for recording a CV:

[p2b8]

[recorder]
cvin = I1
cvout = O1
recordbutton = B1.1
playbutton = B1.2
stopbutton = B1.3
recordled = L1.1
playled = L1.2
stopled = L1.3

Now feed some CV into I1. The circuit starts in idle /
stopped mode and L1.3 is lit. In that mode the input is
bypassed to theoutput, so that you can “hear” the effects
of the CV at I1.

When you press the record button (B1.1), the recording
starts and L1.1 becomes lit. The input is still bypassed to

the output but at the same timewritten to the tape. Stop
the recording either by pressing the stop button B1.3 or
record again.

Note: For your first experiments you might want to use
the value of a pot as input CV. Then you can record your
pot movements:

[recorder]
cvin = P1.1 # record pot P1.1

You can now play the recording by hitting B1.2. The LED
in that button is lit to indicate that the playback is going
on. During playback the signal at I1 is ignored and in-
stead the tape’s content is sent to O1. The playback stops
when the recording has played completely or when you
hit the stop button. Hitting the play button during play-
back does not stop it but immediately restarts it from the
beginning.

Sharing the three buttons with other circuits can be done
with the select input – just as usual.

Pausing

The pause input allows you to pause the tape. This input
is different from the three buttons as it does not expect
a trigger but a gate (a state). You can use a button (see
page 141) circuit for that:

[p2b8]

[button]
button = B1.4
led = L1.4

[recorder]
cvin = I1
cvout = O1
record = B1.1
play = B1.2
stop = B1.3
recordled = L1.1
playled = L1.2
stopled = L1.3
pause = L1.4

When you enable pause during playback, the playback
is hold and the output sticks at the current CV. Disable
pause to go on with the playback.

When you enable pause while recording, the tape stops
and the input CV is no longer recorded. But you can re-
sume the recording later by disabling pause.

Looping

The recorder has a simple loop function builtin. When
you set the inputloop to1, a playback immediately starts
again when it’s finished.

If looping is your main objective, please have a look at
cvlooper (see page 174). That circuit has some very use-
ful features for a real performance looper.

Playback speed

With the parameter playbackspeed you can alter the
speed of the playback. The default value is 1. A value of 2
doubles the speed speed. The fun part: you even can use

DROIDmanual for blue-6 341 Table of contents at page 2

a negative speed for running the tape backwards. In that
case a press to the play button starts the playback at the
tape end.

The following example maps the speed to a pot that’s
scaled toa range from-5 to5 (five times speedbackwards
to five times speed forwards). The center position sets
the speed to 0 and stops the tape.

[recorder]
playbackspeed = P1.1 * 10 - 5
...

Scrubbing

Scrubbing is a special playback mode that’s enabled by
scrub = 1. During scrubbing no linear playback is done.
Instead, you select a position on the tape with the input
CV scrubposition. Example:

[button]
button = B1.5
led = L1.5

[recorder]
scrub = L1.5
scrubposition = P1.1
...

While the button B1.5 is enabled, the recorder outputs
the CV that’s at the position that P1.1 selects. The left
position of the pot (or the value 0) selects the start of the
recording, the right position (1) the end.

While scrub is 1, the current state (play, record, stop) of
the recorder is ignored. It is in scrub mode. The playled
output is 1, the other LED outputs are 0.

Trimming the start and end

The two inputs trimstart and trimend range from 0 to
1 and limit of the portion of the recording that is used for
playback or scrubbing. For example trimstart = 0.1
and trimend = 0.8 disables the first 10% and the last
20% of the recording.

If you map the trimming positions to two pots you can
manually select a portion. Just make sure that you start
with the timstart pot fully left and trimright fully
right:

[recorder]
trimstart = P1.1
trimend = P1.2
...

This limitation is not permanent. The recording itself is
not modified by using trimming.

Recording gates and numbers

Along the CV, the recorder also records the state of up to
eight input gates. You could record the output of amulti-
track drum sequencer or even a manually tapped button
pattern with that:

[recorder]
gatein1 = I1
gatein2 = I2
gatein3 = I3
gatein4 = I4
gateout1 = O1
gateout2 = O2
gateout3 = O3
gateout4 = O4
...

Unlike cvin and cvout the gate tracks on the tape just
distinguish between 0 and 1.

In addition you can record one discrete integer number
from 0 to 255:

[recorder]
numberin = I1
numberout = O1
...

Unlike with the CV, no linear interpolation is done for
these integer numbers. Every time the input number
changes a new sample is created.

Applications for recording a number could be chord pro-
gressions or melodies that are represented by note num-
bers rather than pitch CVs.

Technical background and limitations

The two circuits recorder (see page 341) and delay (see
page 179) are based on the same implementation of a vir-
tual tape. This virtual tape has three tracks with three
recording and playback heads:

1. One head for recording a continous CV in the range
−1 …+1 (which is−10 V …10 V)

2. One head for recording eight gate tracks in parallel
(CVs where just 0 and 1 is recorded)

3. One head for recording a discrete integer number
in the range 0 …255

All these are recorded in parallel, so for example it’s easy
to record a CV/gate signal with just one cvrecorder. The
discrete number is useful for recording the outputs of
buttongroup (see page 146) circuits or the switches on
the S10 similar things.

DROIDmanual for blue-6 342 Table of contents at page 2

Note: The dynamich range of CV signal on the tape is just
-1 …+1 (or−10 V …+10V). Any “too hot” signal is clipped
to that range. The internal resolution of the CV is 16 bit
(precisly: one Volt is divided in 3200 steps). If you need a
larger range, you need to divide the input signal andmul-
tiply the output signal by some factor, but loose a bit pre-
cision that way.

The track with the eight gates records just 0 and 1. Any
other value will be squeezed into that format: values be-
low 0.1 (1 V) are considered 0, all other values 1.

In order to use the RAMof the as efficient as pos-
sible (and allow for many multiple instances of these cir-
cuits), the tape uses just 256 samples. Each time the
state of one of the gates or the value of the number
changes, a new sample is created. A change in the input
CV is handled more intelligently as the CV values of the
samples or interpolated linearily. Themaximum error be-
tween the interpolated value and the actual stored CV is
limited to 0.0001 (which is 1 mV).

If the input CV is more chaotic, however, the number of
samples per time is limited to an average of one sam-
ple every 20 ms, while short periods with up to 10 sam-
ples without this limitations are allowed. This ensures
that theminimum recordable tape length is 256× 20ms,
which is 5.12 seconds. Usually CVs are not so chaotic but
either stepped ormoving smoothly, so the recordings can
be much longer.

If you have the special case of a stepped input CV – such
as the output from a sequencer or from a CV/gate key-
board – you can switch to an alternativemode. Patch the
gate output of the sequencer or keyboard into thesample
input of the circuit. This enables the “triggered mode”.
Here a new sample is just and only created at each posi-
tive gate edge of the sample input. So the recordings can
be as long as 256 notes.

Note: That way you would loose the gate length, since
the end of the gate does not trigger a new sample. Use
the gatetool (see page 235) with the inputgate and
outputedge to get one trigger at each edge and feed that
into sample.

Saving the tape to disk

The recorder does not support presets because ofmem-
ory limitations. But you can save the current contents of
the tape to your SD card. This is done by the two trigger
inputs save and load, which are usuallymapped to some
buttons. Here is a simple example.

[recorder]
save = B1.5
load = B1.6
...

If you hit button B1.5, the file tape0001.bin is created
on your SD card. Button B1.6 loads that file into the cir-
cuit.

You can use any file number from 1 to 9999 by using the
parameter filenumber. Youmight want tomap that to a
rotary switch of an S10:

[recorder]
save = B1.5
load = B1.6
filenumber = S2.1
...

Note: Loading and saving is done in real time from/to
your SD card. The files are very small, but the operation
can takea small numberofmilliseconds. During that time

no circuit will do its job. And if your SD card is missing,
things lag a bit more due to timeouts.

One important difference to presets is that these files
can be share among circuits and even among different
patches. A recording of the recorer circuit can be loaded
with every recorder or delay circuit.

DROIDmanual for blue-6 343 Table of contents at page 2

Input Type Default Description

playbutton (pb) A trigger here starts or restarts the playback.

recordbutton (rb) A trigger here starts or stops the recording.

stopbutton (sb) A trigger here stops and ongoing playback or recording.

loop (lo) off Set this to 1 to enable loop mode. In loop mode the playback is restarted immediately when it’s finished.

pause (p) off While this is 1, playback or recording is halted (the tape stops moving for the while).

mode (m) 1 2 3 Using this input is an alternative to using the three button inputs. If you patch mode, the three buttons (and LED
outputs) are ignored. Instead you set the mode with this input:

0 Idle / stopped

1 Playback

2 Recording

Since you set themode from “outside”, the recorder cannot switch it by itself. So if themode is set to 1 (playback) and
the playback is finished, it stays in playback mode and continues outputting the last sample.

playbackspeed (ps) 1.0 Sets the speed of the tape during playback. 1 is normal speed, 0.5 half speed, 2 double speed, and so on. Negative
speeds are allowed an move the tape backwards. The speed 0 stops the tape.

scrub (sc) off If 1 enables scrubbing. Now the outputs reflect the tape position that is set with scrubposition.

scrubposition (sp) 0 1 0.0 Position of the tape to play when scrubbing is enabled.

trimstart (ts) 0 1 0.0 Omits a fraction of the recording at the beginning during playback and scrubbing. 0.1 omits the first 10%.

trimend (te) 0 1 1.0 Omits a fraction of the recording at the end during playback and scrubbing. 0.8 omits the last 20% (not 80%!).

cvin (ci) 0.0 Continous input CV

numberin (ni) 1 2 3 Discrete input number in the range 0 ... 255

gatein1 ... gatein8 (gi) Input gates

clock (c) If you use this clock input, all time inputs are measured in clock ticks instead of seconds.

sample (sm) If you patch this input, “triggered”mode is enabled. In thismode, the virtual tape just records a newCVon each trigger
at sample. So it just records stepped CVs, no slopes and no CV changes between the triggers.

DROIDmanual for blue-6 344 Table of contents at page 2

Input Type Default Description

timewindow (tw) 0.0 When in triggeredmode, this optional parameterhelps tacklingaproblemthatmanyhardware sequencers show: often
their pitchCV is not at its final destination value at the time their gate is beingoutput. Often you see a very short “slew”
ramp of say 5 ms after the gate. During that time the pitch CVmoves from its former to the new value.

Now if you trigger thecvtape circuitwith the sequencer’s gate youwill essentially sample thepreviouspitchCV instead
of the new one. Or maybe something in between.

The timewindow parameter configures a short time window after the trigger to trigger. During that time period the
tape will constantly adapt the last sample to a changed input CV. When that time is over, the input is finally frozen on
the tape.

The timewindow parameter is in seconds. So when you set timewindow to say 0.005 (whichmeans 5ms), you give the
input CV 5ms time for settling to its final value after a trigger to sample before freezing it.

bypass (b) off Setting bypass to on copies the input signals directly to the outputs, regardless of any other stuff going on.

save (sv) Send a trigger here to save the current contents of the tape to a file on the SD card. The filename is tapeXXXX.bin,
where XXXX is replaced by the number set by filenumber.

load (ld) Send a trigger here to load a previously saved file into the tape. Use filenumber so specify which file to load.

filenumber (f) 1 2 3 1 Number of the file to load or save. The range is 0 - 9999. If filenumber is 123, the name on the SD card is
tape0123.bin. These files are shared between all recorder and delay circuits.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

Output Type Description

recordled (rl) Is 1 during recordings.

playled (pl) Is 1 during playback or scrubbing.

stopled (sl) Is 1when no playback, recording or scrubbing is going on.

DROIDmanual for blue-6 345 Table of contents at page 2

Output Type Description

cvout (co) Output of the continous input CV

numberout (no) 1 2 3 Output of the discrete number

gateout1 ... gateout8
(go)

Output of the gates

overflow (ov) When the internal memory of the tape is exceeded and data got lost, this gate goes to 1 for 0.5 seconds. If you are
suspecting this situation, you can wire this output to an LED and observe the memory status that way.

DROIDmanual for blue-6 346 Table of contents at page 2

16.59 sample – Sample &Hold Circuit

This is a simple sample & hold circuit. Each
time a positive trigger is seen at the jack
sample a new value is sampled from input
and sent to the output.

Example:

[sample]
input = I1

sample = I2
output = O1

Input Type Default Description

input (i) 0.0 Input signal to be sampled

sample (sm) A positive trigger here will read the current value from input and store it internally.

gate (g) This is an alternative way of making the circuit take a sample from the input. Here it is sampling all the time while the
gate is high. In that way it is a bit like bypass. But as soon as the gate goes low again, the output sticks to the last
sample value just before that.

timewindow (tw) 0.0 This optional parameter helps tackling a problem thatmany (non-analog) sequencers show: often their pitch CV is not
at its final destination value at the time their gate is being output. Often you see a very short “slew” ramp of say 5 ms
after the gate. During that time the pitch CVmoves from its former to the new value.

Now if you trigger thesample circuitwith the sequencer’s gate youwill essentially sample thepreviouspitchCV instead
of the new one. Or maybe something in between.

Now the timewindow parameter introduces a short time window after the sample trigger. During that time period the
sample & hold circuit will constantly adapt to a changed input CV (is essentially in bypass mode). When that time is
over, the input is finally frozen.

The timewindow parameter is in seconds. So when you set timewindow to say 0.005 (whichmeans 5ms), you give the
input CV 5ms time for settling to its final value after a trigger to sample before freezing it.

bypass (b) While this gate input is high, the circuit is bypassed and input is copied to output.

Output Type Description

output (o) The most recently sampled value is sent here.

DROIDmanual for blue-6 347 Table of contents at page 2

16.60 select – Copy a signal if selected

Copies a value just when the circuit is se-
lected via select.

This solves the problem of having an LED
displaying something, but just when a cer-
tain “menu page” or similar is active. Sim-
ply setting the LED with copy (see page 172) or some
other circuit’s output will always set it. Checking some

select state and sending 0 does not help, since it will
override any other circuit’s values for the LED even when
those are selected.

Here is an example of letting the LED L1.1 flash when
_SELECTED is high, and otherwise don’t copy anything to
the LED:

[lfo]
output = _FLASH

[select]
select = _SELECT
input = _FLASH
output = L1.1

Input Type Default Description

input (i) 0.0 Connect the signal you want to copy.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

Output Type Description

output (o) The input will be copied here, but just when the circuit is selected via select.

DROIDmanual for blue-6 348 Table of contents at page 2

16.61 sequencer – Simple eight step sequencer

This circuit implements a sequencer that is
a bit similar to the widely knownMetropo-
lis sequencer by Intellijel. It lacks a couple
of its features – but most of these can be
patched externally by use of other circuits.
On the other hand it is not limited to 8 stages since you
can chain multiple instance of this sequencer together to
form one large sequencer very easily.

Since everything in the is controllable via CV, of
course pitch and gate signals are included, which makes
the circuitmuchmore versatile than itmay seemat a first
look.

Here is a small example of a CV sequencer that is playing
four voltages in a turn (it needs a clock into I1):

[sequencer]
clock = I1
pitchoutput = O1
pitch1 = 1V
pitch2 = 3.5V
pitch3 = 8V
pitch4 = -2V

If you set the outputscale parameter to 1
12 V (which is

the same as the number 1
120 , you can specify pitches di-

rectly in semitones:

[sequencer]
clock = I1
pitchoutput = O1
outputscale = 1/120
pitch1 = 0
pitch2 = 12
pitch3 = 10
pitch4 = 7

pitch5 = 5
pitch6 = 3
pitch7 = 5
pitch8 = 7

The following example uses four expander buttons for
turning the steps on or off and four pots, which are scaled
down to a range of 0V ... 3V.

[p2b8]
[p2b8]

[lfo]
hz = 4
square = _CLOCK

[button]
button = B1.1
led = L1.1

[button]
button = B1.2
led = L1.2

[button]
button = B1.3
led = L1.3

[button]
button = B1.4
led = L1.4

[sequencer]
clock = _CLOCK
pitchoutput = O1
gateoutput = O2
pitch1 = P1.1 * 3V
pitch2 = P1.2 * 3V

pitch3 = P2.1 * 3V
pitch4 = P2.2 * 3V
gate1 = L1.1
gate2 = L1.2
gate3 = L1.3
gate4 = L1.4

Note: the pitch values you dial in with the pots are not
quantized, so it’s a bit hard to hit a musical pitch. Please
have a look at the circuits quantizer (page 337) and
minifonion (page 279) for how to quantize pitch values.

Making longer sequences

The sequencer circuit is limited to 8 steps. But: you can
easily chain a large number of these circuits together to
form longer sequences. This is super easy. Just set the
jack chaintonext to 1 and place another sequencer cir-
cuit with more steps after that. Here is an example for a
12 step sequencer:

[p2b8]

[lfo]
hz = P1.1 * 30
output = _CLOCK

[sequencer]
clock = _CLOCK
reset = B1.1
pitchoutput = O1
gateoutput = O2
outputscaling = 1/120
pitch1 = 1
pitch2 = 8
pitch3 = 13

DROIDmanual for blue-6 349 Table of contents at page 2

pitch4 = 25
pitch5 = 4
pitch6 = 11
pitch7 = 7
pitch8 = 21
chaintonext = 1 # continue at next sequencer

[sequencer]
pitch1 = 2
pitch2 = 9
pitch3 = 14
pitch4 = 26

Youcanmake the chain longerbyaddingmoresequencer
circuits. All but the last must have chaintonext set to 1.
Here comes a 19 step sequencer:

[p2b8]

[lfo]
hz = P1.1 * 30
output = _CLOCK

[sequencer]
clock = _CLOCK
reset = B1.1
pitchoutput = O1
gateoutput = O2
outputscaling = 1/120
pitch1 = 1
pitch2 = 8
pitch3 = 13
pitch4 = 25
pitch5 = 4
pitch6 = 11
pitch7 = 7
pitch8 = 21
chaintonext = 1 # continue at next sequencer

[sequencer]
pitch1 = 2

pitch2 = 9
pitch3 = 14
pitch4 = 26
pitch5 = 2
pitch6 = 9
pitch7 = 14
pitch8 = 26
chaintonext = 1 # continue at next sequencer

[sequencer]
pitch1 = 3
pitch2 = 10
pitch3 = 15

Notes:

• Define all the input and output jacks like clock,
pitchoutput etc. just for the first sequencer. All
subsequent ones just have pitch, gate, repeat,
slew and cv definitions.

• The parameter chaintonext is dynamic. You could
make or break the chain with a toggle button or
something else if you like.

DROIDmanual for blue-6 350 Table of contents at page 2

Input Type Default Description

clock (c) Each trigger into this jack advances the sequence by one step.

reset (r) A trigger here resets the sequence to the first step

stages (sg) 1 2 3 + Number of inputs of pitch.., gate.., slew.., cv and repeats that should be used. If you set stages to a number
higher than the number of used inputs, all inputs will be used. If you omit this parameter, all used inputs will be used.

steps (s) 1 2 3 0 With this input you can force the sequencer to begin from start after a certain number of clock cycles. If you omit the
parameter or if it is set to 0, the sequencer will play all stages with all repeats until it resets to the beginning.

transpose (tr) 0.0 This voltage is added to the pitch output.

outputscaling (os) 1.0 The output pitch is multiplied by this parameter.

gatelength (gl) 0 1 + The length of the output gates. If it is unpatched, the original input clock is fed through 1:1 (with its own duty cycle).
When used, it is a ratio from 0.0 to 1.0 and relative to the cycle of the input clock. Setting the gatelength to 1.0
merges two adjacent gates together since there is not time left for a low gate before the next step begins.

pitch1 ... pitch8 (p) 0.0 These are the pitches of the various steps. You can put fixed numbers here but also of course pots or variable inputs.
Note: The number of used input jacks defines the length of the sequence, unless you override that with stages.

cv1 ... cv8 () 0.0 Each step has an optional CV assigned. You can use that CV for modulating something or even outputting a second
pitch information.

gate1 ... gate8 (g) 1 The gate inputs should be 0 (off) or 1 (on). For stages with a 0-gate no output gate is produced and the pitch informa-
tion is kept at the previous state. Unpatched gates are considered to be on!

slew1 ... slew8 (sw) 0.0 Enables slew limiting for that stage. The input is not binary but you can set the amount of slew here – individually for
each step. 0.0 switches the slew off, higher values create slower slews.

repeat1 ... repeat8 (rp) 1.0 Set this to a positive integer number like 1, 2, and so on. It sets the number of times this stage should be repeated until
the next stage will be approached. It is currently not allowed to have 0 repeats – although this would make sense in a
future version.

chaintonext (cn) + If you set this input to 1, the next sequencer circuit’s pitch and other step inputs will be added to this sequencer. See
the general circuit notes for details.

Output Type Description

pitchoutput (po) The pitch output. It is unquantized.

cvoutput (co) The optional CV output, in case you use the cv1 ... cv8 inputs.

DROIDmanual for blue-6 351 Table of contents at page 2

Output Type Description

gateoutput (go) The gate output.

DROIDmanual for blue-6 352 Table of contents at page 2

16.62 sinfonionlink – Sync harmonic state from Sinfonion

This circuit allows you to sync the cur-
rent harmonic state of a Sinfonion to your
MASTER18. This allows you to keep your

in sync with the current settings of
root, degree, mode, transpose, chaotic de-
tuneandharmonic shift of theSinfonion. It alsogives you
access to the Sinfonion’s clock as well as triggers for the
start of a sequence, bar or beat.

The ACL Sinfonion has a feature called Harmonic Sync.
It is used to connect two or more Sinfonions and share
the current harmonic state, so that all Sinfonions and all
voices of your modular play in relation to the same root
noteand scale all the time. This sync is usingaplainmono
patch cable andyoucanevenusea long cable to syncwith
your band mate.

The input I1 of the MASTER18 is able to receive and in-
tereprete this information and present it as outputs of
this circuit. This is how to set it up:

1. On your Sinfonion, setOut 1 to SyncMaster.
2. Use a normal patch cable to connect the Sinfo-

nion’sOUT 1 jack to the I1 jack of the MASTER18.
3. Add a sinfonionlink circuit to your patch.
4. Use the outputs of this circuit to provide your other

circuitswith the informationabout the current har-
monic situation such as the root note and the scale.

This is a basic example for using a Droid to add one more
quantizer to a Sinfonion:

[sinfonionlink]
root = _ROOT
degree = _DEGREE

[minifonion]
input = I1

output = O2
root = _ROOT
degree = _DEGREE

Notes:

• TheMASTER18 can only receive the sync, not send
it (be a sync master). But it can remote control the
Sinfonion via various CVs, which needs more ca-
bles and CV outputs but covers the same function-
ality.

• Harmonic Sync allows for a 1:n communication.
You can use a passive mult to distribute the signal
to asmanyMASTER18 s andSinfonions as you like.

• The MASTER does not have this circuit.

DROIDmanual for blue-6 353 Table of contents at page 2

Output Type Description

root (ro) 1 2 3 The current root note as an integer number. C = 0, C♯ = 1, D = 2 and so on.

degree (dg) 1 2 3 The current scale (the Sinfonion uses the word degree for this). This is an integer number. If find a list of all available
scales on page 107.

transpose (tr) � 1V
Oct The current global transposition of the Sinfonion. This is in 1V/Oct, so you can add it to your pitch whereever you

output one.

chaoticdetune (ch) The current value of the chaotic detune. You can feed this into the detune input of the circuit detune (see page 182).

harmonicshift (has) 1 2 3 Harmonic shift is a feature of the Sinfonion that allows to reduce harmonic complexity via CV (or the builtin pots POT1
or POT2). The idea is that the more you rise the CV, the less complex scale notes are allowed.

This output gives you access to the current setting of harmonic shift of the Sinfonion. It is an integer number between
-7 and 7. You can directly feed it into the harmonicshift input of circuits like minifonion (see page 279), chord (see
page 154), arpeggio (see page 127) or motoquencer (see page 286). Harmonic shift is explained in detail in themanual
chapter of minifonion.

linkstate (ls) Outputs 1 if the link to the Sinfonion is up and active, otherwise 0.

clock (c) Gives you a copy of the Sinfonion’s clock input

reset (r) Outputs a trigger whenever in Song mode the Sinfonion forwards to the first bar of the song.

step (s) Outputs a trigger for every step of a song.

beat (b) Outputs a trigger for every beat (subdivision of a step).

DROIDmanual for blue-6 354 Table of contents at page 2

16.63 slew – Slew limiter

This is a CV controllable slew limiter for
CVs. Special about it is that it implements
three alternative algorithms. The tradi-
tional exponential algorithm (as is com-
monly implemented in analog circuits), a
linear algorithm and a special S-shaped curve.

Here is a simple example for a slew limiting on I1−→ O1
which is controlled with the pot P1.1:

[slew]
input = I1
slew = P1.1
exponential = O1

Exponential shape

This is the “classical” slew limit shape, which originates
from the (negative) exponential loading current of a ca-
pacitor. It is also the shape of a low pass filter that is
used for slew limiting. The slope is proportional to the
distance between the current and the target voltage. Or
in other words the voltage changes fast at the beginning
and slower at the end:

0

2

4

6

time

V
ol
ts

Exponential original pitch

Linear shape

The linear algorithm simply limits the voltage change per
time to a certain change rate, e.g. to 10 V per second.
If the input voltage changes faster (for example suddenly
jumpsup), theoutput voltage follows thatwith thatmax-
imum rate. At a pot position of 0.5 themaximum slew is
120 V per second.

0

2

4

6

time

V
ol
ts

Linear original pitch

S-Curve shape

The S-curve – when applied to pitches – sounds different
than an exponential curve since it more reflects the way
e.g. a trombone player accelerates and deaccelerates his
arm in order to move to another pitch. In our algorithm
we assume that in the first half of the time the arm accel-
erates at a constant rate (which is controlled by the slew
parameter) and at the second half of the time it deaccel-
erates (again at that rate, just negative), until it exactly
reaches the target pitch.

There is one audible difference to a real trombone player,
however. The real musician would start to move his arm
before the new note begins, in order to be at the target
position right in time. But here themovement is initiated
by the pitch change it self so it is delayed by the slew lim-
iting.

0

2

4

6

time

V
ol
ts

S-curve original pitch

DROIDmanual for blue-6 355 Table of contents at page 2

Input Type Default Description

input (i) Wire the CV that you wish to slew limit here.

slew (sw) 1.0 This controls the slew rate. A value of 0.0 disables slew limiting. The output immediately follows the input without
any delay. A value of for example 2.0 in linear mode means that 2.0 seconds are needed for a change of 1 V (which is
a value of 0.1 or one octave if used as pitch). In the other twomodes the slew time is tuned to sound similar. Negative
values of this parameter are treated as 0.0.

slewup (u) 1.0 This allows a special handling when the voltage moves upwards. The slew limiting for upwards is slew multiplied
with slewup. Since slew defaults to 1.0 you can just use slewup and slewdown if you want to control both directions
separately.

slewdown (d) 1.0 Sets the slew rate for downwards movement.

gate (g) + If this jack is patched, the slew limiting is only active while this gate is high. Otherwise it’s like setting the slew param-
eter to zero.

Output Type Description

exponential (e) Output for the resulting CV with the exponential (classical) slew algorithm applied

linear (l) Output for linear slew limiting

scurve (c) Output with the slew limitation according to the S-curve algorithm.

DROIDmanual for blue-6 356 Table of contents at page 2

16.64 spring – Physical spring simulation

A physical simulation of a mass hanging
fromonan ideal springwhich can create in-
teresting “bouncing” CV sources.

Consider the following drawing:

0.00

0.25

0.50

0.75

1.00 mass

gravity

springforce

Without any further parameters the mass starts at po-
sition 0.00 and velocity 0.00 and is accelerating down-
wards until the force of the spring equals the gravity. At
this point it decelerates until the velocity is zero. Now
themass is being accelerated upwards until it reaches the
top position at 0.00 again. This results, in essence, to a
damped sine wave.

The position and velocity are available at their respec-
tive outputs ready to be used for modulation.

[spring]
position = O1
velocity = O2

Now, this could be done more easily with the LFO circuit
(see page 239). But it’s getting interestingwhen you look
at the other parameters and themodulation possibilities.
Please look at the table of jacks for details.

Friction

Perdefault themotion iswithoutany frictionand thus the
mass will move up and down forever. You can apply two
different types of friction. flowresistance is the type
of friction a body has in a liquid or gas. Its force is rela-
tive to its velocity. Whereas the normal friction force
is constant.

When you use any type of friction, the spring will finally
stop swinging. You need to either shove it from time to
time or reset it to its start with the reset trigger input.

The following example will create a slowly decaying sine
wave, which is restarted whenever a trigger is sent to
reset:

[spring]
flowresistance = 0.5
reset = I1
position = O1
velocity = O2

Shoving

You also can shove the mass downwards or upwards. As
long as you send a gate signal into shove the mass will
be shoved downwards. The exact force can be set with
shoveforce and defaults to being the same as the grav-
ity. A negative value will lift the mass upwards.

Setting shove to a constant 1 value will steadily apply
shoveforce, which can be interesting as that is itself a
changing CV (some LFO, feedback loop or whatever).

The physical model

Pleasenote that thephysicalmodel is normalized inaway
such that every parameter is 1. For example the mass is
1kg and the gravity is 1 N

kg . The force of the spring is 1
N
m .

In order to avoid anomalies or infinities, the velocity of
the mass is limited to ±10m

s and the position is limited
to the range of±10m.

DROIDmanual for blue-6 357 Table of contents at page 2

Input Type Default Description

mass (m) 1.0 The mass of the object on the spring. The heavier it is, the farther the spring will move up and down.

gravity (g) 1.0 The gravity of the simulated planet the spring is mounted at. If you set the gravity to zero, themass will move exactly
around the zero position from positive to negative and back. But you need to shove it or set a start position other than
0, in order to get it started.

springforce (f) 1.0 The force of the string per m it is stretched. In an ideal spring the force is proportional to the current elongation.

flowresistance (fr) 0.0 Setting this to a value> 0will dampen the oscillation in a way, that higher velocities will be dampedmore then slower
ones. This means that impact of the friction will get less and less as time goes by and the movement slows down.

friction (fi) 0.0 Setting this to a value > 0 will also dampen the oscillation, but in a way that is independent of the current speed of
the mass.

speed (sp) 0.0 This parameter speeds up or slows down the perceived time. It works on a 1V/Oct base. Every positive 1V (or 0.1)
doubles the speed. So if you set speed to 2V or 0.2 it will speed up themovement by a factor of 4. An input of -1Vwill
slow down the movement to the half.

shove (sh) 0 While this gate input is logical 1, an extra force of 1 N is applied to themass pointing downwards. You can change that
force with shoveforce.

shoveforce (sf) 1.0 This is the force being applied to the mass while shove is active

reset (r) Resets the whole system to its start position.

startvelocity (sv) 0.0 Sets the velocity the mass has which starts of a reset is triggered

startposition (spo) 0.0 Sets the position the spring has which starts of a reset is triggered

Output Type Description

velocity (v) Outputs the current velocity of the mass

position (p) Output the current length of the string. If the string goes upwards (which is possible with certain modulations), this
can be negative.

DROIDmanual for blue-6 358 Table of contents at page 2

16.65 superjust – Perfect intonation of up to eight voices

This circuit automatically creates a per-
fect pure intonation for up to eight input
pitches.

Introduction

Thismeans that all pitches are in just inter-
vals,whichcorrespond tosmallwholenumber ratios such
as 3

2 or
5
4 . Assuming that you have perfectly tuned and

calibrated VCOs, If these pitches are used to play a chord,
there will be no or just minimal audible beatings and the
chord will sound very pure.

In normal equal temperament intonation all intervals are
amultiple of 12

√
2 and thus there is no pure interval at all,

with the exception of the octave. So all chords will sound
impure.

The problem about pure or just intonation is, that you
need to decide for just one scale, e.g. C major, and then
tune all 12 notes in a way that chords from that scale
sound good. But as soon as you change the scale, the in-
tervals will sound ugly.

Whatmakes the superjustunique is that fact, that it au-
tomatically creates a pure intonation in a dynamicway. It
constantly “listens” to the notes that are currently being
played and creates a perfect intonation just for those, not
for a scale or so. As soon as at least one note changes, all
notes are retuned in order to find a new perfect tuning.
This is a bit like a well-trained string ensemble or choir,
where each musician listens and adjusts his or her pitch
in relation to all others.

Usage

The nice thing is: you don’t need any configuration. You
need not specify any information about the root note,
the scale or anything else. Neither need the inputs be
quantized so some scale or tuned to 440 Hz. The circuit
will simply analyse all input pitches, apply its algorithm
(patent pending) and then just slightly raises or lowers
each note so that at the end each pair of frequencies have
a rational oscillation ratio with small numerator and de-
nominator. This is done in a way that the average pitch
does not change. Just pipe your pitches through that cir-
cuit and you are done. And if youwant to use a quantizer,
use superjust after quantization.

Here an example for three voices:

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3

Tuning

Of course, an exact tuning of your VCOs is crucial, since
the pitch differences between a normal tempered into-
nation and a perfect intonation are quite small. The cir-
cuit helps you in the process of tuning with the inputs
tuningmode, which you can map to a toggle button:

[button]
button = B1.1

led = L1.1

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3
tuningmode = L1.1

Nowwhen the button B1.1 is active, all outputs will out-
put zero volts. Tuning with 0 V is not optimal in some
cases. You should tune your VCOs always roughly in the
average pitch you play them. So you can set the tuning
voltage with the parameter tuningpitch. Here it is set
to 2 V (2 octaves higher then 0 V):

[button]
button = B1.1
led = L1.1

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3
tuningmode = L1.1
tuningpitch = 2V

Sometimes it is desirable to change the tuning pitch to
other octaves on the fly. This example uses pot P1.1 for
going through several octaves, and uses a quantizer for
creating steps of 1 V each:

DROIDmanual for blue-6 359 Table of contents at page 2

[button]
button = B1.1
led = L1.1

[quantizer]
input = P1.1
steps = 1 # 1 step per octave
output = _TUNINGPITCH

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3
tuningmode = L1.1
tuningpitch = _TUNINGPITCH

Perfect VCO calibration

If you reallywant to eliminate all beatings in your chords
while using analog VCOs, you probably need something
to correct tracking deviations. Here I strongly recom-
mend using the circuit calibrator (see page 150). Here
is an example with three voices, where buttons of a P2B8
are used for fine tuning the VCO tracking in each octave:

[superjust]
input1 = I1
input2 = I2
input3 = I3
output1 = _O1
output2 = _O2
output3 = _O3

[calibrator]

input = _O1
output = O1
nudgeup = B1.1
nudgedown = B1.3

[calibrator]
input = _O2
output = O2
nudgeup = B1.2
nudgedown = B1.4

[calibrator]
input = _O3
output = O3
nudgeup = B1.5
nudgedown = B1.7

The number of pitch inputs and pitch outputs you patch
should be identical.

Input Type Default Description

input1 ... input8 (i) � 1V
Oct + 1st ... 8th pitch input

tuningmode (tm) 0 While this is 1, all outputs output the value set by tuningpitch. This is for tuning all outputs. Since perfect tuning is
crucial for perfect intonation, this is quite useful.

tuningpitch (tp) � 1V
Oct 0V This pitch CV will be output while the tuning mode is active.

bypass (b) 0 While this is 1, all inputs are passed through to the outputs without changes.

transpose (tr) � 1V
Oct 0V This value is being added to all outputs, but not in tuning or bypass mode. It can e.g. be used for making a vibrato on

a chord.

Output Type Description

output1 ... output8 (o) � 1V
Oct 1st ... 8th pitch output

DROIDmanual for blue-6 360 Table of contents at page 2

16.66 switch – Adressable/clockable switch

This circuit supports a set of various
switching operations. It can switch sev-
eral inputs to one output either by means
of addressing the input via CV or by step-
ping forwardandbackward. You cando the
same vice versa: connecting one input to one of several
outputs while setting the inactive outputs to 0 V.

You can even use several inputs and outputs at the same
time and thus create an n×m switch with the option of
rotating the outputs against the inputs by means of ad-
dressing or stepping.

At minimum you need to patch two inputs and one out-
put (or vice versa), plus a switch like forward, backward
or offset.

The first example switches four inputs I1 ... I4 to one
output O1 be means of a trigger at forward. At the be-
ginning I1 is wired to O1. Each time a trigger is seen at
forward the switch switches to the next input and at the
end starts over at I1 again. So it cycles through I1→ I2
→ I3→ I4→ I1:

[switch]
input1 = I1
input2 = I2
input3 = I3
input4 = I4
output = O1
forward = I8

Please note, that output and output1 are synonyms
here. You can use either way you like. Just the same is
input just a shorthand for input1.

Now Let’s do the opposite thing: distribute one input to
four different outputs:

[switch]
input = I1
output1 = O1
output2 = O2
output3 = O3
output4 = O4
forward = I8

Now, if you try this out, you might notice that a trigger
to forward moves the selected output backwards! This
is no bug but very logical. The reason will get more clear
if we build a switchwith several inputs andoutputs. Let’s
make a 3×3 switch:

[switch]
input1 = I1
input2 = I2
input3 = I3
output1 = O1
output2 = O2
output3 = O3
forward = I8

Now a trigger to forwardmoves each output forward to
the next input. That is the same as saying each input
moves backward to the previous output. Of course you
can change the direction by using backward instead of
forward.

Instead of moving the switch with a trigger you also can
address it by using aCVat the inputoffset. In this exam-
ple we use a steady CV being either 0 (for selecting O1) or
1 (10 V) for selecting O2:

[switch]
input = I1
output1 = O1

output2 = O2
offset = I7

Using two inputs and two outputs creates a switch that
can swap these two. Here with offset 0 input1 is con-
nected to output1 and input2 to output2. If offset is
1, input1 will be connected to output2 and input2 to
output1.

[switch]
input1 = I1
input2 = I2
output1 = O1
output2 = O2
offset = I7

Now let’s make another example for a CV addressable
switch. The CV is read from I7. At a voltage of 0 V
output1 is connected to input1, at 1 V to input2, at 2 V
to input3, at 3 V to input4, at 4 V to input1 again, at 5 V
to input2 and so on:

[switch]
input1 = I1
input2 = I2
input3 = I3
input4 = I4
output1 = O1
offset = I7 * 10 # 1 V per switch step

Generally speaking, if you connect less inputs than out-
puts, the unconnected inputs are regarded as getting a
0V input. If you connect less outputs then inputs, the un-
connected outputs send their values into the black horri-
ble void.

DROIDmanual for blue-6 361 Table of contents at page 2

Input Type Default Description

input1 ... input16 (i) 0.0 1st ... 16th input. Use these inputs in order and don’t leave gaps.

forward (f) If a trigger or gate is received here, the switch adds one to the current internal switch offset. So every output moves
to the next input and every input moves to the previous output.

backward (b) Similar then forward, but switches backwards

reset (r) Resets the switch to its initial position. Assuming offset is at 0, input1 is connected to output1, input2 to output2
etc.

If reset and a trigger at forward / backward happen at the same time (within 5 ms), the reset will win and the switch
is being reset to offset 0. This avoids problems with unprecise timing of external sequencers.

offset (of) 1 2 3 0 This allows CV addressable switching. The number read here is being used a shifting offset and is always added to
the internal offset. For example if you send 5 here, it is like you have triggered forward five times after the last reset.
Please note, then 5would mean 50 Volts, not 5 Volts. So if you patch an external CV like I1 here, you probably want
to multiply with some useful number.

Output Type Description

output1 ... output16 (o) 1st ... 16th output. Use these outputs in order and don’t leave gaps.

DROIDmanual for blue-6 362 Table of contents at page 2

16.67 switchedpot – Overlay pot withmultiple functions (OBSOLETE)

This circuit has been superseded by the
newcircuit pot (see page329). pot cando
all switchedpot can do and much more.
switchedpotwill be removed soon.

This circuit allows you to use one of your
potentiometers on your controllers for up to eight differ-
ent functions. It is like creating up to eight virtual pots.
With the inputs switch1 … switch8 you select, which of
these virtual pots are currently active. When you turn the
(physical) pot, all active virtual pots are being changed.

Thevaluesof all virtual pots start at center position (0.5).

The current values of all virtual pots are saved in the
’s internal flash memory, so next time you power

on you have all settings of the virtual pots reserved.

Here is an example, where one pot is used to control both
decay and release of an envelope.

[switchedpot]
pot = P1.1
switch1 = B1.1
switch2 = B1.2
output1 = _DECAY
output2 = _RELEASE

[contour]
gate = I1
decay = _DECAY
release = _RELEASE
output = O1

Now –while you press and hold button B1.1 and turn the
knob, the decay parameterwill change. Holding B1.2will
change release. Holding both at the same time is also

possible and will change decay and release at the same
time.

Hints:

• If you do not like to hold the buttons then you
might want to use the button circuit for convert-
ing the buttons into toggle buttons.

• If you want one button per function and want
always one pot to be selected, you can use the
buttongroup circuit for combining the buttons
into a group.

Picking up the pots

Pots are no encoders. So when reusing a pot for more
than one function at a time there is always the problem
that when you switch to one pot function the pot prob-
ably currently is not set to the current value of the func-
tion. As an example let’s assume that – using the upper
example –youfirstpressB1.1andsetdecay fullyCW1.0.
Now you select release. Because 0.5 is the start position
of every virtual pot that is the current value of release.
But the physical pot is at 1.0.

solves this in the following way:

• If you turn the physical pot right, then the value of
the virtual pot is always increased until both pots
reach 1.0 at the same time.

• If the physical pot is already at 1.0when you select
a virtual pot, it cannot be increased further. You
first have to turn the pot left a bit and then right
again.

• If you turn the physical pot left, then the value of
the virtual pot is always decreased until both pots

reach 0.0 at the same time.
• If the physical pot is already at 0.0when you select
a virtual pot, it cannot be decreased further. You
first have to turn the pot right a bit and then left
again.

Let’s assume that the virtual pot is at 0.4 when you se-
lect it. And let’s further assume that the physical pot is
at position 0.8. When you turn it left the physical pot
as a way of 0.8 go until 0.0 and the virtual just 0.4. So
the virtual pot is moving with half of the speed, so that
both reach 0.0 at the same time. When you turn the pot
right, on the other hand, the virtual pot has 0.6 to go un-
til maximumwhile the physical pot has just 0.2 left until
it reaches its maximum. So now the virtual pot moves
three times faster than the physical.

This algorithm is different than the common “picking up”
up pots that you see in Eurorack land quite a lot in such
situations. Wepreferred our solution over that because it
seems to bemore convenient – especially if you justwant
to change a value just a little bit. Also it allows to have
multiple virtual pots to be selected at the same time.

By the way: in the upper example it is possible to select
none of the pots. That is a convenient way to reset the
physical pot to the middle position so that you always
have headroom for movement left and right, before se-
lecting one of the virtual pots.

DROIDmanual for blue-6 363 Table of contents at page 2

Input Type Default Description

pot (p) 0 1 The pot that you want to overlay, e.g. P1.1

bipolar (b) If this input is set to 1, the usual pot range of 0 ... 1 will be mapped to -1 ... +1, which converts this to a bipolar
potentiometer. This is done by multiplying the output with 2.0 and substracting 1.0 afterwards.

switch1 ... switch8 (s) These inputs select which of the virtual pots should be changed when the physical pot is being turned. These should
be set to 0 or 1 (or off and on).

Output Type Description

output1 ... output8 (o) 0 1 The output of the up to eight virtual pots.

DROIDmanual for blue-6 364 Table of contents at page 2

16.68 timing – Shuffle/swing and complex timing generator

This circuit converts a steady input clock
into an output clock with flexible timing
modifications. The most common use is a
”swing” feeling where every second note is
delayed. But this circuit is muchmore flex-
ible.

The length of a timing pattern can be up to eight steps.
Thatmeans that you can set a different relative time shift
for each clock pulse in a sequence of up to eight.

Let’s start with a simple swing pattern, which is just a se-
quence of two. We assume an external input clock at G1
and output the resulting modified clock to G2:

[timing]
clock = G1
output = G2
timing1 = 0.0
timing2 = 0.3

In this example every second clock pulse is delayed by
30% of one clock tick’s duration – which gives a standard
swing pattern.

Creating a reverse swing, where every second pulse is
early is as easy as using a negative number for timing2:

[timing]
clock = G1
output = G2
timing1 = 0.0
timing2 = -0.3

Creating a sequencewith anoddnumber of steps can cre-
ate rather weird groove patterns. Look at the following
example:

[timing]
clock = G1
output = G2
timing1 = 0.0
timing2 = 0.2
timing3 = 0.1

Nowevery secondnoteof three is delayed by 20%and ev-
ery third note by 10%.

Of course, you can use timing in order to create a simple
clock shift by creating a pattern with just one timing, as
well. The following example will shift the input clock for-
wards, so that it always comes a bit earlier. This can be
used for compensating a slight delay of a master clock:

[timing]
clock = G1
output = G2
timing1 = -0.03

Notes:

• This circuit needs a steady and stable input clock.
• In order to get a synchronized start together with
the rest of your patch, it is advisable also to make
use of the reset input.

• You cannot shift a beat forward or backward by
more than 99.99% of a clock tick.

• When you set your timings in a way that two beats
happen at the same time, just one trigger is output
for these two beats.

• Whenyouset your timings inaway that a later beat
would come before an earlier beat, the later beat is
not played.

• For each inputbeat there is atmaxoneoutputbeat.
If for any input beat the corresponding output beat
has already been played, it will will not be replayed
even if you suddenly shift it into the future.

• If an output beat has not yet played because it is
delayed and then you suddenly reduce the delay by
an amount that would shift that beat into the past,
it is played immediately (so it is not lost).

Input Type Default Description

clock (c) Patch a steady clock here for this circuit to be of any use

reset (r) A trigger here resets the internal step counter and restart at step 1.

DROIDmanual for blue-6 365 Table of contents at page 2

Input Type Default Description

timing1 ... timing8 (t) + Specifies a relative timing for each step in relation to the input clock. A timing of 0.3 will shift the respective beat 30%
of a clock cycle behind, while -0.3 will make it 30% early.

The timing values are clipped into the range -0.9999 …0.9999.

Output Type Description

output (o) Here comes the modified output clock

DROIDmanual for blue-6 366 Table of contents at page 2

16.69 togglebutton – Create on/off buttons (OBSOLETE)

This circuit has been superseded by the
newcircuitbutton (seepage141). button
can do all togglebutton can do andmuch
more. So togglebutton will be removed
soon.

This small utility circuit converts a normal push button
into a toggle button that is either on or off. It toggles
its state every time the button is being pressed. It even
can persist the current state of the button in the ’s
internal flash memory, so at the next time you start your
modular the button will have the same state as just be-
fore you switched it off.

Typically you will wire button to one of your controllers’
buttons like B1.1 and led to the LED in that button
(L1.1). LED will then always visualise the current state
of the button. As a side effect the LED register L1.1 will
store the button state as a value 0 or 1 and hence can be
used by some other as an input.

Here is a typical example. The button is being used for
enabling the loop in the CV looper:

[togglebutton]
button = B1.4
led = L1.4

[cvlooper]
loop = L1.4

If you do not want the state of the button to be persisted
in the ’s flash memory then use startvalue for
setting a start value. This make sense for the CV looper
since the loop is apparently empty anyway if you start
your . By the way: off is a synonym for 0.

[togglebutton]
button = B1.4
led = L1.4
startvalue = off

[cvlooper]
loop = L1.4

Since a multiplication with 0 or 1 can switch off or on a
signal you can use the LED register directly for enabling
a signal. The next example uses a button for switching
between 0 V and the output of an LFO:

[togglebutton]
button = B1.4
led = L1.4

[lfo]
level = L1.4 # 0 or 1
sine = O1

Usually the toggle button switches between the two val-
ues0 and1. Sometimes youneeddifferent values. There-
fore there are the two inputs offvalue and onvalue for
two alternative values for these two states and the out-
put output1 where you can fetch that value (since led
will continue to send 0 or 1 in order for the LED to work
properly). Here is an example for a toggle button that
switches a clock divider between 2 and 4:

[togglebutton]
button = B1.4
led = L1.4
offvalue = 2
onvalue = 4
output = _CLOCK_DIV

[clocktool]
input = G1 # external clock
output = G2
divide = _CLOCK_DIV

Of course offvalue and onvalue are CV controllable.
Howcanmake this sense? Well – as they can takevariable
inputs you can use a togglebutton for directly switching
between two different input CV signals. The following
example will send two different wave forms of an LFO
to O1. The button B3.1 switches between sawtooth and
sine:

[lfo]
hz = 2
sawtooth = _SAWTOOTH
sine = _SINE

[togglebutton]
button = B3.1
led = L3.1
offvalue = _SAWTOOTH
onvalue = _SINE
output = O1

Hint: if you need to have not only two but three or four
different states for your button then have a look at the
circuit button.

Buttons with up to four layers

The toggle button can overloaded with up to four func-
tions. For switching between these layers you need a CV.
This example assigned three different layers to one but-
ton. Each layer has its own state.

DROIDmanual for blue-6 367 Table of contents at page 2

[togglebutton]
button = B1.4
led = L1.4
output1 = _ENABLE_LOOP
output2 = _FANCY_STUFF

output3 = _FOO_BAR
switch = I1 * 2

Now if I1 is near zero volts, then the button behaves like
in the previous example. But when you set it to 5 V (re-

sulting in a number of 0.5 which is multiplied by 2 and
thus evaluates to 1), then a second copy of the button
is activated with its own state. The LED now shows the
stateof that secondbuttonwhichoutputwill outputs the
value of the first button.

Input Type Default Description

button (b) The actual push button. Usually you want to wire this to B1.1, B1.2 and so on: to one of the push buttons of your
controllers. Each time that input goes from low to high the state of the push button will toggle.

reset (r) A positive trigger edge here will reset the button into the state “not pressed” – regardless of its current state

onvalue (ov) 1.0 Value sent to output when the push button is on. Setting this to a different value than the default value saves you
attenuating its value later on when you use it as a CV.

offvalue (fv) 0.0 Value sent to outputwhen the push button is off.

doubleclickmode (dm) off This input can enable a double clickmodewhen set to 1. In thatmode the button only toggles it’s constant state if you
double press it in a short time. Otherwise it behaves like a momentary button, that inverts the persisted state (which
you toggle with the double click).

startvalue (sv) State of the push buttonwhen you switch on your system. Setting this to onor offwill force the button into that state.
Using this jack disables the persistence of the state! In switched mode this will be used for the other button layers as
well.

Output Type Description

led (l) When the button’s state is on a value of 1.0 will be sent to that output – regardless of the values in onvalue and
offvalue. Usually you will wire this jack to the LED within the button, e.g. to L1.1, L1.2 and so on

output (o) This jackwill output either onvalue or offvalue depending on the state of the 1st ... 4th button. If you have notwired
those inputs then this is the same as the led output.

inverted (iv) The same as output1, but sends onvaluewhen the button is off and offvaluewhen the button is on. Note: there is
no inverted version of output2 ... output4.

negated (n) Similar to inverted, but always sends 1when the button is off and 0when the button is on – independent of the values
of onvalue and offvalue.

DROIDmanual for blue-6 368 Table of contents at page 2

16.70 transient – Transient generator

This circuit creates (possibly very slow) lin-
ear transients from a defined start value to
an end value. The duration of that transi-
tion is either set in seconds or specified as
a number of clock ticks. This circuit is built
in a way that very long transients are possible, even sev-
eral days, weeks, months, years or whatever you like.

Here is a simple example:

[transient]
start = 1V
end = 3V
duration = 600
output = O1

Here the duration is meant to be 600 seconds (10 min-
utes). So at the beginning O1 will be at 1 V. Then it rises
slowly until after tenminutes it reaches 3V. There it stays
forever.

There are twoways of restarting it again. Either you send
a trigger to reset or you set loop to 1. When loop is ac-
tive, the transient will start over at start immediately
when it reaches end:

[transient]
start = 1V
end = 3V
duration = 600
output = O1
reset = G1
loop = 1

As an alternative to seconds you can specify the length
in terms of clock ticks. This needs a steady clock signal
patched into the clock input.

[transient]
start = 0.2
end = 0.7
duration = 32
clock = I1
output = O1

Here the duration of one transient is exactly 32 clock
ticks. This makes it simpler to exactly align a transient
with a musical structure of a song or the like.

Changes while in the air

As start, end and duration are CV inputs, they might
change while the transient is running. This is how
transient behaves in such situations:

The start value is just taken into account whenever the
transient starts. this is:

• When the starts
• When there is a trigger at reset
• When the transient reaches the end and loop is on.

Whenever that happens, the current output level is set to
start. Also theoutputphase is set to0. Phase is akindof
internal clock that measures which part of the transient
has been run through already.

At any given time transient assumes that the phase
times the duration equals the time left. And the distance
to go in the remaining time is the current distance from
the current output level to the end. These two values di-
rectly translate into a slope. This slope now determines
how fast the output level is moving and into which direc-
tion.

From this follows:

• When you make the duration longer in-flight, the
speed of change will get slower.

• When you change start in-flight, nothing hap-
pens.

• When you change end in-flight to a value that is
“farther” away from the current level, the speed of
change increases.

• If you changeend tobe the current level of the tran-
sient, it seems to stop, but in fact the slope is just
zero and it still lasts until the duration is over.

• The output level is always smooth. No sudden
steps. With one exception: When the transient re-
sets to its start value.

In pingpongmode (see the table of inputs for details) this
changes accordingly. While the transient is on its way
back, consider start and end exchanged.

DROIDmanual for blue-6 369 Table of contents at page 2

Input Type Default Description

start (st) 0.0 Start value of the transient

end (e) 1.0 Target value of the transient

duration (d) 1.0 Duration: if the clock input is used, it is in clock ticks. Otherwise it is in seconds. A negative duration will be treated
as zero. And a zero duration will make the output always be at end level.

loop (lo) 0 If this is set to 1, the transient will start over again as soon as it reaches the end.

pingpong (pp) 0 If this set to 1, the transient will start moving backwards towards the start when it has reached end. It will swing back
and forth, in fact looping infinitely.

freeze (f) 0 while this is set to 1, the transient it frozen at its current position.

reset (r) A trigger here will immediately set the transient back to its start value.

clock (c) If you patch a clock here, the durationwill be set in terms of clock ticks, not of seconds. This needs to be a steady clock
in order to get predictable results.

Output Type Description

output (o) Here comes the current value of the transient.

phase (p) This output reflects the current phase of the transient. It behaves as if startwould be 0 and endwould be 1.

endoftransient (et) When loop and pingpong is off, this output goes to 1when the transient has reached the end – and stays there. In loop
mode just a short trigger is sent. In pingpongmode that trigger is not sent when the transient has reach the end-value,
but when it is back at start (i.e. after one full cycle).

DROIDmanual for blue-6 370 Table of contents at page 2

16.71 triggerdelay – Trigger Delay withmulti tap and optional clocking

This circuit implements a CV controllable
delay for a trigger or gate signal. It listens
for triggers at input and sends the same
triggers later to the output. It does not
look at the voltage level of the inputs. The
output triggers are always sent with 10 V (I1 ... I8) or
5 V (on the G8 expander).

As a difference to an analog trigger delay this circuit is ca-
pable of keepingmemoryof up to16 triggers. Thismeans
it is able to process further incoming triggers while previ-
ous triggers are still in the delay. This allows you to delay
complex rhythmicpatterns, e.g. in order to reuse theout-
put of one track of a trigger sequencer shifted in time for
another instrument.

Furthermore, it is able to retain the gate length of the
original input signal and output the delayed gatewith ex-
actly the same length.

Here is the simplest possible example, which delays an
incoming gates / triggers by exactly one second:

[triggerdelay]
input = G1
output = G2

You can set the delay in seconds via the delay jack. And
if you patch gatelength, the original gate length is being
ignored and overridden by this value (also in seconds):

[triggerdelay]
input = G1
output = G2
delay = 0.1 # 0.1 seconds
gatelength = 0.05 # 50 ms

Clockedmode

triggerdelay supports a clockedmode, inwhich all tim-
ing is relative to an input clock. You enable clockedmode
by simply patching a steady clock into clock. Now delay
and gatelength are relative to one clock cycle.

The following example delays all input triggers by one
clock cycle (which is the default):

[triggerdelay]
input = G1
output = G2
clock = G3

If you specify delay and/or gatelength they are now
measured in clock cycles:

[triggerdelay]
input = G1
output = G2
clock = G3
delay = 16 # clock cycles
gatelength = 0.5 # half a clock cycle

Input Type Default Description

input (i) 0 Patch triggers or gates to be delayed here.

delay (dl) 1.0 Amount of time the incoming triggers are being delayed. When clock is patched, this is in relation to one clock cycle,
so a delay of 4 will delay the input pattern by exactly 4 beats. Fractions are allowed also. If clock is not patched, this
parameter is in seconds. So for example in order to delay by 100 ms you need a delay of 0.1.

gatelength (gl) + Unless you patch this jack the length of the output gates is exactly the length of the input gates. By use of this param-
eter you override that length and set a fixed length in seconds – or if clock is being used – in clock cycles.

repeats (rp) 1 2 3 1 Number of times the delayed trigger is being repeated. Each further repetition is with the same delay.

mute (m) 0 A high gate signal suppresses any further output gates. However, the current gate is finished normally.

DROIDmanual for blue-6 371 Table of contents at page 2

Input Type Default Description

clock (c) When you patch this input, the trigger delay runs in clocked mode. In this mode delay is relative to one clock cycle.
I.e. a delay if 0.5will delay the trigger by half a clock cycle. The same holds for gatelength. That is measured in clock
cycles, too.

Output Type Description

output (o) Outputs the delayed triggers/gates, while keeping the gate length – unless you have changed that

overflow (ov) Whenever there are more input triggers than this circuit can keep memory of, this output outputs a gate of 0.5 sec
length. You can wire this to an LED in order to knowwhen this happens.

DROIDmanual for blue-6 372 Table of contents at page 2

16.72 unusedfaders – Declare unusedmotor faders

The circuit disables motor faders that are
notused in certain situations. Those faders
move to the bottom and stay there. Oth-
erwise faders, that are currently not se-
lected, would keep their old position and
LED state. This can be confusing to the user.

Usage: If you have a situation where not all of the faders
are selected with an active select, add a unusedfaders
circuit for theununsed faders andmake sure that they are
selected.

The followingexampledisables the faders6, 7and8while
_MENU_ACTIVE is 1:

[unusedfaders]
select = _MENU_ACTIVE
firstfader = 6
numfaders = 3

Note: You could do the same with faderbank, but that
circuit needs more memory.

Input Type Default Description

firstfader (f) 1 2 3 1 The number of the first unused motor fader motor.

numfaders (n) 1 2 3 1 The number of unused faders

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

DROIDmanual for blue-6 373 Table of contents at page 2

16.73 vcotuner – measure frequency and tuning of a VCO

TheMASTER18has a builtin probe that can
measure the frequency of incoming signals
with high precision. This circuit uses this
probe to measure the pitch of basic wave-
forms, such as triangle, since, sawtooth
and square. With this you can build a tuner and a pitch
follower.

To use the circuit, plug any signal with a basic waveform
in the I1 input of your MASTER18. This input can mea-
sure the frequency of positive zero crossings, which is is
the number of times the signal goes from below zero volt
to above zero volts, per second. For basicwaveforms this
is the same as the frequency of the signal itself. The fre-
quency range you can measure is in the range 1 Hz to
20 kHz. The low end allows you to measure clocks.

Notes:

• The tuner does not work well for complex waves,
such as frequency modulated waves or the result
of complex wave table synthesis.

• This circuit does not exist on the MASTER.

Building a tuner

Included in the circuit is a comparator that checks how
far the frequency is away from the nearest semitone or a
reference note that you choose. You can display this de-
viation in various ways to build a tuning device.

The following patch example uses the three button-LEDs
of a P2B8 to show the current tuning:

[p2b8]

[vcotuner]
ledsharp = L1.1
ledintune = L1.3
ledflat = L1.5

If you plug a signal into I1, the circuit shows you how
good its frequencymatches that of the nearest semitone.

• When the frequency is close enough, LED 3 is lit.
• When the frequency is too low, LED 1 is lit.
• When the frequency is too high, LED 5 is lit.

Close enough here means that the measured note is
within ± 3 cents of the nearest semitone. 100 cents
correlates to the pitch difference of one semitone, so
the largest possible distance to the nearest semitone is
50 cents. You can reduce this to 2 cents with precision
= 2, if you like.

There is no display for showing the semitone the tuner
locked in. So if you are not sure you got the right note,
you can set a tuning note, like for example C. This is done
with the input tuningnote. A value of 0 selects C (C♯ is
1, D is 2 and so on). The following example tunes to the
nearest C with a precision of 2 cents:

[vcotuner]
ledsharp = L1.1
ledintune = L1.3
ledflat = L1.5
tuningnote = 0 # any C
precision = 2 # 2 cents max deviation

If you are lucky enough to own an E4 controller (see page
70), you can use the LED ring of an encoder to display the
current tuning. Here is an example:

[e4]

[vcotuner]
tuningnote = 0
cents = _CENTS
ledintune = L1.1

[encoder]
encoder = 1
override = _CENTS / 50
rangemode = 1 # bipolar
negativecolor = 0.8 # red

The encoder-LEDs can display a value in the range -1 … 1.
You might change the 50 in override = _CENTS / 50 if
youwant the display to bemore “zoomed in” or “zoomed
out”.

Pitch follower

The vcotuner can give you the measured frequency as a
1V/Octave value at the output pitch. You can then patch
this output to a second VCO, tomake it track the pitch of
the first one:

[vcotuner]
pitch = O1 # patch to 2nd VCO

Hereby it is assumed that the frequency of A1 is 440 Hz
and 0 V corresponds to a C0. You can change both with
the settings concertpitch and basepitch (see below).

DROIDmanual for blue-6 374 Table of contents at page 2

Input Type Default Description

tuningnote (tn) 1 2 3 -1 You can either tune to a specific note, like C or A or whatever you like. In this case set tuningnote to a number from 0
to 11, where 0 is C, 1 is C#, 2 is D and so on. Or you set it to -1 (which is the default) to tune to the nearest semitone.

concertpitch (cp) 440.0 Set the frequency of the concert pitch here, which is the frequency of A1. Most commonly this is 440 Hz, so 440 is the
default value of this parameter.

basepitch (b) � 1V
Oct 0V This output sets the reference for the pitch output. It is the voltage for the note C0. With analog synths it is common

– but not neccessary – that the C notes correspond to integer voltage numbers.

smooth (sm) 0 1 0.01 When measuring the input frequency, a slight smoothing is applied (like a low pass filter). It evens out some possible
jitter that you might have. You can adjust this filter here. Per default smoothing is just subtle. Beware: smooth = 1
smoothes strong, so the frequency measurement needs some time to get accurate.

precision (pc) 3.0 This parameter defines the precision for the input frequency to be in tune. It is set in cents, where 100 cent correspond
to one semitone. If you set the precision too low, it is very hard to tune correctly. If you set it too high, your tuning is
not very precise.

select (s) 1 2 3 + The select input allows you to overlay buttons and LEDs withmultiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won’t touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 1 2 3 + This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

Output Type Description

hz () Outputs the current input frequency. If you no signal is found, the output is 0.

ledflat (lf) 0 1 Patch this to a LED to show if and howmuch the input frequency is flat (too low). This value ranges from 0.2 to 1.0 if
the input frequency is flat and goes straight to 0 otherwise. If you use select, this output only works while the circuit
is selected.

ledsharp (ls) 0 1 Patch this to a LED to show if and how much the input frequency is sharp (too high). This value ranges from 0.2 to
1.0 if the input frequency is sharp and goes straight to 0 otherwise. If you use select, this output only works while
the circuit is selected.

ledintune (lt) Outputs 1 if the input frequency is “in tune”. Here the precision input is applied. If you use select, this output only
works while the circuit is selected.

DROIDmanual for blue-6 375 Table of contents at page 2

Output Type Description

intune (it) Outputs 1 if the input frequency is “in tune”. Here the precision input is applied. This output also while while the
circuit is not selected. You can use it in situations where you want to process this information by some other circuit
rather than just displaying it.

tuning (t) 0.50 1 Outputs the current tuning deviation of the input measured in 1V/octave.

cents (c) 0.50 1 Outputs the current tuning deviation in cents, where 100 cents correspond to one semitone.

pitch (p) � 1V
Oct Outputs the current pitch of the input frequency in terms of 1V/octave. Here the basepitch is applied. You can patch

this output to the pitch input of a second VCO to have that follow the pitch of the measured VCO.

referencepitch (rp) � 1V
Oct Here you get the pitch of the reference tone the tuner currently “locked in” into. It is either the nearest semitone or

the note selected by tuningnote in the nearest octave.

vcofound (vf) This output is 1whenever a valid input signal is found on the tuning input I1.

DROIDmanual for blue-6 376 Table of contents at page 2

	Installation of the master module
	Getting started
	DROID explained
	Creating DROID patches
	Working with the Forge
	Using the master's inputs and outputs
	Numbers and voltages
	Multiply and add, attenuation and offset
	Internal connections
	Controllers

	Advanced patching concepts
	One knob – multiple functions
	Presets
	Tap tempo

	Patch generators
	Introduction
	Enable the patch generators
	How to use patch generators
	Motor Fader Performance Sequencer (MFPS)
	Droid Megasequencer

	Creating DROID patches with a text editor
	General procedure
	Basic structure of the patch file
	Finding a problem in your DROID patch
	Table of error codes
	Inputs, outputs and other registers
	Specifying numbers in your patch
	Attenuating and offsetting inputs
	Internal patch cables
	Using outputs as inputs
	Using inputs as outputs
	Parameter arrays
	Comments & spaces
	Abbreviated parameter names
	More than one patch on the memory card

	Controllers
	Installing the controllers
	How to use controllers in your patch
	Troubleshooting
	The P2B8 controller
	The P4B2 controller
	The P10 controller
	The S10 controller
	The P8S8 controller
	The B32 controller
	The E4 encoder controller
	The M4 motor fader controller

	The G8 expander
	Introduction
	Installation
	Using the G8 in patches

	The X7 expander
	Quick start
	General overview
	Installation
	USB access to your SD card
	MIDI
	MIDI through
	Four gate outputs
	Eight multi color LEDs
	Fast patch upload via Sysex
	Software update for the X7
	Some technical details

	The MASTER18
	Introduction
	Using the Forge
	The switch
	USB access to your SD card
	MIDI
	Sinfonion link
	VCO tuner
	Gate inputs and outputs
	Diagnostic LEDs

	The R2M/R2C controller bridge
	Introduction
	Setup with one master
	X7 connected to the master
	X7 in the skiff
	Controllers before the R2M/C bridge
	More than one bridge
	Setup with two masters

	Droid under the hood
	How the module's state is saved
	The order of the circuits
	Displaying the value of a register
	Displaying current values
	Controller latency

	Firmware upgrade
	Why upgrading the firmware?
	Checking your version on the MASTER
	Checking your version on the MASTER18
	Normal update procedure
	Upgrade a MASTER from green to blue

	Calibration, factory reset and other maintainance stuff
	The maintenance mode of the MASTER
	Factory reset on the MASTER
	Factory reset on the MASTER18
	Calibration of the outputs of the MASTER
	Calibration of the outputs of the MASTER18
	Using your own SD card

	Hardware
	Musical scales
	Reference of all circuits
	 adc – AD Converter with 12 bits
	 algoquencer – Algorithmic sequencer
	 arpeggio – Arpeggiator – pattern based melody generator
	 bernoulli – Random gate distributor
	 burst – Generate burst of pulses
	 button – Does all sorts of useful things with buttons
	 buttongroup – Connected buttons
	 calibrator – VCO Calibrator
	 case – Switch choosing from inputs via conditions
	 chord – Chord generator
	 clocktool – Clock divider / multiplier / shifter
	 compare – Compare two values
	 contour – Contour generator
	 copy – Copy a signal, while applying attenuation and offset
	 crossfader – Morph between 8 inputs
	 cvlooper – Clocked CV looper
	 dac – DA Converter with 12 bits
	 delay – A tape delay for CVs, gates and numbers
	 detune – Detune multiple voices in a most disharmonic way
	 droid – General DROID controls
	 encoderbank – Create bank of up to 8 virtual input knobs from E4 encoders
	 encoder – Provide access to a knob on the E4 controller
	 encoquencer – Performance sequencer using E4 encoders
	 euklid – Euclidean rhythm generator
	 explin – Exponential to linear converter
	 faderbank – Create multiple virtual faders in M4 controller
	 fadermatrix – Matrix of up to 4x4 virtual motor faders
	 firefacecontrol – Control a RME Fireface interface (experimental)
	 flipflop – Simple flip flop
	 fold – CV folder – keep (pitch) CV within certain bounds
	 fourstatebutton – Button switching through 4 states (OBSOLETE)
	 gatetool – Operate on triggers and gates, modify gatelength
	 ifequal – Check if two values are equal
	 lfo – Low frequency oscillator (LFO)
	 logic – Logic operations utility
	 math – Math utility circuit
	 matrixmixer – Matrix mixer for CVs
	 midifileplayer – MIDI file player
	 midiin – MIDI to CV converter
	 midiout – CV to MIDI converter
	 midithrough – Forward MIDI events from input to one or more outputs
	 minifonion – Musical quantizer
	 mixer – CV mixer
	 motoquencer – Motor fader sequencer
	 motorfader – Create virtual fader in M4 controller
	 multicompare – Compare in input with up to eight possible values
	 notchedpot – Helper circuit for pots (OBSOLETE)
	 notebuttons – Note Selection Buttons
	 nudge – Modify a value in steps using two buttons
	 octave – Multi-VCO octave animator
	 once – Output one trigger after the Droid has started
	 outputcalibrator – Tune the calibration of your CV outputs
	 polytool – Change number of voices in polyphonic setups
	 pot – Helper circuit for pots
	 quantizer – Non-musical quantizer
	 queue – Clocked CV shift register
	 random – Random number generator
	 recorder – Record and playback CVs und gates
	 sample – Sample & Hold Circuit
	 select – Copy a signal if selected
	 sequencer – Simple eight step sequencer
	 sinfonionlink – Sync harmonic state from Sinfonion
	 slew – Slew limiter
	 spring – Physical spring simulation
	 superjust – Perfect intonation of up to eight voices
	 switch – Adressable/clockable switch
	 switchedpot – Overlay pot with multiple functions (OBSOLETE)
	 timing – Shuffle/swing and complex timing generator
	 togglebutton – Create on/off buttons (OBSOLETE)
	 transient – Transient generator
	 triggerdelay – Trigger Delay with multi tap and optional clocking
	 unusedfaders – Declare unused motor faders
	 vcotuner – measure frequency and tuning of a VCO

