DROID

Universal CV Processor

B32

DRUID

O DROID O O DROID P10

MASTER MASTER18

fo)

DROID

OX7

DROID

o O P4B2 O P2B8 O

DROID DROID

*6» @ @ 9' p) () (®

EEL 60 [EEF 000 ®

GF.'IFI N el 2
q.reuel-@@@
sleA[Al ¢ SIFIIMIEL | 24
@@@@@@@@@I@TQQOO . “@ :
@@@@@@@@@@@QQQ. » e
@@@@@@@@@@@..99 7 9. O C
@@@@@@@@@@@Q.QQQ.Q.C’ >
oM o ol ol o o o o [o [o [
DER MANN M[T

§

DER MASCHINE

S

DROID

User manual

for firmware version
August 22, 2024

O S8 O P88 O O E4 O M4 O OO
f’\} B sl
- e 1T
., : 1
]/\} H@
"""" *.
00 3 1
Doy ___{; EEEEC.
000000 s EEEEOC
000000 -------- P W w @
o M o O O o) O OO

Contents

Installation of the master module

Getting started

2.1 DROIDexplained
2.2 CreatingDROID patches
2.3 WorkingwiththeForge.,
2.4 Usingthe master’'sinputsandoutputs
2.5 Numbersandvoltages
2.6 Multiply and add, attenuationandoffset.
2.7 Internalconnections o
2.8 Controllers e

Advanced patching concepts

3.1
3.2
3.3

One knob - multiple functions
Presets
Taptempo e

Patch generators

4.1
4.2
4.3
4.4
4.5

Introduction
Enable the patch generators
How touse patchgenerators
Motor Fader Performance Sequencer (MFPS)
Droid MegasequUEeNCEr v v v v v v e e e e

Creating DROID patches with a text editor

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10
5.1
5.12
5.13

Ceneralprocedure
Basic structure of the patchfile.
Finding a probleminyourDROID patch
Tableoferrorcodes.
Inputs, outputs and otherregisters
Specifying numbersinyourpatch
Attenuating and offsettinginputs
Internal patchcables
Usingoutputsasinputs.
Usinginputsasoutputs.
Parameterarrays
Comments & SPACeS v o e e e e e
Abbreviated parameternames

1
12
13
14
14
15

17
17
21
23

25
25
25
26
27
42

5.14 More than one patch onthe memorycard
Controllers

6.1 Installingthecontrollers
6.2 Howtousecontrollersinyourpatch
6.3 Troubleshooting
6.4 TheP2B8controller.
6.5 TheP4B2controller.
6.6 ThePl10controller
6.7 TheS10controller
6.8 TheP8S8controller.
6.9 TheB32controller
6.10 TheE4encodercontroller
6.11 The M4 motor fadercontroller
The G8 expander

7.1 Introduction
7.2 Installation
7.3 UsingtheG8inpatches.
The X7 expander

8.1 Quickstart e
8.2 Generaloverview
8.3 Installation
84 USBaccesstoyourSDcard
85 MIDI . . . e
8.6 MIDIthrough
8.7 Fourgateoutputs
8.8 EightmulticolorLEDs
8.9 FastpatchuploadviaSysex
8.10 SoftwareupdatefortheX7.
8.11 Sometechnicaldetails
The MASTER18

9.1 Introduction
9.2 UsingtheForge
9.3 Theswitch
9.4 USBaccesstoyourSDcard
9.5 MIDI . . e

59
59
60
62
64
65
66
67
68
69
70
71

75
75
75
76

77
77
77
78
78
79
82
83
83
83
85
86

9.6 Sinfonionlink.
9.7 VCOUNEr . . . o e
9.8 Gateinputsandoutputs
9.9 DiagnosticLEDs

10 The R2M/R2C controller bridge
10.1 Introduction
10.2 Setupwithonemaster
10.3 X7 connectedtothemaster
10.4 X7intheskiff.
10.5 Controllers before the R2ZM/Cbridge
10.6 Morethanonebridge. L oo
10.7 Setupwithtwomasters

11 Droid under the hood
11.1 How the module’s stateissaved
11.2 Theorderofthecircuits
11.3 Displaying thevalueofaregister
11.4 Displayingcurrentvalues
11.5 Controllerlatency

12 Firmware upgrade
12.1 Why upgrading the firmware?,
12.2 Checking your versiononthe MASTER
12.3 Checking your version on the MASTER18
12.4 Normalupdateprocedure
12.5 Upgrade a MASTER fromgreentoblue

13 Calibration, factory reset and other maintainance stuff
13.1 The maintenance mode of the MASTER
13.2 Factoryresetonthe MASTER
13.3 Factoryresetonthe MASTER18
13.4 Calibration of the outputs of the MASTER
13.5 Calibration of the outputs of the MASTER18
13.6 UsingyourownSDcard

14 Hardware

15 Musical scales

DROID manual for blue-6

91
91
91
91
92
92
92
92

93
93
94
94
96
97

98
98
98
98
98
99

100
100
101
101
101
102
103

104

107

16 Reference of all circuits 110
16.1 adc - AD Converterwith12bits 113
16.2 algoquencer - Algorithmicsequencer 115
16.3 arpeggio - Arpeggiator - pattern based melody generator 127
16.4 bernoulli - Random gate distributor 138
16.5 burst - Generateburstofpulses 139
16.6 button - Does all sorts of useful things with buttons 141
16.7 buttongroup - Connectedbuttons 146
16.8 calibrator - VCOCalibrator 150
16.9 case - Switch choosing from inputs via conditions 153
16.10 chord - Chordgenerator v v v 154
16.11 clocktool - Clock divider / multiplier / shifter 162
16.12 compare - Comparetwovalues. 165
16.13 contour - Contourgenerator. 167
16.14 copy - Copy a signal, while applying attenuation and offset 172
16.15 crossfader - Morph between8inputs. 173
16.16 cvlooper - ClockedCVlooper 174
16.17 dac - DA Converterwith12bits 177
16.18 delay - A tape delay for CVs, gatesand numbers 179
16.19 detune - Detune multiple voices in a most disharmonicway 182
16.20 droid - General DROID controls 183
16.21 encoderbank - Create bank of up to 8 virtual input knobs from E4 encoders185
16.22 encoder - Provide access to a knob on the E4 controller 189
16.23 encoquencer - Performance sequencer using E4 encoders 198
16.24 euklid - Euclideanrhythmgenerator 216
16.25 explin - Exponential to linearconverter 218
16.26 faderbank - Create multiple virtual faders in M4 controller 220
16.27 fadermatrix - Matrix of up to 4x4 virtual motor faders 222
16.28 firefacecontrol - Control a RME Fireface interface (experimental) . 228
16.29 flipflop - Simpleflipflop 231
16.30 fold - CV folder - keep (pitch) CV within certainbounds 232
16.31 fourstatebutton - Button switching through 4 states (OBSOLETE) . 234
16.32 gatetool - Operate on triggers and gates, modify gatelength 235
16.33 ifequal - Check if twovaluesareequal 238
16.34 1fo - Low frequency oscillator (LFO) 239
16.35 logic - Logicoperationsutility 245
16.36 math - Math utility circuit o o 248
16.37 matrixmixer - Matrix mixerforCVs 250
16.38 midifileplayer - MIDIfileplayer 253

Table of contents at page 2

16.39
16.40
16.41
16.42
16.43
16.44
16.45
16.46
16.47
16.48
16.49
16.50
16.51
16.52
16.53
16.54
16.55
16.56

midiin- MIDItoCVconverter 260
midiout - CVtoMIDlconverter 268
midithrough - Forward MIDI events from input to one or more outputs 277

minifonion - Musical quantizer 279
mixer -CVmixer e 285
motoquencer - Motor fadersequencer 286
motorfader - Create virtual faderin M4 controller 311
multicompare - Compare in input with up to eight possible values . . 315
notchedpot - Helper circuit for pots (OBSOLETE) 316
notebuttons - Note SelectionButtons 317
nudge - Modify a value in steps using two buttons 320
octave - Multi-VCO octave animator 323
once - Output one trigger after the Droid has started 325

outputcalibrator - Tune the calibration of your CV outputs 326

polytool - Change number of voices in polyphonic setups 327
pot - Helpercircuitforpots 329
quantizer - Non-musical quantizer 337
queue - Clocked CV shiftregister 339

DROID manual for blue-6

16.57
16.58
16.59
16.60
16.61
16.62
16.63
16.64
16.65
16.66
16.67
16.68
16.69
16.70
16.71
16.72
16.73

random - Random number generator 340
recorder - Record and playback CVsundgates 341
sample - Sample & Hold Circuit 347
select - Copy asignalifselected 348
sequencer - Simple eight step sequencer 349
sinfonionlink - Sync harmonic state from Sinfonion 353
slew-Slewlimiter 355
spring - Physical spring simulation 357
superjust - Perfect intonation of up to eight voices 359
switch - Adressable/clockable switch 361
switchedpot - Overlay pot with multiple functions (OBSOLETE) . . . 363
timing - Shuffle/swing and complex timing generator 365
togglebutton - Create on/off buttons (OBSOLETE) 367
transient - Transientgenerator 369
triggerdelay - Trigger Delay with multi tap and optional clocking . . 371
unusedfaders - Declare unused motorfaders 373
vcotuner - measure frequency and tuningofaVCO 374

Table of contents at page 2

1 Installation of the master module

:) DROID
Installation of the MASTER: : MAGTED .

Do not mix up the connectors! This will destroy

Controller connector your electronics. Do not force in cables in the

wrong orientiation or with the wrong number of
pins! Do not attach anything to the program-

The connector for the controllers has 6 pins (two

rows of three pins) and is used for connecting a o |

chain of B32, P2B8, P4B2, B32, P10, P8S8 and R IDSiRaTE
M4. Also the X7 is connected here. An X7 must & St
always be the first in the chain. e R
\'lb 1 C13Q9
| 8¢
i LU A Pas
Programming port 7] |
«@p c
The 6 pin programming port is not mounted in a uD-
box. Caution: Do not connect anything to this ()
port! It is solely for the initial programming in our “DROIE " Jir - iam® .
labs. Later firmware upgrades are done via the : | MASTER .. Expansion port for G8 expanders
Micro SD card, by Mathias Kettner oK
Bl design by: The connector for the G8 expanders has 8 pins
15dimir [Pantelic Musikelektronik .
Upme.de || designed in Darmstach (two rows of four pins). Here you can add up to
3 four G8 expanders for an additional 8 - 32 gate in-
puts/outputs. Please refer to page 75 for details.
Power connector

The power connector has 10 pins (two rows of
five pins). Use the shipped 10 pin ribbon ca-
ble in order to connect it with the bus board of
your Eurorack case. Important: Put the red
stripe down!

DROID manual for blue-6 5 Table of contents at page 2

Installation of the MASTER18:

Controller connector

The connector for the controllers has 6 pins (two
rows of three pins) and is used for connecting a
chain of B32, P2B8, P4B2, B32, P10, P8S8 and
M4. Also the X7 is connected here. An X7 must
always be the first in the chain.

Programming port

The 6 pin programming port is not mounted in a
box. Caution: Do not connect anything to this
port! It is solely for the initial programming in our
labs. Later firmware upgrades are done via the
Micro SD card.

Expansion port for G8 expanders

The connector for the G8 expanders has 8 pins
(two rows of four pins). Here you can add up to
four G8 expanders for an additional 8 - 32 gate in-
puts/outputs. Please refer to page 75 for details.

DROID manual for blue-6

<~ ~OMTOM F CRC

O
Y. i
O
—

3
o o7
v
-

:{ th7:
D

>

by nalhl
:mmdm de

i

=

HU designed in Darmstadt

Vladimir Pantelic Musikelekironik Vnme.de

DROID G8
FXDANNFE

et

Do not mix up the connectors! This will destroy
your electronics. Do not force in cables in the
wrong orientiation or with the wrong number of

pins! Do not attach anything to the program-
ming port.

S
|.;

=
0
"

v10

Diagnostic LEDs

The MASTER18 does not have LEDs on the front
panel. Instead diagnosticinformation is displayed
with these four LEDs on the back of the module.
Usually you don’t need this information. If you
run in trouble you can unscrew the module and
get some additional information of what’s going
on here.

R4

Power connector

The power connector has 10 pins (two rows of
five pins). Use the shipped 10 pin ribbon ca-
ble in order to connect it with the bus board of
your Eurorack case. Important: Put the red
stripe down!

Table of contents at page 2

2 Getting started

2.1 DROID explained

DROID is flexible system for generating and processing
control voltages in your Eurorack modular system. It
can do almost any CV task you can imagine, including
sequencing, melody generation, quantizing, switching,
mixing, working on clocks and triggers, envelopes, LFOs,
random voltages and any combination of these at the
same time. It also give flexible access to MIDI.

The base of every DROID system is a DROID master mod-
ule. There are two kinds to choose from:

O DROID

MASTER18

O,
n@'»

O DROID O

MASTER

= MIDI1 -

DROID manual for blue-6

The MASTER has

- 8 CVinputs with high quality 16 bit converters

+ 8 CV outputs with high quality 16 bit converters

+ a4 x 4 multicolor LED matrix displaying the state
of the inputs and outputs.

The MASTER18 has

+ 8 CV outputs with high quality 16 bit converters

- 2inputs and 4 outputs for gates and triggers

+ A builtin VCO tuning device

- a USB-C connector for MIDI and fast configuration
- 2 MIDI inputs via TRS (3.5 mm jacks)

- 2 MIDI outputs via TRS (3.5 mm jacks)

Extension modules:

+ You can add USB and MIDI to your MASTER by
adding an X7 expander (see page 77).

+ You can add up to 32 additional gate inputs and
outputs to your master by adding up to four G8 ex-
panders (see page 75).

+ And finally you can add up to 16 controllers with
potentiometer, buttons, encoders, motor faders,
switches and more to your master to complete the
system.

Note: In this manual whenever | write “master” in lower
case | refer to both MASTER and MASTER18.

2.2 Creating DROID patches

To bring your DROID system to life, you need to create a
Droid patch and load it to your master.

What is a Droid patch? Well, the DROID is like a self con-
tained modular system for CV in a module. In order to
avoid confusion with “real” modules - the building blocks
in a Droid patch are called circuits. There are very sim-
ple circuits like a mixer for CVs. And there are also very
complex circuits like an sophisticated algorithmic trigger
sequencer called algoquencer (see page 115).

Much like real modules, the circuits have input and out-
put jacks. These are called inputs or outputs, or some-
times also “parameters”. Each of them can be set to a
fixed value, wired to one of DROID’s physical inputs or
ouputs, set by a knob or button on a Droid controller or
internally wired to other circuits in order to create more
complex patches.

A Droid patch lists all the circuits you want to use and de-
scribes how they are connected and how the parameters
are set.

Technically, a patch is a small text file with the name
droid.ini, which is located on the micro SD card in the
SD slot of the master. You can create and modify this
file with any text editor you like, and the chapter Writing
Droid patches with a text editor goes in all length through
the structure of that file (see page 47).

However, starting in November 2022 there is a new ap-
plication for Mac and Windows called the Droid Forge

Table of contents at page 2

fer to the text representation in droid.ini, because it’s
much easier for showing just small portions of a patch
Working with the Forge is highly recommended. How- than a full sized screen shot of the Forge. And it s straight
ever, in this manual you will find lots of examples that re- forward to recreate these examples in the Forge.

- or simply the Forge. That’s the new graphical tool de/pages/downloads.
for creating patches and makes working with the Droid
super easy. The Forge is available for free down-
load for on https://shop.dermannmitdermaschine.

motoquencer_minimal - DROID Forge

01D O O,68 O X0 L F288 O Hé O

DROID

Circuit

(17
YYY

Parameter

LFO and Sequencer

Senidels Master clock
hz 20 * Potentiometer P1.1 +

5] —

+'| MOTOQUENCER

ﬁ This motoquencer has as many steps as you have M4 faders
clock " == CLOCK
Output O1
Output O5

0 problems

DROID manual for blue-6 8 Table of contents at page 2

https://shop.dermannmitdermaschine.de/pages/downloads
https://shop.dermannmitdermaschine.de/pages/downloads

A first patch example - step by step

So let’s start! First install the Droid Forge. Download it
from the upper link and install it to your Windows PC or
Mac. After starting it you get a window like in the screen-
shot above. The Window is divided into three areas:

(untitled) - DROID Forge

ORI O OB

@ .. oG

R RE
ERH

Untitled section

0 problems

- At the top there is the rack view, where you see the
Droid modules that you are working with

+ At the bottom right is the patch view, where you
see the circuits and their parameters

- At the bottom left is the list of sections. They are
for dividing your patch into sections and make it
easier to read.

DROID manual for blue-6

Now let’s create a first simple patch. The first step is to
choose wether to use MASTER or MASTER18. Select this
in the menu Rack in the entry Master module. For this ex-
ample we assume the MASTER.

Thenit’s time toadd your first circuit. From the Edit menu
choose New circuit.... This opens a dialog for adding a cir-
cuit to your patch:

(] Add new circuit

Modulation Sequencing CV Processing Controls Clocks / Triggers ~ Math /Logic Pitch MIDI Other Deprecated

CONTOUR - Contour generator 512 bytes
An enhanced version of the classic ADSR-envelope generator with the six phases predelay, attack, hold, decay,
sustain and release.

LFO - Low frequency oscillator (LFO) 428 bytes
A flexible low w veforms, phase modulation, flexible sync mechanisms,
randomization, wave form morphing and other interesting features.

RANDOM - Random number generator 88 bytes
A random number generator with clocked and unclocked mode, that can either create voltages at discrete steps and
completely free values

SPRING - Physical spring simulation 208 bytes
A physical simulation of a mass hanging from on an ideal springk which can create interesting "bouncing” CV
sources.

TRANSIENT - Transient generator 192 bytes
This circuit creates (possibly very slow) linear transients from a defined start value to an end value.

Start with typical example ¢ search: | Manual Cancel

Select the LFO circuit and click OK. This adds an LFO to
your patch. Because the setting at the bottom left is set
to Start with typical example, your LFO will already have
a couple of inputs and outputs defined:

(untitled) - DROID Forge (modified)

5 problems

Input are written in blue, outputs in red. You learn about
all available parameters of a circuit in its chapter here in
this manual. Have a look at the LFO circuit on page 239.
For example:

- hz sets the speed of the LFO in cycles per second.

+ level defines the maximum voltage level of the
output

+ bipolar changes the range from 0V ... 10V to -
10V.. 10V, ifsetto 1.

The outputs provide various wave forms of the LFO.

If you want to add more inputs or outputs, choose New
parameter... from the Edit menu or press the icon Pa-
rameter in the toolbar. And of course every action in the
Forge has a keyboard shortcut, in this case 8 N (or CtrI N
on Windows).

Table of contents at page 2

Now move the cursor to the row square, either with the
cursor keys or by clicking with the mouse. Move the cur-
sor to the second column.

In the rack view, click on the Droid master on the first jack
in the third row of jacks. That jack is called “Output 1”
or simply 01. This inserts Output O7 as a value for the
square parameter. The LFO will now send a square wave
to output 1 of the Droid master.

Move the cursor to the second colum of the parameter hz
and type 5 and hit the enter key.

Move the cursor to the first column of all other parame-
ters and delete those rows by hitting the backspace key
so that you just have two lines left. We don’t need these
parameters for now.

This is how it should look like when your are finished:

DROID manual for blue-6

(untitied) - DROID Forge (modified)

Your first patch is ready!

There are two ways to load the patch to your master. The
first is by manually swapping the SD card:

+ Pull the memory card from your master and put it
into a card reader in your Mac / PC. After a couple
of seconds the toolbar icon Save to SD becomes ac-
tive.

10

+ Press that icon to copy your patch to the SD card.
It will automatically be ejected afterwards.

- Put the SD card back to your master and press the
master’s button. That loads the patch and the LED
for output 1 will start flashing in 5 Hz (five times a
second).

The second way to deploy a patch is much more conve-
nient, but needs an attached DROID X7 expander (see
page 77 for more details on the X7). With the X7 you can
deploy the patch via MIDI sysex:

+ Wire the X7 with the shipped USB-C to classic USB
cable to your Mac / PC.

. Set the switch on the X7 to the right. After a short
delay the Activate! icon in the Forge becomse ac-
tive.

+ Click Activate!. Your patch will immediatly be
loaded an become active.

Hint: Always keep the micro SD card in the master while
making music with your DROID. It is needed to store
the current state of your patch so you don’t loose your
settings, sequences and so on when turning off your
rack. Also when the SD card is missing there might be
very tiny timing issues (in the range of some milli sec-
onds) while the master is trying to contact the SD card
and can’t.

Table of contents at page 2

2.3 Working with the Forge

Before we have a deeper look at how Droid patches work,
let’s first have a closer look at the Forge.

Problems

Your patch can have problems. These are inconsistencies
that would confuse your DROID, if you loadit. One exam-
ple is a parameter line without a value. In order to avoid
such trouble, the Forge does not let you load a patch while
it has problems.

OMRIIDO O68 O X0

@ o@w
R
lERh el

DROID manual for blue-6

As you see from the screenshot, there is a red triangle in
the toolbar and also a note in the statusbar telling you
that there are two problems. If you click on either of
them, your cursor will jump to the next unsolved prob-
lem. Fix these and you will be able to load the patch.

When loading a patch does not work

As we have seenin the first section, the two toolbaricons
for loading a patch are only active, when that is possible.
If you encounter problems with Save to SD, please check:

+ Make sure your micro SD card in the card reader of
your computer.

- Make sure it is an SD card that already has been
used in the Droid. New and empty cards will not
be accepted.

+ If unsure, check with your Finder or Explorer, if the
card is really accessible.

In case of a problem with Activate!, check the following:

+ This button only works if you have an X7 expander
attached to your master.

+ Check the correct wiring of the X7.

- The switch of the X7 must be in the right position.

+ The X7 must be connected with a USB cable to your
Computer.

- USB-Cto USB-Cdo not work! Use the cable shipped

11

with the X7 or a similar one.

- If the icon still does not get active, try putting the
X7 switch to the middle position and after a small
pause right again.

Working with sections

In the bottom left of the Forge you see a pane with the
entry Untitled section. Sections are a good way to or-
ganize more complex patches. Each section contains a
list of circuits - and thus a part of your patch. You can
move around sections with drag & drop. You can dupli-
cate, rename and delete them and do many other practi-
cal things.

Table of contents at page 2

2.4 Using the master’s inputs and outputs

Inputs and ouptuts

The MASTER has eight CV inputs and eight CV ouputs,
both ranging from -10 V to +10 V. The inputs are abbre-
viated with I1, I2, ... I8, the outputs with 01, 02, ... 08.
The MASTER18 does not have CV inputs, but instead it
has two trigger/gate inputs called I1 and I2 and four trig-
ger/gate outputs called G1 .. G4.

These jacks allow your Droid patch to communicate with
the outside world. The abbreviations 01 and so on are
also called registers.

To use an output, you need to connect an output param-
eter of a circuit to it. There are several ways to do this:

+ Click on the output jack in the image of the master
while the cursor is right next to an output parame-
ter.

- Type the output’s name while the cursor is at that
position, e.g.03.

+ Press enter while the cursor is next to an output.
That opens a dialog where you can see all options.

DROID manual for blue-6

Edit output parameter

External output Control Internal cable

03
O: Output
G: Gate
L: LED in Button

N: Normalization

R: RGB-LED R: RGB-LED

X: Special S: Swich

Main output of the envelope. Patch this to your filter, VCA or wherever you like.

This output outputs arbitrary types of CV values.

For inputs it's much the same. Move the cursor into the
second column, right next to the input name, and assign
one of the inputs.

Input normalization on MASTER

Eurorack modules know the concept of input normaliza-
tion. This means that an input gets some default signal
when nothing is patchedin the jack. The DROID supports
this by offering the registers N1 ... N8. These behave like
outputs that are internally connected to the normaliza-
tions of the input jacks.

When circuit send an output signal to N1, this signal is
seen by input I1, as long as nothing is patched into that
input. This allows you to create more flexible patches.

12

You might for example have an internal clock in your
patch (created with an LFO circuit) that can be overrid-
den by patching something into I1.

Todothat, sendyourinternal LFO clock signal toN1. Then
let the rest of the patch use I1 as clock input.

Gate in- and outputs on the MASTER18

The two inputs I1 and I2 on the MASTER18 can be used
as inputs just as the inputs of the MASTER. The differ-
ence is that these just know the logical levels “low” and
“high”. Low is when the input voltage is below 0.75 V. In
the patch this is treated like 0. If the voltage is above, it's
considered high and treated as 1.

If you send something to one of the four gate outputs 61
.. G4, it will output 0 V if your input signal near to 0 and
5V otherwise.

All these six jacks are ment for tasks like clocks, triggers
and gate signals.

Using the G8 gates expander

You can connect up to four G8 expanders to your master.
Each G8 gives you eight additional gate inputs or ouputs.
Each jack of the G8 can be used as an input or output, de-
pending on how you use it in your patch.

In the Forge there is one G8 being displayed in your rack
view per default. If you don’t have a G8 or you have
more than one, you can fix that in the View menu. When
the current patch actively uses any of the G8 jacks, the

Table of contents at page 2

needed G8s are always being displayed. Use your G8
ether by clicking on one of the jacks in its image, or press
Enter for aguided dialog and select G: Gate, or simply type

2.5 Numbers and voltages

How voltages are converted

DROID is a CV processor that inputs and outputs con-
trol voltages. But internally it works with just numbers,
because this is much more convenient. Here is how the
DROID operates:

1. When reading voltages from the input jacks, these
are converted from the range -10V to +10 V into
the number range from -1 to +1.

2. All circuits operate on these numbers.

3. When sending numbers to the output jacks, the
numbers are converted back from -1 to +1 to the
voltage range -10 Vto +10 V.

This means that if the DROID reads a voltage of 2.5V at
one of its inputs, in the DROID patch this will appear as
0.25. Orif you send a value of 0.5 to one of the outputs,
it will output exactly 5.0 V. This is in fact very convenient
as you will see.

DROID manual for blue-6

e.g. 62.7 for gate 7 on the second G8 expander.

Note: The G8 cannot output continous CV values. When
used as output it either sends 0V or 5V. And inputs see a

In your patch you can either write 2.5V or 0.25. Both
mean the same. It’s up to you which of both you prefer.

Voltages out of range

The DROID’s hardware cannot work with voltages be-
yond +10 V. This is no limitation, since Eurorack has a
maximum voltage range of £12 V and barely any module
reaches even 10V atits output. Many digital modules are
even limited to therange 0 V...5 V.

That means that any voltage out of that range appearing
ataninput is simply truncated. Send -10.8 V at an input
and DROID will seeitas-10V. Or send the number 1.1 to
an output (which would be 11 V) and it will output 10 V
nevertheless.

But: internally - in your DROID patch - numbers can get

arbitrarily low or high. So in intermediate stepsit’s abso-
lutely no problem to work with larger numbers. Some cir-

13

high signal at a voltage about 0.75 V.

Please refer to page 75 for more details on the G8.

cuits even require such numbers. E.g. in the minifonion
(see page 279) you specify the root note B by saying root
= 11. On the side of the jacks that would mean 110V, but
that’s not relevant here.

For those of you wanting to dig more into the de-
tails of number processing: DROID works inter-
nally with 32 bit floating point values. The ex-
ponent is 8 bits. The largest number is slightly
above 300000000000000000000000000000000000000
(a 3 with 38 zeroes).

The smallest number greater than zero is approximately
0.000000000000000000000000000000000000011
(that’s 37 zeroes after the decimal point). The negative
range is similar.

One word about the G8 expander: its outputs can only
output two possible voltages: 0 V and 5 V. The rule is:
any number >= 0.1 sent to one of its G registers will set
its output to 5V, any other number to 0 V.

Table of contents at page 2

2.6 Multiply and add, attenuation and offset

As you might have noticed, input parameters of circuits
have three columns where you can enter values, whereas
outputs just have one. These three columns are:

A: Input value
B: multiplication / factor / attenuation

2.7 Internal connections

One important concept for building more interesting
patches is adding connections between circuits. These
connections are called internal cables.

Consider the following example: You have one LFO cir-
cuit that outputs a square wave, which should be used as
a clock signal. That clock shall trigger an envelope circuit
(called contour).

Let’s assume you want to create a cable from the square
output of the LFO to the gate input of the envelope. To
do this, move the cursor to the second column of the
square output and press = (equals). This starts creating
a cable. You will see an indicator in the statusbar.

Now move the cursor to the target of the cable: the pa-

DROID manual for blue-6

C: offset

So the value that’s actually used by the inputis Ax B+C.
That’s much like Eurorack modules that have an addi-
tional potentiometer for CV attenuation (hence multipli-
cation) and/or offset.

rameter value of the gate input. Here press = again (or
enter, if you like). This opens a small dialog for giving the
cable a name. Choose a nice name that helps you under-
stand what’s going on later - for example CLOCK.

After hitting enter or pressing OK, you get a connection
from the square output to the gate input. The envelope’s
output is wired to 01 in this example, so you get an enve-
lope triggered at 8 Hz at output 1.

These are the rules for internal cables:

+ Every cable must be connected to exactly one out-
put.

+ Every cable must be connected to at least one in-
put.

14

The special thing about DROID is: Even the attenuation
and the offset can themselves be CVs (come from exter-
nal sources, other circuits, etc.). So essentially evey input
has a small VCA and mixer included.

That means that you can use a cable as a multiple and dis-
tribute signals to several circuits. But if a cable has noin-
puts or no or more than one output connects, it counts as
a problem and you cannot load the patch.

Note: There are more ways to create patch cables:

+ In a cell type an underscore followed by the name
of the cable.

+ In acell press enter and choose a cable in the value
dialog (or type a name for a new cable)

+ Hold XX while clicking into another cell (Windows:
Alt key). That creates a cable between the two
cells.

Table of contents at page 2

2.8 Controllers

Adding controllers

The fun part with DROID is attaching one or more con-
troller modules to your master. When the project started,
there was just the P2B8 controller available, which has
two potentiometers - or short pots - and eight buttons.
Hence the name! Now there are alltogether six con-
trollers that you can get for Droid. Learn more about
the available controllers and how to connect them to the
master on page 59.

In a nutshell, when wiring the controllers please check the
following things:

- Check that the small green jumper on each con-
troller is set to Park (or removed). Just on the last
controller it must be at Last.

+ The X7 must always be the first in the chain.

+ The cable coming from the master must go to IN,
the cable to the next controllers is plugged into
OUT.

Once your system is setup, it's very easy to use con-
trollers in your patch. The first step is adding them to
the rack view of the Forge. To do this double click on
the background or choose New controller from one of the
menus or use the Icon Controller in the sidebar. The or-
der of the controllers from left to right in the Forge must
match the order of the wiring in your rack.

Notes:

+ You can rearrange controllers with drag & drop.
The patch will automatically be adapted so all
references to the controls still work as expected.
That's an easy way to adapt a foreign patch to your
rack.

DROID manual for blue-6

- When you remove a controller the Forge offers you
to remap its controls to other existing controllers.

+ The master, X7 and G8s cannot be moved.

- If you don’t have or don’t use the G8 or X7, you can
hide it from the rack view. Check the View menu
for that.

Using pots

The easiest way of using a potentiometer is by moving
the cursor to a cell of an input parameter and then click-
ing on the pot in the rack view. This will insert something
like Potentiometer P1.2in the cell.

Here P1.2 is the register name for the pot and it means
controller one pot two. If you aren’t a mouse guy, you also
can type P1.2 if you like (omit the word Potentiometer,
that will appear automatically). Or you press enter in a
cell to get the value selector where you find the pots un-
der Controls.

A pot always represents a value from 0.0 to 1.0 depend-
ing on the pot position. Often that range is not what you
need, but with the help of the columns 2 and 3 (factor and
offset) you can create any custom range. Consider using
potP1.2 for setting and LFO speed between Tand 10 Hz.
This can be done by:

Column 1: Potentionmeter P1.2
Column2: 9
Column3:1

In the text representation this would be:

hz = P1.2 * 9 + 1

15

The math is easy: If the pot is totally at its left position,
the register P1.2 has the value 0.0. So9 x 0.0 = 0.0 and
thus adding one gives 1. At the right position the value of
the potis 1.0,s09 x 1 + 1 = 10.

You can do much more complex things with potentiome-
ters. Forany of those please have a look at the circuit pot
(see page 329). For example you can:

- Overlay one pot with several independent func-
tions by using select

- Save different values of a pot into up to 16 presets

- Create avirtual center notch, to make it easy to se-
lect the middle position exactly.

- Have a pot output discrete numbers, for example
0,1, ... 8, toselect preset numbers, pattern lengths
und much more

. Apply a non-linear slope to the output value

If you don’t need any any of these, just use pot directly
without the pot circuit. That keeps your patch simpler.

Hints:

- If you right-click on a pot, button or other control
in the rack view, you get a context menu.

+ You can rearrange assignments of controls with
drag & drop in the rack view.

+ Double clicking on a control allows you to label it.

Using buttons

A button outputs the value 1 while pressed or 0 other-
wise. It's register abbreviation is B, so B3.4 is the button
four on controller 3. You assign them just like pots.

Table of contents at page 2

The main difference is that buttons contains an LED. So if
you want to make use of that, you need to output a value
to the LED.

The button LEDs have their own registers, named L. So
the LED in button B3.4 is called L3.4. If yousend a 0.0
to an LED, it will be dark. A 1.0 will make it shine at full
brightness. Anything inbetween selects some intermedi-
ate brightness.

Sounds complicated, but at the end it makes sense, as
you will see. And it also gives you flexibiliy.

Most times you don't like to hold the button all the time
to make it do its work. You want it to switch between
on and off with each press. This is done with the circuit
button (see page 141). And that also helps you to deal
with the LED.

The following example is in Droid source syntax, but it is
straight forward to setup this in the Forge. Add the circuit
Button and the two parameter lines button and led:

[button]
button = Bl.1
led = L1.1

DROID manual for blue-6

Now each press at button 1 on controller 1 will toggle the
button. led is an output parameter so the LED register
L1.1 will hold the current state of the button - either 0 or
1.

You can use that as an input to some other circuit, for ex-
ample for switching on and off an LFO by setting its level
toOor1:

[button]
button = B1.1
led = L1.1

[1fo]
hz = 3
level = L1.1
sine = 01

There are many more ways for using buttons. Please look
at page 141 for more examples. And also look at the cir-
cuit buttongroup (see page 146). It can group several
buttons together in a convenient way.

Hint:

+ If in a circuit the LED definitions do not match the
buttons, a light bulb icon will apear in the circuit

16

header. Click that to make the LEDs automatically
match the buttons.

Switches

The S10 controller has ten switches. They have the regis-
ter abbreviation S. The first two switches have eight po-
sitions and output the discrete numbers 0, 1, ... 7. The
small switches just have three positions: 0, 1 and 2.

You can either use these switches directly in your patch or
might want to try the circuit switch (see page 361), for
assigning something for every switch position. Create a
circuit with one input for every position and just one out-
put.

You get more details on the S10 on page 67.

Motor faders

The motorized faders from the M4 are always accessed
via special circuits. Please refer to page 71 for all details
about the M4.

Table of contents at page 2

3 Advanced patching concepts

3.1 Oneknob - multiple functions

Introduction

What | liked about modular synthesizers from the be-
ginning was the principle known as “one knob one func-
tion”. In the 60’s that was certainly not yet a principle. It
was the only way to build devices. Today buttons dedi-
cated exclusively to a specific function have been almost
completely rationalized away - whether it’s washing ma-
chines, cars or even doorbells of apartment blocks. Sure,
the manufacturer saves money by simply installing one
touchscreen instead of 50 real mechanical switches. The
only thing that’s unfair is that we are being told that it’s
progress that our car’s cockpit is so “clean” that we have
to navigate to the third menu level to change the seat
heating.

So “one knob one function” feels like pure luxury these
days! And DROID is built for you to indulge in such a lux-
ury. After all with 16 B32 controllers you can connect no
less than 512 buttons to one master. So you can get quite
far in reserving one button for one function.

The problem, however, (and | have to admit this at this
point) is that it is a luxury. If you spend some time in cre-
ating cool DROID patches, new ideas pop up like mush-
rooms and in no time all pots and buttons are occupied.
And not everyone has the money, the time and the pa-
tience, to order new controllers all the time.

That’s why DROID has a sophisticated system of over-
laying your controls with almost as many functions as
you want and switch between them, similar to menus or
modes.

DROID manual for blue-6

Overlaying pots

Let’s start with pots. Let’s assume that you have one
P2B8 and want to use the upper pot to control both the
attack and release of an envelope. The first step is to use
the circuit pot (see page 329). Itis able to create a virtual
pot from a real one. Let’s do this and start with control-
ling the attack:

[p2b8]

[pot]
pot = P1.1
output = _ATTACK

[contour]
trigger = Il
output = 01
attack = _ATTACK

While this works, it has not really helped, yet. Still the pot
has just one function. In order to map a second function
on the same pot we need to do three things:

- Create a second pot circuit for the same poten-
tiometer.

+ Add a button for switching between these two
functions.

+ Use the select inputin both pot circuits to choose
which of the two functions should be active.

For ourexample we want to use the buttonB1.1to switch
between controlling attack and release. For that we cre-

17

ateabutton circuit, so that we can toggle the button. On
should choose release and off attack.

We use the normal output of that circuit for selecting the
release function. And the inverted output of the button
is @ when the button is active and 1 otherwise: just the
opposite of output. We use that to select the other vir-
tual pot - that for attack. Here is the complete patch:

[p2b8]

[button]
button = Bl1.1
led = L1.1

output = _SELECT_ATTACK
inverted = _SELECT_RELEASE

[pot]
pot = P1.1
select = SELECT_ATTACK
output = _ATTACK

[pot]
pot = P1.1
select = SELECT_RELEASE
output = RELEASE

[contour]
trigger = I1
output = 01

attack = _ATTACK
release = _RELEASE

To summarize:

Table of contents at page 2

- For each virtual pot function that you need, create
one pot circuit.

- Patch the outputs of these circuit to the inputs you
want to control.

- Use the select inputs of the pots to decide which
pot should be active.

- Make sure that at any time exacly one of the pot
circuits is selected.

Note: As soon as you map several virtual functions to one
pot, there is a difference between the physical position
of the actual pot and the current virtual value. Neverthe-
less, turning the physical knob changes the virtual value.
Please refer to pot (see page 329) for details.

Using button groups for selection

In the upper example we used a button for toggling be-
tween two states. If you want to have more than two
function on a pot you need to choose a different method
for selecting the “mode”. One is to use a buttongroup
(see page 146), like the following one:

[buttongroup]
buttonl = Bl.1
button2 B1.2
button3 B1.3
button4 Bl.4
ledl = L1.1
led2 = L1.
led3 = L1.
led4 = L1.

]
A WN

This group acts like “radio buttons”. If you press one of
the four buttons, it is selected and the other three but-
tons are switched off. At any time, exactly one of the
buttons is active.

DROID manual for blue-6

Now we can use the L1.1 .. L1.4 outputs of the button
group for selecting four different pot functions:

[pot]
pot = P1.1
select = L1.1
output = _ATTACK

[potl]
pot = P1.1
select = L1.2
output = _DECAY

[pot]
pot = P1.1
select = L1.3
output = _SUSTAIN
[pot]
pot = P1.1
select = L1.4
output = _RELEASE

An alternative way is to use the output of the
buttongroup. This outputs one of the numbers 0, 1,
2 and 3 depending on the selected button.

You can have the pot circuit get active on a specific num-
ber by using it’s selectat input in addition to select. If
you use that, you can specify a value that select needs
to have for the circuit to be selected (This also avoids a
problem with the led outputs of the button group, which
don’t work if the button group itself uses select, as we will
see later). Look:

[buttongroup]
buttonl = Bl1.1
button2 = Bl1.2
button3
buttond4

non
W @
[y
)

18

ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

output = _SELECT

[pot]
pot = P1.1
select = _SELECT
selectat = 0

output = _ATTACK

[pot]
pot = P1.1
select = _SELECT
selectat = 1

output = _DECAY

[pot]
pot = P1.1
select = _SELECT
selectat = 2

output = _SUSTAIN

[pot]
pot = P1.1
select = _SELECT
selectat = 3

output = RELEASE

Here the first pot circuitis selected when _SELECT has the
value 0, and so on.

Selecting with switches

The S10 controller (see page 67) is perfect for selecting
virtual functions. The two rotary switches have eight po-
sitions each and can directly be used for select in com-
bination with selectat.

Table of contents at page 2

[sl0]

[pot]
pot = P1.1
select = S1.1
selectat = 0
output = _ATTACK

[pot]
pot = P1.1
select = S1.1
selectat = 1
output = _DECAY

[pot]
pot = P1.1
select = S1.1
selectat = 2
output = _SUSTAIN

[pot]
pot = P1.1
select = S1.1
selectat = 3
output = _RELEASE

Note:

+ In this example the switch positions 4 though 7
don’t have any function.

+ The small toggle switches of the S10 output 0, 1 or
2 and are useful for smaller selections.

Overlaying buttons

Just as pots, buttons can have multiple overlayed func-
tions. This time you need to use the select input from
the circuit that controls the buttons. The most obvious
such circuit is button. But also buttongroup and even

DROID manual for blue-6

more complex circuits like algoquencer (see page 115),
matrixmixer (see page 250) and nudge (see page 320).

Here is an incomplete sketch of a circuit that uses a but-
tongroup with three buttons to select one of three in-
stances of an algoquencer. That way the buttons B1.1,
B1.2 and B1.3 choose between three “tracks” or “instru-
ments”:

[p2b8]
[b32]

[buttongroup]
buttonl = B1.1 # select track 1
button2 = B1.2 # select track 2
button3 = B1.3 # select track 3

ledl = L1.1
led2 = L1.2
led3 = L1.3

output = TRACK

[algoquencer]
select = _TRACK
selectat = 0 # track 1
buttonl = B2.1
button2 B2.2
button3 B2.3
button4 B2.4

ledl
led2 = L2.
led3 L2.
led4 = L2.

L2.

A WNR

trigger = 01

[algoquencer]
select = _TRACK
selectat = 1 # track 2
buttonl = B2.1
button2 = B2.2

19

button3
button4

Inn
o
NN
W

ledl = L2.1
led2 = L2.2
led3 = L2.3
led4 = L2.4

trigger = 02

[algoquencer]
select = _TRACK
selectat = 2 # track 3
and so on...

Notes:

+ The three algoquencer circuits are mapped to the
same buttons but at any time just one them uses
them and displays its state at the LEDs of these
buttons.

- Since the buttongroup outputs the values 0, 1 and
2, the first track (aka “Track 1”) is selected by 0, not
by 1.

Important: CV inputs of algoquencer like activity are
not handled by the select input, even if you assign a pot
to them. These are “dump” CV inputs that just use the
value that is patched there. If you want your activity pot
to be switched, as well, use additional pot circuits and use
the select input at these, as discussed above.

Multi level menues or selections

Selections can be nested into several levels. Let’s make
an example: You have a top level buttongroup made out
of the buttonsB1.1..B1.40naB32. Each button selects

Table of contents at page 2

one of four instruments. Each such instrument is repre-
sented by one arpeggio (see page 127).

The second level consists of eight buttons on the B32 -
the buttons B1.5 .. B1.12 - shall select the allowed scale
notes for the arpeggio, such as selectl, select3 and so
on. So alltogether you have 4 x 8 = 32 settings, but just
12 buttons.

The implementation is straightfoward if you keep in
mind that you must not used the led... outputs of a
buttongroup for something else than the actual LEDs, if
that group uses its select input. Remember: the led out-
puts of an unselected circuit are inactive.

In the toplevel group of buttons this is not a problem,
since it is always active. It doesn’t use its select input:

Select the instrument
[buttongroup]
buttonl = Bl1.1
button2 = B1.2

button3 = B1.3
buttond = Bl.4
ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

The second level groups can directly use the L1.1.. L1.4
registers for their selection. But here we cannot use the
led outputs for selecting the scale notes, since they will
be inactive if the instrument is not selected. Instead, we
can use the buttonoutput outputs. They always keep
their value - regardless of the current selection.

Scale notes of instrument 1
[buttongroup]
minactive = 1

DROID manual for blue-6

maxactive = 8
select = L1.1 # first instrument

buttonl = B1.5
button2 = B1.6
button3 = B1.7
buttond = B1.8
button5 = B1.9

button6 = B1.10
button7 = B1.11
button8 = Bl1.12

ledl = L1.5
led2 = L1.6
led3 = L1.7
led4 = L1.8
led5 = L1.9
led6 = L1.10
led7 = L1.11
led8 = L1.12

buttonoutputl = _SEL_INST1_1
buttonoutput2 = _SEL_INST1_3
buttonoutput3 = _SEL_INST1 5
buttonoutput4 = _SEL_INST1_7
buttonoutput5 = _SEL_INST1_9
buttonoutput6 = _SEL_INST1 11
buttonoutput7 = _SEL_INST1_ 13
buttonoutput8 = _SEL_INST1_FILL

Inthe arpeggio (see page 127) circuit of instrument 1you
can now wire the selection cables to the corresponding in-
puts:

Arpeggiator 1

[arpeggio]
selectl = _SEL_INST1_1
select3 = _SEL_INST1_3
select5 = _SEL_INST1_5
select7? = _SEL_INST1_7

select9 = _SEL_INST1 9
selectll = _SEL_INST1_11
selectl3 = _SEL_INST1_13
selectfilll = _SEL_INST1_FILL

20

selectfill2 = _SEL_INST1_FILL

selectfill3 = _SEL_INST1_FILL

selectfill4 = _SEL_INST1_FILL

selectfill5 = _SEL_INST1_FILL
. # further stuff here

Notes:

+ This example shows how you can use one
buttongroup with eight buttons and maxactive
= 8 as a elegant replacement for eight individual
button circuits.

- Otheruse cases might prefer the output of the but-
ton group instead of the buttonoutput outputs.

Dealing with unused buttons

You might have situations where some of the buttons are
not selected at all. With this | mean that none of the se-
lected circuits use them. DROID doesn’t touch the LEDs
in these buttons and they keep their last state. This can
be confusing and you probably will want to switch LEDs
in unused buttons off.

You do this by using a buttongroup circuit where you
don’t map the buttons, just the LEDs, and set maxactive
= 0. And you make sure this “dead” button group is se-
lected in the above situation:

[buttongroupl
select = _SOME_SELECT
maxactive = 0

ledl = L2.5
led2 = L2.6
led3 = L2.7
led4 = L2.8

Table of contents at page 2

The upper example switches of the LEDs L2.5 ... L2.8,
whenever _SOME_SELECT is not zero.

Overlaying switches of the S10

People keep asking how they can put multiple functions
on the rotary or toggle switches of the S10. | must admit
that I haven’t found a good way to do this. The LED in a
button can be switched as the function switches. Ina pot
| always can detect some movement. But how would you

3.2 Presets

Introduction

If you look carefully through the description of all
circuits, you will find some that have a preset in-
put. Among these are algoquencer (see page 115),
button (see page 141), buttongroup (see page 146),
calibrator (see page 150), faderbank (see page 220),
fadermatrix (see page 222), matrixmixer (see page
250), motoquencer (see page 286), motorfader (see
page 311), notebuttons (see page 317), nudge (see page
320) and pot (see page 329). All these circuits have
in common that they have some internal “state” that
can be changed by user interaction. For example in
algoquencer this state comprises the current trigger pat-
tern that you've entered with the buttons.

A preset is one “memory slot” where you can load or save
the circuit’s state. This is done with the inputs preset,
loadpreset and savepreset. When you load another
preset, the circuit immediately switches to a different
state. This does not mean that it does a reset of the cur-
rent running state: For example the algoquencer does

DROID manual for blue-6

deal with the fact that the current position of a mechani-
cal switch does not match it’s “logical” position. OK, you
toggle a switch back and forth after switching the mode,
in order to show that you want to changd its value. But
that’s not really fun to do.

So right now, the S10 is for the true believers in the “one
switch one function” principle.

not jump to the first step when you load a preset.

For internal reasons the total memory that a circuit
can use for its state is limited. Therefore, each of the
upper circuit provides a different number of presets.
For example the algoquencer has 16 presets whereas
motoquencer has only 4. Hereby the currently active
state does not count as a preset, so motoquencer has five
times the memory for storing its state: the currently ac-
tive one plus the four presets. All these five states are
automatically saved to your SD card whenever there is a
change.

Switching presets with a button press

Switching between the presets can be done in two ways:
in triggered mode and in immediate mode. Let’s start
with the triggered mode. Here you need to use all three
mentioned inputs:

- The input preset tells the circuit which of the pre-

21

Overlaying faders of the M4

The motor faders in the M4 are meant to be overloaded
with multiple functions. It's really what makes them
stand out against all other input devices. Unlike pots they
can correctly show their current value physically. And
they even can behave as switches with discrete position
if needed.

Using the faders of the M4 is done by dedicated circuits.
Please refer to the chapter about the M4 for details (see
page 71).

sets to load or save. The first preset has the num-
ber 0, the second is 1 and so on.

- Atrigger to loadpreset loads a preset into the cir-
cuit.

- A trigger to savepreset saves the current state of
the circuit into a preset.

Typically you would use a buttongroup (see page 146) to
specify the preset number. If you have a S10 controller,
it's straight forward to use one of the rotary switches for
the preset number. But you can also turn a normal pot
into arotary switch by using the circuit pot (see page 329)
and set discrete to the total number of different presets
that you want to use.

Here is an example of switching presets in an
algoquencer using a pot. We use the full 16 presets.
Loading is done with buttonB1.1 and saving with button
B1.2. Note: the preset numbers start from 0, so it's a
perfect match for the discrete function:

[p2b8]

Table of contents at page 2

[pot]
pot = P1.1
discrete = 16 # output will be 0 ... 15

output = _PRESET

[algoquencer]
preset = _PRESET
loadpreset = B1l.1
savepreset = Bl1.2

Notes:

- When you load a preset, changes to the current
state get lost (if you haven’t saved them before).

+ The current state does not get lost when you
restart your DROID or switch off your modular. It
is saved to the SD card along with the presets.

Using long presses to avoid losing data

It’s not entirely unlikely that you will press the wrong but-
ton from time to time. When that’s your load or save
button, you might overwrite some sequence that you've
carefully crafted.

It's therefore a common trick to shield the preset triggers
with long presses. Use a button (see page 141) circuit for
each of the two buttons and use it's longpress output.
The led output is not neccessary as the button has no
state. Here is the upper example with the extra safety
net enabled:

[p2b8]

[pot]
pot = P1.1

DROID manual for blue-6

discrete = 16 # output will be 0 ... 15
output = _PRESET

[button]
button = Bl.1
longpress = _LOAD_PRESET

[button]
button = B1.2
longpress = _SAVE_PRESET

[algoquencer]
preset = _PRESET
loadpreset = _LOAD_PRESET
savepreset = _SAVE_PRESET

Now the loading and saving just happens when you press
and hold the respective button for at least 1.5 seconds.

Hint: If you are a more experienced DROID geek, you
could try using a burst (see page 139) circuit to create a
short blinking animation in the button whenever a preset
is loaded or saved (left as an exercise).

Immediate switching of presets

The other way of switching presets is without triggers or
buttons. Thisis even simpler toimplement. Just omit the
loadpreset and savepreset inputs:

[p2b8]
[pot]
pot = P1.1
discrete = 16 # output will be 0 ... 15

output = _PRESET

[algoquencer]

22

preset = _PRESET

Here are the differences to the triggered mode:

- As soon as you turn the pot (i.e. the preset input
changes, a new preset is loaded.
+ The current preset is automatically saved.

And a subtlety: because the current preset and the cur-
rent state are essentially the same, you “lose” one mem-
ory slot. With immediate switching, motoquencer has
just the four presets and no “extra” preset in the current
state.

Switching with triggers only

There is yet another way of switching presets. Itisacom-
bination of the other ways. Here you work with triggers,
but these triggers at the same time hold the number of
the preset to load or to save. This makes situations eas-
ier where you have one button per preset. Look at the
following example:

[mixer]
inputl = B1.1 * 1
input2 = B1.2 * 2
input2 = B1.3 * 3
output = _LOAD_PRESET

[mixer]
inputl = B1.4 * 1
input2 = B1.5 * 2
input2 = B1.6 * 3
output = _SAVE_PRESET

[algoquencer]
loadpreset = _LOAD_PRESET
savepreset = _SAVE_PRESET

Table of contents at page 2

This means that if the trigger CV has the value 2 when it
is non-zero, it loads preset number 2. This mode is auto-
matically active, if you don’t patch the preset input.

There is one drawback of this method: you cannot eas-
ily access preset number 0 that way, since the CV 0 is not
sufficient for triggering the input. The trick is sending a
value larger than 0.1 (which is the threshold for boolean
“true” values) and less than 0.5 (which would be rounded
to 1). So for example send a trigger with the value 0.3 to
load or save preset number 0.

Things not stored in presets

Every now an then the question pops up why things like
activity of the algoquencer are not saved in a preset.
The answer is: the activity is not part of the internal
state of the algoquencer. It'sa CVinput. Its value comes
from the outside.

At first this might be counterintuitive if you map a pot to
it (like activity = P1.1). But believe me: it’s still a CV
input. algoquencer cannot know that it’s a pot. And if it
would save that to a preset, and load it later: What should
it do with the CV input? Should it be ignored in future?

3.3 Taptempo

There are a few circuits that have a taptempo input.
Among these are burst (see page 139), contour (see
page 167), gatetool (see page 235) and 1fo (see page
239). Such aninput is used to specify a time interval or a
frequency. That's basically the same. For example anin-
terval of 0.5 seconds corresponds to a frequency of 2 Hz.
Sometimes thatintervalis thenused as a gate length. The
circuit 1fo (see page 239) is an example of a circuit that

DROID manual for blue-6

You see: lot’s of problems...

Still you might want to save the pot’s position to a preset.
And this can be done with a pot (see page 329) circuit, as
we will see below.

Saving pots to presets

You might ask yourself: How can | get a preset for the
position of a potentiometer, such as on the P2B8? Espe-
cially if | use it for controlling things like activity in an
algoquencer?

The solution is very easy: Use pot (see page 329). It has
a preset input. And then patch it’s output to the input
that you want to control with the pot via an internal ca-
ble:

[pot]
pot = P1.2
preset = PRESET
output = _ACTIVITY
[algoquencer]

activity = _ACTIVITY

uses this information as a frequency.

With taptempo, instead of specifying a number of sec-
onds or milliseconds, you send a number of succeeding
triggers. The time span between these triggers is used as
the time interval.

There are two ways of using taptempo inputs. One way

23

Of course you can combine that with the presets of
algoquencer and switch the value of activate along
with the actual sequencer pattern. Here is an example:

[p2b8]
[pot]
pot = P1.1
discrete = 16 # output will be 0 ... 15

output = _PRESET

[pot]
pot = P1.2
preset = _PRESET
output = _ACTIVITY

[algoquencer]
preset = _PRESET
activity = _ACTIVITY

Note: After loading a preset into a pot, its physical posi-
tion does not reflect its logical value anymore (it would
need a motor for that, just as the motor faders). Please
look at the description of pot (see page 329) to learn how
this works.

is, as the name suggests, a manual input. You can wire
a button to the input and then “tap in” the time interval
with a series of button presses. Here is an example with
1fo (see page 239):

[1fo]
taptempo = Bl.1
sine = 01

Table of contents at page 2

There are a few details that you should now when in-
putting a tap tempo:

- Two button presses are enough to enter a tap
tempo.

+ If you press three times, the two intervals between
the three presses are averaged so your tempo input
gets more precise.

- If you press more than three times, just the last
three presses are recognized.

- If you press the button and the last press was more

DROID manual for blue-6

then four seconds ago, you start a new row of
presses. So you cannot tap in an interval greater
than four seconds.

- Afteryou start your DROID, the taptempo is preset
to 0.5 seconds (which corresponds to 2 Hz).

The second way of using a taptempo input is by patching
a steady clock here. Most probably this will be your mas-
ter clock. Since always the last three clock ticks (“taps”)
are recognized, the set interval is constantly updated to
any changes in the speed of the clock. Please note:

24

+ Speed changes in the input clock need some time

to be recognized.

- When the input clock stops, the tap tempo is not

set to zero or infinity, but simply keeps at the last
setting.

+ The taptempo input of the LFO does not keep the

phase in sync. If you need that, patch the sync in-
put in addition to the taptempo input.

Table of contents at page 2

4 Patch generators

4.1 Introduction

Building complex patches for DROID can be quite chal-
lenging, especially if you are just at the beginning of your
journey. So what people have suggested since the begin-
ning was a good collection of ready-to-use patches.

While this idea sounds appealing, it’s actually not as easy
as it seems. Everybody has as a different set of modules
and controllers, and differentideas. And creating an vari-
ant for every possible situation would vastly multiply the
number of needed patches.

As an example take a patch that creates a performance
sequencer based on M4 motor fader controllers (see page
71). There are so many possible configrations:

4.2 Enable the patch generators

The patch generators are not enabled by default. The rea-
son is that additional software needs to be installed on
your box. This software is the programming language
“Python 3”. It's very common but still may be missing on
your system.

If you are running the Forge on Windows, you should now
install Python 3, if it's not already there. You can do this
either from the Microsoft store. The exact version (3.11,
3.12 or whatever) is not important. It just needs to be
version 3. Or you can get Python directly from its official
home page. This is at Python downloads for Windows.

Important: If you see a checkbox with the text “Add

DROID manual for blue-6

+ How many tracks should be provided?

+ Should the output be via MIDI or CV/Gate?

- What parameters per step should there be?

+ Shall we use two our four M4 controllers?

+ Should it rely on a G8 expander for gate output?
- What type of master module should it use?

+ ...andsoon.

It's obvious that creating one dedicated patch for each
variant like one for “Sequencer for three tracks with two
M4s, MIDI output, no G8, using MASTER18, extra CV for
velocity” would not be feasable.

So we had to find a better solution. And here it is: the
Patch generators. A patch generatorisaprogram or script

Python to environment variables”, make sure that you en-
able it. Otherwise the Forge won’t be able to find the
Python interpreter and thinks it’s not installed.

To enable the patch generators select the menu File /
Patch generators / Enable patch generators.. This will
bring up the following popup:

25

that creates a ready-to-run patch based on choices you
make in a dialog in the Forge. For example in this dialog
you would select the number of tracks, the configuration
of modules to use and so on. Then you press OK and get
a patch that you can upload to your master. Since it’s a
normal patch, you can edit it before this. For example
you could rearrange the buttons by dragging and drop-
ping them with the mouse.

As a start the Forge comes with one first patch generator:
that for a performance sequencer with motor faders.

You can even create your own patch generators. But
that’s a topic that will be covered in a future version of
this manual.

You are going to enable the patch generators.
A patch generator is a little program that
generates a specialized Droid patch, based on
a configuration that you make in a dialog.

These generators are written in the
programming language Python3, so just must
have installed Python3 in order to enable the
generators.

If you proceed and Python3 is not yet
installed, you will be guided through an
installation procedure by your operating
system.

Do you want to proceeed?

https://www.python.org/downloads/windows/

Now click Yes to proceed. If you are running on Mac and
Python 3 is not yet installed, you need to install it now.
You probably get the following popup:

The “python” command requires the command line
developer tools. Would you like to install the tools
now?

Choose Install to download and install the command line
developer tools now.

Cancel Install

Simply confirm by clicking on Install and you are done.

4.3 How to use patch generators

Here is how to generate a patch with a patch generator:

1. Open the DROID Forge and go to the Menu File —
Patch generators. Here you find a list of all genera-
tors your version of the Forge offers.

2. Select one of these. A dialog with options appears.

3. Ifyoulike, select one of the presets and press Load
preset to load it.

4. Gothrough all tabs of the dialog and change any of
the options if you like.

5. Press OK. This generates a new patch.

6. Make sure that the order of the controllers of the
generated patch matches that in your rack.

7. Load the patch to your master as usual.

Inthe rack view all used buttons and jacks are labelled, so
you see how this patchis operated. Furthermore the gen-
erated patch might have comments in the circuits. This
makes it easier to learn how it is built.

DROID manual for blue-6

If everything went fine, or if Python 3 was installed any-
way at the first place, you get the following summary:

The patch generators have successfully been
a enabled.

Note: If is completely possible and OK that you edit
the generated patch before using it. You might want to
change the order of the controllers, to match your cur-
rent setup of your modules. Or you might want to change
the assignments of some jacks or buttons with drag and
drop. But: As soon as you generate the patch again, your
changes will be overwritten and you need to do them,
again.

Hints:

- There is a menu shortcut for the patch generators
(Command + Shift + G on Mac and Ctrl + Shift + G
on Windows). This shortcut brings up the most re-
cently used patch generator. So redoing the gener-
ation with different options is really fast.

- Some generated patches can be really complex. |
suggest that you turn on all options for compress-
ing patches before uploading them to the Droid
module, otherwise the patch might exceed the

26

When you now enter the patch generators menu again,
you new see a check mark next to “Enable patch genera-
tors” and below it the list of all available patch generators
appear - including “Motor Fader Sequencer”. Then you
can proceeed with the next section.

maximum size of 64.000 bytes. You do this in the
Preferences:

Compress patch before loading into master

¥ Remove empty lines (mixes up line numbers in error messages)
+ Rename patch cables to _A, _B, etc. (makes patch less readable)

Cancel

Table of contents at page 2

4.4 Motor Fader Performance Sequencer (MFPS)

Introduction

o O

OROID OROID
ROOT | SCi OCTAVE {DIATONIC | TRANSP | TUNING | GLIDE
186 BPH M | 1BPH | CONT | SWING RUNNING DIVIDER

AUTORST | SHIFT | OCTAVE OIATONIC ACTIVITY PATTERN 2/4/8 | 3/
AUTORST UP/DOWN OCTAVE | B/FLY OCTAVING PATTERN DROP

o O i o

This patch generator creates a patch for a performance
sequencer based on M4 motor fader controllers (see page
71). The sequencer aims at creating interesting melodies
for bass lines and lead voices. It is not so much about
drum sequencing, even if you could use it for that task,
as well.

The Motor Fader Performance Sequencer (MFPS) excels
in situations where you are performing. If offers lots of
features that are useful in live improvisation, finding in-
spiring melodies and simply and playing music. Especially
the fast and intuitive control with the M4 faders with
force feedback make it stand out amongst all existing Eu-
rorack sequencers.

Here are some of the features:

- up to 8 parallel tracks

+ output via CV/gate and/or MIDI

- builtin arpeggiator per track

- up to four presets for each track

- gatelength, velocity and glide per step
+ pitch and gate randomization

DROID manual for blue-6

+ up to 32 steps per track

- steps can have a length of 1- 16 clock ticks

- create even longer tracks using forms and condi-
tional gates

- diatonic transposition within the chosen scale
notes

- performance menu with toplevel control over all
tracks

- everything is controlled with motor faders

+ the faders give haptic feedback

- Get root, scale and transposition from a Sinfonion

+ Mini arpeggiator for repeats and ratchets

+ Pitch accumulator

+ and much more...

To use this sequencer, you need the following modules:

- 1x MASTER or MASTER18
- 1x P2B8

- 1x B32

+ 2x M4

You can extend the patch by adding further modules:

+ up to three G8s provide more gate ouptuts

- an X7 adds MIDI support to your MASTER

- two additional M4s let you edit 16 steps without
switching

The sequencer has one to eight tracks. Each track con-
trols one external instrument, either via CV/Gate or via
MIDI. When using MIDI, you can assign multiple tracks to
the same channel and thus create polyphony.

Each track consists of a normal melody sequencer with
8, 16 or 32 steps. In addition it has a builtin arpeggia-
tor, which creates alogrithmic melodies based on many

27

parameters. You can switch to the arpeggiator with a but-
ton.

Setting up the sequencer

Call the patch generator Motor Fader Performance Se-
quencer like described on page 26. Make sure your mod-
ules are mounted in the correct order in your case.

An easy way to thoroughly learn the sequencer is start-
ing with the preset Minimum (7 track) and play with the
sequencer for a few minutes. Than add more and more
features as you like.

As an alternative you can load the default preset and start
with the whole features set with four tracks and three
presets per track. This is also the configuration the Moto
Kit comes preloaded with. If you have purchased that,
you got a sheet of stickers. We suggest using these stick-
ers label all the buttons and the two pots - once you are
satisfied with your feature set.

If you like, you can reorder some of the buttons with the
mouse via drag & drop before you finally label them.

And now let’s see, how this sequencer works...

Table of contents at page 2

Basic operation

The one basic feature that the sequencer always has -
regardless of the configuration you choose in the patch
generator - is that of playing notes. This means that the
clock is moving a kind of “pointer” through your 8, 16 or
32 step sequence. In the normal Note mode every fader
represents the pitch of one step. The touch button below
let’s you toggle the gate of this step between on and off.

When you move the faders you will notice that you can
feel something like dents or notches. These are simulated
with the fader motors and give you haptic feedback. Ev-
ery notch represents one note of the current scale. This
makes it easier to precisely change a note without look-
ing at some display.

When you learn how to play the sequencer you

might get stuck, things might get weird because
you have changed a setting without knowing what'’s go-
ing on. At any time you can do a long press (1.5 sec-
onds or longer) on the button CLR to reset everything to
the factory defaults. Don’t forget to turn on some of the
steps (touch buttons!) in order to get some notes played,
after that.

Selecting and muting tracks

If you configure your sequencer with more than
one track, there will be one button with a number

for each track. Press this button to select the track. All
settings that are track-specific, such as the values of the
sequence steps, the track menu or other things, always
refer to that track.

Some of the settings are globally and affect all tracks at
once (such as the root note and the scale). If in ques-

DROID manual for blue-6

tion, this manual will point out wether a setting is track-
specific or global.

Q Tracks can be muted. Hold the CTRL-button
and press the track button at the same time.
This will mute or unmute the track. Muting means that
the gate output of the track is suppressed. The track
moves forward even if muted, so it stays in sync with the

other tracks.

Root, scale, other tonality things

Many of the features in the sequencer can be enabled or
disabled in the patch generator dialog. So some of the
functions described in the manual may not be part of your
specific sequencer - especially if you started with a min-
imum setup. If you are missing something, return to the
patch generator and you will find a checkbox there to add
it.

Regardless of your specific configuration there is always
the Tonality menu. By menu | mean a “layer” where the
eight faders control certain things that are not related to
sequencer steps. There are several such menus in the se-
quencer, as we will see later. A menu always uses the first
eight faders. If you have a setup with 4 M4s, the faders 9
to 16 don’t have any function here.

|ﬁ| You bring up the tonality menu by pressing the
\@& button labelled MENU in the patch generator. In
the sticker set that you get with the Moto Kit, there is a
button with a keyboard symbol for this menu.

The main task of the menu is selecting the root note and
scale that you are playing in. Most of the faders have a
global meaning - they affect all tracks at once. Here is
the meaning of the eight faders:

28

1. Root note

2. Scale

3. octave switch

4. Diatonic transposition

5. Absolute transposition

6. Tuning / compose mode
7. Glide duration (per track)
8. Note range (per track)

Tonality menu

The first fader selects the root note. The fader has 17
notches that you can feel (force feedback). These fader
positions mean (from bottom to up): C, Ct, D, ... B, C.
The Cis duplicated at the top.

The second fader selects the musical scale. It has 12 posi-
tions which represent the following 12 scales (from bot-
tom toup). The more common scales have colors, so that
you can find them faster. The color is displayed in the
touch button below the fader when that scale is selected.
The default scale is natural minor (8). It is selected when
you reset the sequencer to the factory settings.

Table of contents at page 2

aug - Augmented scale (just whole tones)

dim - Diminished scale (whole/half tone)

phr - Phrygian minor scale (with b9)

hm - Harmonic minor (b6 but #7)

min - Natural minor (aeolian)

dor - Dorian minor (minor with §13)

hm?® - Harmonic minor scale from the 5th

alt - Altered scale

sus - mixolydian with 374/4t" swapped

X7 - Mixolydian (dominant seven chords)

maj - Normal major scale (ionian)

[

lyd - Lydian major scale (it has a £4)

Scales

@ The root note together with the scale determine
the notes that you select with the pitch faders
when the sequencer is in NOTE mode. You even reduce

the musical “material” more by switching off some of the
notes on the P2B8.

Enabling the button CHRO brings you into chro-
matic mode, where always all 12 notes are in use

and the root note and scale don’t have any effect. More

details about root and scale are in the next chapter.

The third fader is a global octave switch with five posi-
tions. So you can go up or down by two octaves. It af-
fects all your tracks at once. It’s neutral position is in the
middle.

Fader four is more musical. It does a diatonic transposi-
tion. For each position you move it up or down, the se-

DROID manual for blue-6

quenced melodies of all tracks are moved up to the next
or previous note within the selected scale notes.

The absolute transposition on fader 5 - on the other hand
- simply changes the final output pitch by semitomes.
That effectively also changes the root note of the sale.
The fader has 25 positions. The middle position is neu-
tral. So you have a range of one octave in 12 semitone
steps up or down.

Hint: touching the button below fader 3, 4 or 5 snaps it
back to its neutral position.

Fader 6 has three positions. The bottom position is the
normal position. In the middle you activate tuning mode.
Here all tracks output a C and produce steady gate ry-
thms. This allows you to tune your oscillators. The oc-
tave switch still works so you can tune your VCOs in the
pitch that they are played later on.

The top position of fader 8 enabled the compose mode.
Here when you move a fader in pitch mode, the new pitch
is immediately played. The clock does not forward the
steps. This makes it much faster to dial in melodies. Try
it out! Note: the compose mode only works if the se-
quencer is running and the track is not muted.

The remaining two faders control settings per track. This
means that the setting you edit depends on the currently
selected track. You can try this by switching between
tracks while the menu is open.

Fader 7 sets the length of glides of the current track. If
you don’t have enabled glides or the track has just MIDI
output, the fader is without function.

Fader 8 is also per track and selects the pitch range of the
melody sequencer. The fader has six positions, which se-
lect one, two, three, four, five or six octaves. The posi-
tion second from the bottom selects two octaves and is

29

the default setting.

Note: If you change this setting, your current melody
in the selected track changes. If you increase the note
range, the melody will be spread out over a larger pitch
range. Decreasing the note range compresses your
melody to a more narrow range.

Scales and scale notes

A very important concept of the sequencer is that of
scales and scale notes. As we have seen above, there is
always one scale selected - for example C minor.

Within this scale for each track you select which of the
seven notes to use separately. This is done with seven
button of the P2B8, which are layouted as follows:

The button CTRL is for selecting alternate func-
tions. We will talk about that later. It has nothing

to do with the scale but is located on the P2B8 because
there was just this nice place left.

The other seven buttons represent the seven notes of the
currently selected scale. Forexample if you have selected
C minor, the button 3RD represents the Eb. This note se-
lection is used both for the normal sequencer and for the

Table of contents at page 2

arpeggiator. By switching on and off the note buttons
you select which notes of the scale are currently allowed
to be played.

Hint: When you hold CTRL while pressing one of the
seven scale note buttons, all other buttons are switched
off. That way you can “perform melodies” by holding
CTRL and pressing various buttons while the sequence or
the arpeggiator is running.

Don’t get alarmed when your faders wiggle when you
change the note selection. If you remove a note, the num-
ber of allowed notes is reduced and there are less posi-
tions your pitch fader can have. It automatically adapts
to the nearest allowed position. As long as you don’t
move your pitch fader, it remembers its original position
and moves back there as soon as you re-enable the note
that it originally set for that step.

Each track has its own note selection and when you
switch the track, the seven buttons will go on and off
automatically to represent the note selection of the new
track.

@ The button CHRO switches to a chromatic scale and
allows all 12 notes to be used - ignoring the scale

and the note selection.

Clocking

Every sequencer needs a clock to forward the sequences
from step to step. Our sequencer has several options
clocking. They have the following order or precedence:

The internal clock - if it is included and running
External clock viaCVinputif that featureis enabled
MIDI clock from TRS port 1 (MASTER18 or X7)
MIDI clock from TRS port 2 (MASTER18)

Bl

DROID manual for blue-6

5. MIDI clock from USB (MASTER18 or X7)
6. Sinfonion-Link, if this is enabled (MASTER18)

A The internal clock is only present if you add it to

@ your patch. This is done in the setting Features
— Internal clock. This adds a button lablled CLK, which
brings up the following menu:

1. Set 0, 100 or 200 BPM
2. Add 0, 10, 20... 90 BPM
3.Add0, 1,2, ..9BPM

4. Continous clock bend

5. Swing

6. Start / stop the clock

7. Extra clock divider

8. Pitch accumulator (per tr.) &

Clock menu

The first three faders are notched and let you set the BPM
of theinternal clockin 100s, 10s and ones. As always, the
lower settings are at the bottom. So you select 120 BPM
by setting the first fader in the second notch (counting
from the bottom), the second fader in the third notch and
the third fader at the bottom. This way you get 100 + 20
+ 0 BPM. The maximum speed is thus 299 BPM.

Fader 4 modifies this speed in a continous way from com-
plete stop (bottom) to exactly double speed (top). To
return to exactly 120 BPM (or whatever your have set),
touch the button below fader four. It snaps back to its
center an the LED goes green. Red means that the speed
is modified. When fader 4 is at the top position, your
maximum clock speed is 598 BPM.

Fader 5 adds a swing / shuffle feeling from none at all
(bottom) to strong (top). Atis applied on external clocks,
too - even if they are already shuffled.

30

Fader 6 has just two positions and will jump back and
forthif you moveit justabitorif you touch the button be-
low. At the bottom position the LED is red and the inter-
nal clock is stopped. If there is an external clock source,
that is taken instead.

Fader 7 is a clock divider for the case that you have en-
abled Connectivity — Output for clock with user defined
divider. The fader has 16 positions for the clock divisions
Tto 16.

Fader 8 edits a setting per track: The maximum range of
the pitch accumulator for the current track. The accumu-
lator is described below. If you have disabled the internal
clock in the Features tab, the range of the pitch accumu-
lator is set to 4.

The track menu

Iﬂ\ Another menuis the track menu. This is not global
&% but the faders control values of the current track.

You switch between your tracks with the buttons Track 7,

Track 2 and so on.

The track menu has the following eight settings:

1. Autoreset

2. Shift steps

3. Octave switch

4. Diatonic transposition
5. Activity

6. Movement pattern

7. Even clock divisions

8. Odd clock divisions

Track menu

Table of contents at page 2

In this menu there is the general rule, that each setting
can be snapped to its neutral position by touching the
button below. This makes it fast to go back to normal
if you have got lost. Just swipe with your finger over all
eight touch buttons. A bright LED shows that the fader is
in its neutral position.

Fader 1 is called Autoreset. Autoreset is enabled by
moving the fader away from its bottom position. It
sets a number of clock ticks after which the sequence is
restarted - regardless of what’s going on in it. For ex-
ample if you move the fader three steps upwards, your
sequence will be restarted after three clock ticks. This
might or might not be three steps - depending on the
number of repeats that you’ve chosen on the first steps.

Shift steps on fader 2 cycles all your steps by that number
of positions to the right. This shifts the melody in time
and can create interesting rhythmic effects.

The octave switch on fader 3 has its neutral positionin the
center and can go up or down by two octaves. It is added
to the global octave switch in the tonality menu.

Fader 4 does a diatonic transposition of the current track
within the scale and the selected scale notes. This is a
very musical feature and you need to try it out and lis-
ten to it. This transposition is added together with the
diatonic transposition from the tonality menu.

Fader 5 selects a minimum activity level a step must have.
Other steps are silenced. This allows you to reduce a
melody and make it simpler for the while. If you don’t
have enabled Activity in the generator dialog, this fader
is unused. See below for how to set the activity of steps.

Fader 6 selects alternative movement patterns for your
sequence. By this | mean how the sequence moves
through its 8, 16 or 32 steps. There are 10 different pat-
terns to choose from:

DROID manual for blue-6

10 | random jump to any allowed (other) note

9 | go forward by a small random number of steps

8 | random single step forward or backward

7 | double step forward, single step forward, double
step backward, single step forward

6 | double step forward, double step backward, sin-
gle step forward

5 | double step forward, one step backward

4 | two steps forward, one step backward

3 | ping pong - forth and back

2 | backward

1 | forward

Track movement patterns

Faders 7 and 8 allows you to alter the speed in which the
track is running in reference to the master clock. Fader
7 has the following seven positions for altering the clock
speed:

/8 /4 /2 11 %2 x4 x8

Fader 8 provides odd divisions and multiplications:

17 /5 /3 1:1 x3 x5 x7

If you combine fader 7 and 8 you can polyrythmic things
like 3.
4

The performance menu

31

@ The performance menu is an optional feature that
gives you instant access to a selection of faders
from the track menu but for all tracks at once. You enable
it by selecting at least one option in the tab Performance
menu.

[] Generate patch - Motor Fader Sequencer

Modules Configuration Output MIDI Step parameters Features Performance menu Connectivity
If you tick at least one checkbox here, one button will be added, which opens a peformance menu
on the faders that offers certain parameters for every individual track. Make sure that the number of
options times the number of tracks does not exceed your number of faders, or else some options
will be missing.

Auto reset: Force reset after that many steps:

Shift steps: Shift sequence steps by this number:

Octave switch:

Diatonic transposition: move up or down the melody within the selected scale:
Activity: play or mute steps based on their activity:

Pattern: go to the steps in some non-linear mode:

Set clock to /8, /4, /2, normal, x2, x4 or x8:

Set clock to 7, /5, /3, normal, x3, X5 or X7:

Load preset:

Default (4 tracks) Manual Cancel

All options you select here are put into the performance
menu for each track. So if you have four tracks and eight
faders, it does not make sense to select more than two
options.

The colors of the LEDs below the faders match those of
the same functions in the track menu.

Pitch and gate
@ Now let’s talk about the actual sequencer. Every
sequence step has at least a pitch and a gate - and

Table of contents at page 2

depending on your configuration lots of other aspects.
Hit the button NOTE to start editing pitches and gates.

When you move the faders you will see that you feel
notches (force feedback). Each notch represents one of
the selected scale notes. If you alter the note selection by
switching on and off intervals on you P2B8, the number of
notches accordingly changes and your faders might wig-
gle into new positions. The maximum number of notches
is 25. If you select a large pitch range in the global menu,
the notches might be turned off.

Touching the buttons below the faders toggle the gates
for the steps.

DROID manual for blue-6

More steps than faders

Depending on space and money, you can either use the
sequencer with two or with four M4 controllers. That
means that you have either 8 or 16 faders. You set this
in the tab Modules.

° Generate patch - Motor Fader Sequencer

Modules Configuration Output MIDI Step parameters Features Performance menu Connectivity

Master module: MASTER18 - master with MIDI, no CV inputs <

Controller for the steps: M4 - motor fader controller <
Number of M4 controllers: two M4 (eight steps)

Number of G8 expanders (0 - 4): [

Load preset: Default (4 tracks) Manual Cancel

Independent of this you can set the length of the tracks
to 8, 16 or 32 steps. This is done near the top of the Con-
figuration tab.

32

) Generate patch - Motor Fader Sequencer

Modules Configuration Output MIDI Step parameters Features Performance menu Connectivity

Number of tracks (1 - 8): 4
Maximum number of sequence steps: 16 steps
Number of presets (0 - 4): 3

Pitch range of sequencer faders: Two octaves

Load preset: Default (4 tracks) Manual Cancel

In the default configuration there are four tracks,

each has 16 steps. With two M4’s you can control
eight steps at a time. The button PAGE switches to edit-
ing steps 9 - 16 while it is lit.

Hint: A press on the track button of the already selected
track does the same as the PAGE button: it toggles the
current page.

If you have eight faders and 32 steps, you get four but-
tons for paging, labelled 7- 8, 9- 76, 17- 24 and 25 - 31.
With these you can select the page you want to edit.

If you work with pages, it is helpful to include the

button COPY in your patch. This is done with Fea-
tures — Copy & paste of sequence bars (does not work be-
tween tracks). Press the COPY button to copy the con-
tents of the current page into an internal clipboard.

Then select another page and press CTRL +

Table of contents at page 2

COPY to paste its contents.

This copy & paste mechanism copies all aspects of the
steps, not just those that are currently selected.

Hint: Try this following: press COPY to copy the current
page. Jam around by changing the melody. Later you
can come back to your original melody by pressing CTRL
+ COPY, without using a preset for this.

Further step parameters

There are lots of aspects of sequencer steps that you can
add with the patch generator tab Step parameters:

[] Generate patch - Motor Fader Sequencer
Modules Configuration Output MIDI Step parameters Features Performance menu Connectivity

Velocity and additional gate (MIDI: velocity + CC#1): Just the velocity
Randomize pitch:

Randomize gate:

Gate length + glides:

Step length (1 - 16), skipping of steps:

Ratchets (1- 8):

Activity (mute steps based on activity level):

Set range of steps to play (start, end):

Default (4 tracks) < Manual Cancel

Load preset:

Pitch randomisation, pitch accumulator

DROID manual for blue-6

@ The button labelled RAND brings you to pitch ran-
domisation and to the pitch accumulator. The

eight positions of the fader have the following meanings:

8 | accumulator: shift up twice each turn

7 | accumulator: shift up each turn

6 | accumulator: shift down each turn

(]

accumulator: shift down twice each turn

4 | strong pitch randomization

w

medium pitch randomization

2 | slight pitch randomization

1 | randomization + accumulator off

Pitch randomization / accumulator

The default is that the fader is at the bottom. This turns
off any randomization or accumulation.

The lower three settings above zero turn on pitch ran-
domization. Here the pitch of the step is randomly raised
slightly, intermediatly or strongly.

The other four settings are much moreinteresting and en-
able the pitch accumulator. The pitch accumulator makes
melodies more interesting by altering a note every time
it is played. You have four different settings (per step):
you can shift the note up by one or two notes in the scale
on each sequence repetition. This is selected by the fader
position 7 and 8. The LED below the fader changes from
cyan to green. Or you can shift the note down by one or
two notes every turn. This is selected by the fader posi-
tions 6 and 5 (red LED). The shift is always done within
the current scale and selected scale notes.

For example let’s assume you are in C major (white keys
on a keyboard) and the step’s note in question is set to

33

a G. Now, if you set the pitch accumulator to shift one
note up (position 7), the first round of the sequence a G
is played, next time a A, then a B, then a C (next octave)
and so on.

Now you might ask: does this go to infinity? Of course
not! In fact you can set the number of turns until the note
is reset to its original value (in this case G). This number
is set with fader 8 in the clock menu and has a range from
0 (pitch accumulation turned off) up to 16 (reset the ac-
cumulator after 16 times the sequence has been played).
If you have disabled the internal clock, there is no clock
menu. The pitch accumulatorrangeis set to4in this case.
The default setting is 4, which is the most naturaland mu-
sically least surprising setting.

At the end, using a pitch accumulator with the repeats set
to 4 can change a melody with just 16 steps into one with
64 steps.

Velocity

The button VELO switches to editing an additional

CV value per step. Here the faders run freely with-
out notches. If you are using MIDI output, the fader po-
sition sets the note velocities. In CV/gate mode, the ve-
locity is output at an additional CV output per track. You

can patch it to wherever you like. In this mode, the touch
buttons show the gates, as well.

Gate length and glide

@ The button GL selects editing a gate length per step
with the faders. It ranges from super short to al-
most the length of one clock cycle, if the fader is up.

The touch buttons below select steps to have pitch glid-

Table of contents at page 2

ing enabled. The length of these glides can be set in the
tonality menu.

Glides do not work in MIDI output.

It is a super lucky coincidence that both gate length and
glides can be appreviated with GL :-).

Gate probability

The button PROB introduces a probability that a
PROB . .

step is actually played. At the top position of the
fader, the stepis always played if the gate is on. The fader

has eight positions (notches), with the following mean-
ings:

8 | played always 100%
7 | random chance of 50% 50%
6 | played every even turn 50%
5 | played every odd turn 50%
4 | random chance of 25% 25%
3 | played every 4t turn 25%
2 | random chance of 12% 12%
1 | played if last random was positive -

Gate probabilities

As you can see, not every setting is a simple random
chance. Especially the settings 5 and 6 are very musi-
cal. They make a step be played just every odd or even
turn of the sequence. This essentially doubles the length
of the sequence. Steps with such a setting have a green
LED below the fader (instead of cyan). It blinks in turns
where the step is silenced and light steady when the gate

DROID manual for blue-6

is played.

Note: In gate probability mode the default fader setting
is at the top, not at the bottom as with most others.

Ratchets

Ratchets are edited with the button RATC. They can

be set from 1 (normal, fader at the bottom) to 8.
They divide the clock cycle of the step into equal time in-
tervals in which the step is repeated. If you set ratchets

to 2, for example, you will get two notes played at double
time.

Note: If you use ratchets it might be neccessary to select
a short enough gate length for the notes to become audi-
ble.

The most interesting feature about the ratchets, how-
ever, is the builtin “mini arpeggiator” - also called
“ratchet shift” or “ratchet note shift”. You activate that
by turning the lower of the two pots on the P2B8 (while
the “normal” argpeggiator is turned off). You can select
15 different values, from -7 to +7. The neutral position is
in the middle and the mini arpeggiator is turned off there.

If you have a classic MASTER (not MASTER18) The cur-
rent value is displayed in its 4x4 LED field in blue. The
neutral position is at the LED of input 8:

34

On a system with a MASTER18, the current setting is dis-
played in the upper half of the B32.

Repeats (step duration), tieing, skipping steps

The button REP lets you edit the length of the

steps. Each step can be 1 to 16 clock ticks long -
while 1is set with the fader at the bottom. In this mode,
the touch buttons select steps to skip. This is not the

same as silencing them, since skipped steps makes the
sequence shorter.

While you move the fader, the LED below the fader helps
you dialing in a specific number of repeats. It uses the
following color scheme: The numbers 4, 8, 12 and 16 are
displayed red. The numbers 2, 6, 10 and 14 are displayed
yellow. The remaining (odd) numbers are black (LED is
off).

If you increase the duration of a step, you might want to
edit the way in which this step is played. To do this press
PAT to select the gate pattern. The gate pattern decides
how gates are played when Repeats is 2 or larger. There
are four gate patterns: In the first setting (fader down)
just the first repetition of the step is “played” (i.e. a gate
signal sent). Setting 2 will play one gate per repetition.

Table of contents at page 2

Setting 3 plays one long gate. And setting 4 is like 3 but
lets the gate open when the step ends. This ties this step
to the next one. And this setting also has an effect when
the note duration is just 1.

Hint: When you hold the CTRL button while you change
the number of repeats of a step, the MFPS tries to keep
the overall length of the sequence constant. It does this
by changing the repeats in subsequent steps in the op-
posite way. The fader will move automatically in order
to keep the total number of repeats of all steps constant.
Of course this only works if there are enough repeats to
“work on”. If all steps are at one repeat and you increase
the repeats of step 1 from 1to 9, the other steps cannot
reduce the number of repeats and stay where they are.
So your sequence gets longer by 8 16t notes. But if you
then move the fader back (while still holding CTRL), other
steps will increase their repeats. Try it out!

4 | play along gate and tie to the next step

3 | play along gate

2 | one gate per repetition

1 | play just the first gate

Gate patterns

Similar to the ratchets, there is also a “mini arpeggiator”
for the repeats. If activated, for every repetition of a step
the note is shifted up to seven steps up or down on the
scale within the selected scale notes.

You turn on this with the upper knob of the P2B8, when
the normal arpeggiator is turned off. You can select 15
values, from -7 to +7. The middle one - 0 - is neutral and
switches the mini arp off.

If you are using a MASTER, its LED field show the selected
value in magenta. The middle position is that LED of in-

DROID manual for blue-6

put eight:

On a system with a MASTER18, the current setting is dis-
played in the upper half of the B32.

Note: The mini arpeggiator only works if the gate pattern
is set to 2 (one gate per repetition).

Actvity

Activity is a feature that allows you to change the

complexity of a pattern with just one fader. First
you assign an activity level to each step. Thisis done with
the button ACT.

Steps where the fader is at the top position have the max-
imum activity. There are always played. When you lower
the activity, steps are silenced, when the activity setting
of the trackis lowered. Thisisdoneinthe track menu (see
above).

Limiting the range of steps

If you enable the feature Set range of steps to play
(start, end), you will find a button labelled S/E.

35

This allows you to restrict the part of the sequence to be
played by using touch buttons.

While you hold the S/E button, the cyan gate LED van-
ishes and instead a green LED marks the first step to be
played and a red one the last. Beware: If you have more
steps than faders, you might need to switch pages, be-
cause the start and end step are on different pages.

Touch any of the buttons below the faders to set the new
end step. All remaining steps will be skipped and the se-
quence is now shorter.

Setting the start step is a bit more work. Here you need
to touch and hold the button for the end step and while
this touch another button. This will be the start step. If
the start step is after the end step, the selected portion of
the sequence is played backwards.

You can reset the start/end setting by hold-
ing CTRL and then pressing S/E. This sets
the start step to be the first and the end step to be the

last of the sequence.

Pressing the CLR button (see below) does the same
but in addition resets other settings that remove
the linearity of the sequence.

By the way: Another method for making the sequence
shorter is using Autoreset in the track menu (see above).

Peace, clear and master reset

@ If you have added the feature Clear button: re-
set play mode, clear pattern, factory reset, you get
a button labelled CLR. This button has three “escalation
levels” of resetting things:

Pressing the clear button in a normal way, resets all fea-

Table of contents at page 2

tures of the current track that alter the effective duration
of one sequence cycle:

- Start and end are reset to the first and last step of
the sequence

- Steps tagged with “skip” are reset to normal (non-
skip)

+ The number of repeats (step length) is set to 1 for
every step

+ Autoreset is disabled (first fader in track menu)

- The shifting of steps is disabled (second fader in
track menu)

- The movement pattern is set to “forward” (
fader in track menu)

@ Press the CLR button while you hold CTRL to
reset every aspect of the current track. All
faders in the track menu go to their neutral position. All
steps are set to gate off and to the lowest note (you can
change the default gate to on in the tab configuration).

All additional parameters of the steps are set to their neu-
tral position, as well.

6th

A long press of the clear button, makes a factory reset of
the whole sequencer!. All tracks and all presets are reset.
All settings are reset to their defaults.

The long press of the CLR button is your help if you get
completely lost somewhere. There are many possible
reasons why the sequencer won't play any notes. The
clock might be stopped, the clock division set to some-
thing very slow, steps might been skipped, have a too low
activity and so on. In such a situation where you are not
able to find the reason, try a factory reset.

This is also a good idea after you change the configura-
tion of the patch in the patch generator dialog. Enabling
or disabling features might lead to saved fader positions
move to other faders that now have different meanings.

DROID manual for blue-6

Manual reset to step 1

@ When you play together with other musicians or

with other sequencers, you might get out of sync.
The features Button for resetting the current (Ctrl: all)
tracks to step 1adds the button RST.

If you press RST without the CTRL-button, the current
track is reset to step 1immediately.

If you press RST with CTRL, all tracks are re-
set to step 1immediately.
Transpose by root note

The feature Button for transposing the melody
when the root note changes add a button with the
label TBR. This is an abbreviation for transpose by root

note. This button has two states: on and off and it is a
setting that is saved per track.

If itis on, any change in the root note also transposes the
melody. The referenceis C. Try the following: Set the root
note to C (in the tonality menu) and compose a melody.
Now change the root note to Eb.

When TBRis on, the melody will be transposed along with
the root note and played three semitones higher. That
way it sounds exactly like the original melody, just three
semitones higher.

No try the same with TBR off. This time the melody stays
in the same general pitch, just with some of the notes
modified by a semitone or so to match the new scale.

Both settings are musically useful and a change of the
settings can sound very interesting - as long as you have
changes in the root note as time goes by.

36

The inversion

@ The feature Button for inverting the melody (switch

low/high) adds a button with the Label INV. Itis a
setting per track and vertically mirrors the melody when
on. High notes get low and low notes get high.

Forms like AAAB, and AABB

When you add the features Button for switching
the form (A / AAAB / AABB), you get a button la-
belled AAAB. Again, thisis a setting per track, but this time
the button has three states. You cycle through these by
pressing it several times.

AAAB

Per default the button is off. Press it once to switch to the
form AAAB. The button is half-lit. Now your steps are di-
vided in two halfs. Say you have 16 steps. Then the first
eight steps are part A and are repeated three times, be-
fore the second eight steps are played once.

The third state (button fully lit) selects AABB. Now every
half is played twice.

These forms essentially double the length of your pattern
in a musically appealing way.

If you have set areduced range of steps to play via the S/E
button, the parts A and B are cut from that smaller range.
If that is an odd number of notes, A and B don’t have the
same length and funny things will happen.

Presets

0 In the tab Configuration you can add up to four
presets to your configuration. A preset is a stor-

Table of contents at page 2

age for the current melody of a track (including all extra
attributes of the steps) together with all settings of the
faders and buttons, including the scale note selection.

When you have enabled presets, up to four buttons with
the labels Preset A, Preset B, Preset C and Preset D appear.
Here is how presets work:

- Ashort press of a preset button does nothing. This
is for your safety.

+ Along press (> 1.5 secs) saves the current melody
and all other track settings into that preset.

- A press of a preset button while CTRL is held, loads
that preset.

- Loading and saving presets affects the current
track.

- Every track has its own independent presets.

- Loading a preset does not reset the track to step 1.

Randomize the fader positions and gates
The button LUCK either randomizes your current
fader settings.
When you press LUCK together with CTRL,
your touch button settings are randomized

instead (for example gates).

This feature is enabled with the checkbox “Lucky: Ran-
domly change the faders (with Ctrl: buttons)”.

As long as you hold this button, more and more faders or
touch buttons will change - at a rate of 40 changes per
second. If you push the button just for a short time, just
one or a few things will change. Holding it longer com-
pletely changes everything.

What the faders or buttons mean depends on the current

DROID manual for blue-6

mode. So if you want to randomize the velocity, bring up
the velocity mode and hold LUCK.

The arpeggiator

One of the most fun features of the MFPS is the builtin
Arpeggiator.

If you enable this feature in the patch generator,
you get a button labelled ARP. This is for switching
a track to arpeggio mode.

In arpeggio mode the pitches of the notes are not longer
determined by the pitch faders but are played by the
arpeggiator. This is an algorithmic melody creator, which
can do more than you would think when you hear its
name.

To get started with it, do the following:

1. Choose a track and switch on the ARP.

2. Set the lower pot of the P2B8 to totally left. This is
the base pitch of the melody.

3. Set the upper pot of the P2B8 in the middle. This is
the pitch range the melody uses.

4. Select all seven scale notes on the P2B8.

Now you should hear your synth voice, or whatever is
attached to the selected track, to play all notes of the
current scale upwards until it reaches some upper limit
(whichis selected by the upper pot) and starts over again.

Note: Both pots on the P2B8 are overlayed with several
functions depending on the context. There is a separate
setting for the base pitch and range of the arpeggiator for
each track. After switching to a different track the pot
probably is not in the position of the value it actually con-
trols. As soon as you turn the pot just a bit you get the

37

current value either visualized in the 4 x 4 LED field of the
MASTER or on the upper half of the B32 (if you use a MAS-
TER18).

There are dozends of ways to alter that melody. Try the
following:

- Alter the base pitch and the range with the two
pots. Even a range of zero can be interesting. Here
you can “play” a melody with the pitch knob.

+ Try different selection of scale notes. Try to use
just three notes, for example a normal triad (ROOT,
3RD, 5TH).

Asyou canseg, all of these alterations changes the length
of the melody and thus creates interesting polymetric ef-

fects.

m And there are lots of other parameters. These are
&Y in the track menu. Press the button TRK to bring
it up. When the arpeggiator is turned on, most of the
faders have different meanings. All of them only affect
the arpeggiator - not the normal mode, even if some of
them they have the same name.

1. Autoreset

2. Up/ping pong / down
3. Octave switch

4. Butterfly

5. Octaving pattern

6. Movement pattern

7. Drop notes from scale
8. Clocking

Arpeggio menu

Autoreset is similar than in the normal mode. If enabled,
after that number of steps the arpeggio is reset to its

Table of contents at page 2

starting point.

Up/ping pong/down changes the order of the movement
from up to up-and-down-again or to downwards move-
ment.

The Octave switch transposes the whole melody up to
two octaves up or down. This adds up with the pitch
knob.

The Butterfly fader has just two positions: down and up.
When it is up, butterlfy mode is active. Now the order
of played notes changes to first, last, second, second last
and so on.

The Octaving pattern has three settings. In the middle or
upper position after each note, the same note is repeated
but one octave up or down.

The Movement pattern changes the linear movement
mode through the scale to something more complex. It
has seven settings as follows:

7 | random jump to any allowed (other) note

6 | random single step forward or backward

5 | double step forward, single step forward, double
step backward, single step forward

terns of leaving out (skipping) notes on the way. It has
four settings:

4 | Skip the 2" and 39 note 0200060
3 | Skip every third selected note 003006
2 | Skip every other selected note 020206
1 | Do not skip any notes 0000060

Arpeggio drop patterns

The last fader in the arpeggio menu selects the clock or
rhythm while in arpeggio mode. At the bottom setting
the master clock is used for the gates. The next setting
selects the same gates as in the sequence. Starting from
position three there are some more faster clocks as you
move the fader up:

8 | masterclock x 8

7 | masterclock x 6

6 | master clock x 4

5 | masterclock x 3

4 | master clock x 2

3 | masterclock x 1.5

4 | double step forward, double step backward, sin-
gle step forward

2 | Gates from the sequence

3 | double step forward, one step backward

1 | master clock

2 | two steps forward, one step backward

1 | step forward through the selected notes

Arpeggio movement patterns

The fader Drop notes from the scale enables certain pat-

DROID manual for blue-6

Arpeggio clocking

CV/gate or MIDI output

Each track can output its notes via CV/gate, MIDI or both.
You decide this in the tab Output:

38

[] Generate patch - Motor Fader Sequencer

Modules Configuration Output MIDI Step parameters Features Performance menu Connectivity

Here you configure where the pitch/gate signals of your individual tracks should be output. If you
want to have tracks that output both to CV/gate and MIDI, put them at the top and set their count

Output of track 1: CV/ Gate
Output of track 2: CV/ Gate
Output of track 3: CV/ Gate
Output of track 4: CV/ Gate
Output of track 5: CV/ Gate
Output of track 6: CV/ Gate
Output of track 7: CV/ Gate
Output of track 8: CV/ Gate

Number of tracks using MIDI + CV/gate (0 - 8):

Default (4 tracks) < Manual Cancel

Load preset:

For each tracks you can select either CV/gate or MIDI.
When choosing CV/gate, the patch generator chooses
two to four output jacks depending on the number of fea-
tures that you have selected.

Enable MIDI output by selecting one of the possible MIDI
ports. Thereis TRS 1 or 2 (3.5 mm stereo jack) or USB. In
order to use MIDI output, you need either a MASTER plus
X7 or a MASTER18. TRS 2 is only available on the MAS-
TER18.

You can also have some of the tracks output both MIDI
and CV/gate. To do this, put these tracks at the begin-
ning of the list. Then set them to MIDI output (choose
one of the three MIDI output ports). And then enter the
total number of these “dual” track in the field Number of
tracks using MIDI + CV/gate (0-8).

| suggest that you don’t enable MIDI output for tracks
where you don’t need it, since it takes valuable bandwidth

Table of contents at page 2

of your MIDI outputs and also needs same RAM in the
Droid.

The MIDI channels for the individual tracks are set in the
tab MIDI:

[] Generate patch - Motor Fader Sequencer

Modules Configuration Output MIDI Step parameters Features Performance menu Connectivity
MIDI channel for track 1 (1 - 16): 1
MIDI channel for track 2 (1 -

MIDI channel for track 3 (1 - 16):

MIDI channel for track 4 (1 - 16):

MIDI channel for track 6 (1- 16):

MIDI channel for track 7 (1 - 16):

2
3
4
MIDI channel for track 5 (1 - 16): 5
6
7
8

MIDI channel for track 8 (1 - 16):

Load preset: Default (4 tracks) Manual Cancel

It is allowed to use the same channel for more than one
track. This creates a polyphonic MIDI sequence.

Hint: If you do not use MIDI output, disable it. Or enable
it just for those channels that you are using with MIDI.

DROID manual for blue-6

This saves CPU ressources. Saving CPU is always good as
the less computing power your patch needs, the better
its timing is. The Default preset has MIDI enabled, so you
might want to change this.

Connectivity

[] Generate patch - Motor Fader Sequencer
Modules Configuration Output MIDI Step parameters Features Performance menu Connectivity
Input for external clock:
Input for external reset:
Output for permanent clock signal:
Output for clock with user defined divider:
Output for clock signal while running:
Output for reset:
Trigger for start of sequence of track 1:

Receive state of Sinfonion on I1 of MASTER18: | No Sinfonion link

Default (4 tracks)

Load preset:

In the last tab - Connectivity - there are some options for
adding CV inputs and outputs for several things. Most of

39

it is pretty straight-forward, so | won’t go through every
detail, just allow me some notes:

The Output for clock with user defined divider sends the
sequencer clock to the outside, but with a division from
1to 16 applied. This division is set by fader 7 in the clock
menu from bottom (1) to top (16).

If you enable Sinfonion link, you can have the sequencer
follow the musical state of a Sinfonion. This requires a
MASTER18. To do this:

1. Set OUT 1 of the Sinfonion to Sync master.

2. Draw astandard patch cable from OUT 7 of the Sin-
fonion to /7 of your MASTER18.

3. Enable Sinfonion link in the patch generator.

If you do this, the current root note, scale and transpo-
sition of the Sinfonion is automatically used by the se-
quencer. Beware: while you do this, you should keep the
corresponding three faders of the tonality menu in their
neutral position, because they will add up. For example if
you set root to Cff in your sequencer, your root note will
be always one semitone off. You need to set it to C (fader
completely down).

The setting Get tonality, clock and reset on start of song
resets all your sequencer tracks to step one if the chord
progression sequencer of the Sinfonion is at the start of
its programmed song.

Table of contents at page 2

Cheat sheet - page 1

Here, again, all of the fader menus at one glance:

1. Root note

2. Scale

3. octave switch

4. Diatonic transposition

5. Absolute transposition

6. Tuning / compose mode
7. Glide duration (per track)
8. Note range (per track)

1. Autoreset

2. Shift steps

3. Octave switch

4. Diatonic transposition
5. Activity

6. Movement pattern

7. Even clock divisions

8. Odd clock divisions

Tonality menu Track menu
1. Set 0, 100 or 200 BPM T 1. Autoreset
2.Add0, 10,20... 90BPM [EM | | 2. Up/ping pong / down
3.Add0, 1,2, ... 9BPM [3. Octave switch
4. Continous clock bend N | | 4. Butterfly

5. Swing o |
6. Start / stop the clock o [
7. Extra clock divider o [l
8. Pitch accumulator (pertr.) Sl | |

5. Octaving pattern

6. Movement pattern

7. Drop notes from scale
8. Clocking

Clock menu

DROID manual for blue-6

Arpeggio menu

40

Table of contents at page 2

Cheat sheet - page 2

12 | aug - Augmented scale (just whole tones) 8 | played always 100% 7 | random jump to any allowed (other) note
11 | dim - Diminished scale (whole/half tone) 7 | random chance of 50% 50% 6 | random single step forward or backward
m phr - Phrygian minor scale (with b9) 6 | played every even turn 50% 5 | double step forward, single step forward, double
| ingl f
9 | hm - Harmonic minor (b6 but #7) 5 | played every odd turn 50% step backward, single step forward
n min - Natural minor (aeolian) 4 | random chance of 25% 25% 4 | double step forward, double step backward, sin-
gle step forward
j th o
- dor - Dorian minor (minor with £13) 3 | playedevery 4" turn 25% 3 | double step forward, one step backward
6 | hm® - Harmonic minor scale from the 5t" 2 | random chance of 12% 12%
2 | two steps forward, one step backward
5 | alt- Altered scale 1 | played if last random was positive - 1 | step forward through the selected notes
Cmi ; ih 2rdath v
4 | sus - mixolydian with 3'%/4*" swapped Gate probabilities Arpeggio movement patterns
3 | X7 - Mixolydian (dominant seven chords)
2 | maj - Normal major scale (ionian) 10 | random jump to any allowed (other) note 4 | Skipthe 2" and 3 note 0030006 ®
1 | lyd - Lydian major scale (it has a f4) 9 | goforward by a small random number of steps 3 | Skip every third selected note 0803000
Scales 8 | random single step forward or backward 2 | Skip every other selected note 002020 ®
7 doublI)e sltep fc;rwgrd; smglefstep fcérward, double 1 | Do not skip any notes 000060
8 | accumulator: shift up twice each turn step backward, single step forwar)
doubl ¢ 4. doubl bac| d si Arpeggio drop patterns
7 | accumulator: shift up each turn 6 ouble step forward, double step backward, sin-
gle step forward
6 | accumulator: shift down each turn
5 | double step forward, one step backward 8 | master clock x 8
5 | accumulator: shift down twice each turn 7 | masterclock x 6
4 | two steps forward, one step backward
4 | strong pitch randomization
8P 3 | ping pong - forth and back 6 | master clock x 4
3 | medium pitch randomization 5 | master clock x 3
2 | backward
2 | slight pitch randomization 4 | master clock x 2
1 | forward
1 | randomization + accumulator off 3 | masterclock x 1.5
Track movement patterns
Pitch randomization / accumulator 2 Gates from the sequence
1 | master clock

DROID manual for blue-6

41

Arpeggio clocking

Table of contents at page 2

4.5 Droid Megasequencer

Overview

Welcome to the DROID Megasequencer. It is solely built
from standard Droid modules and comes preloaded with
a special Droid patch that has been carefully crafted to
create a unique musical device. Because the Droid is an
open system you can change that patch and tweak it to
your own liking. Or even change the set of modules and
build something completely new with the modules. The
patch for the Megasequencer is created by a patch gener-
ator that is directly built into the Droid Forge.

The Megasequencer uses a 32 x 16 button matrix (512
buttons) to build a “piano roll” like sequencer that can
play two independent instruments via MIDI. Instrument
one is controlled by the left half of the button. That’s
16x16 buttons with white LEDs. Instrument two occu-
pies the right half. Its buttons have blue LEDs.

Features of the Megasequencer:

+ 512 sturdy mechanical hardware buttons, each
mounted and soldered in Germany.

DROID manual for blue-6

+ Instant hands-on creation of melodies and chords.

+ Polyphony with up to 16 voices in parallel for two,
three or four instruments.

+ Independent clock divisions, pattern length and
lots for more features for creative musical jour-
neys.

+ MIDI output via USB and DIN/TRS.

Modules

The Droid Megasequencer consists of the following mod-
ules in that order:

1. DROID master
2. X7
3. 16 xB32

If you want to create a Megasequencer from standard
Droid modules, mount them in a Eurorack case in that or-
der and load the megaseq.ini patch onto your master. If
you’'ve purchased the Megasequencer as a set, you can
use the Droid modules for something completely new and
different at any time.

Inputs and Outputs

The Megasequencer patch uses the following inputs and
outputs on the master and X7:

Inputs:

I1: Optional external clock. When you patch something
here, that is used as clock for forwarding the sequencers.
I2: Extern reset. A trigger here resets both sequencers

42

to the start.

Outputs:
G9: Clock output

All the other outputs and inputs are free. You can attach
functions to it by adapting the Droid patch.

MIDI Connectivity

The Megasequencer outputs a MIDI clock and a running
state, as well as the note events, both on the USB and the
TRS output jack of the X7. Please consult the Droid man-
ual for details on the X7. If you want to use a standard
DIN MIDI cable, use the TRS to DIN adapter shipped with
the Megasequencer.

If you send a MIDI clock via USB or TRS into the X7, that
will be used as clock and overrides the internal clock.

Notes:

+ If you use USB-MIDI, the switch on the X7 module
must be at the right position. Never put it to the
left, that will bring your Droid master into SD card
mode and disable the sequencer.

+ Currently USB-C to USB-C cables might not work.
Use the shipped USB-C to USB-A cable.

+ If the top right LED of the X7 keeps lighting ma-
genta and the USB MIDI device “Droid X7” is not
detected by your Mac/PC, put the switch into the
middle and to the right again.

+ The TRS jack of the X7 (the top right jack) uses MIDI
type B. The shipped adapter is also type B. At the

Table of contents at page 2

back of the X7 is a little switch for changing the
type to A. You need to unscrew the module for that.
See the Droid manual for more details.

Clocking

Each sequencer needs a clock in order to move the steps
forward. For this sequencer you have four clocking op-
tions:

1. MIDI Clock via USB MIDI

2. MIDI Clock via TRS/DIN (at the top left jack of the
X7)

3. Internal clock generated by the sequencer itself

4. External clock via input I1

There is no configuration but a precedence rule: If you
patch anything into 11, external analog clocking is en-
abled. All other clocks options are ignored. If you provide
a MIDI clock, that is used. Otherwise the internal clock is
used. Note: if you provide a MIDI clock both via TRS and
USB, you run intro trouble since both are honored at the
same time. Don’t do that.

The resulting effective clock is then sent to the output G9
on the X7.

Basic operation

Pressing any button will enable a note in a 16 step pat-
tern. Whenever the current step reaches the button, a
note will be played. The left instrument plays on MIDI
channel 1, the right instrument on channel 3. You can
change the MIDI channels in the menu (see below).

DROID manual for blue-6

The menu

There is a hidden menu layer where you can do lots of in-
teresting settings. You bring up that layer by pressing and
holding the bottom left button for at least 0.2 seconds.
The menu is active while you hold the button.

While you are in the menu, the buttons do not longer re-
flect notes but have special meanings. Since there are no
labels on the buttons, this is probably a bit confusing at
the beginning, but you will learn that fast. And the last
page of this document is a printable version of menu lay-
out This is the layout of the menu:

Split Legato Reset Speedx2 Clear Split Legato Reset Speedx2

1 i) O Y A e T
5 MIDI channel 2 B %5 e|®2 3 %5 MIDI channel 12

5 Clock divider 122 13 1 4 5 Clock divider 12 13

5 Pattern length 2 13 % 15 4 5 Pattern length 2 13 % 15

wie Activity L Activity

BRSOPA/19 66006000660 000600066606600]

Hefu Stop Reset Normal Alt Accent Scale

The upper half of the menu s splitinto left and right. Both
sides control one of the two instruments / sequencers.
The lower half is for things that affect both sequencers.

Split: If the split button is lit, the instrument is split into
two halfs. In split mode the upper eight rows output their
notes to the MIDI channel plus one, so if the instrument
outputs on channel 1, the lower half plays on channel 1,
the upper half on channel 2. That allows you to control
two different instruments with one half of the sequencer.

Legato: Legato is a toggle setting. If it is enabled, the
notes will be tied, so a row of consecutive buttons is

43

played as one long note, otherwise several short notes
are played.

Reset: The two reset buttons in the first row reset each
individual sequencer to its start step immediately.

Speed x2: If this toggle button is lit, the sequencer plays
at double speed.

Octave: The next five buttons form a group in which at
any time one of the buttons is lit. This is an octave switch
that transposes the output notes up or down by octaves.

Preset: The next six buttons select the active preset.
Each sequencer has six presets. A preset contains of a
16x16 step melody. Switching to another preset will not
do a reset but immediately load a new pattern into the
16x16 buttons. At the beginning all presets are empty so
if you switch for the first time that will clear all buttons.
There is no load/save logic. Every change is saved imme-
diately.

Clear: Press this button to clear the current page of the
16x16 buttons of the sequencer. This affects just the cur-
rent preset. Beware: a long press (> 1.5 seconds) resets
the whole Megasequencer to factory settings (including
all the settings in the menu page). You can use that if you
are completely lost.

MIDI channel: The second row of buttons selects the
MIDI channel the sequencer should use for playing notes.
The default is channel 1 (split mode: 1+2) for the left se-
quencer and channel 3 (split mode: 3+4) on the right se-
quencer. Switching channels can be done in real time.
This can be a nice performance feature if you prepare
a couple of different instruments on different channels.
Don’t select channel 16 whenin split mode, because there
is no channel 17 in MIDI.

Volume: The third row of buttons select the volume.

Table of contents at page 2

That’s a MIDI message which is transferred for the se-
lected instrument. A volume of O (left button) will prob-
ably silence the sound completely (that’s up to your MIDI
instrument).

Non-Accent velocity: This button row selects the veloc-
ity of the notes that do not have an accent. Accents are
discussed below. The left most button selects a veloc-
ity of 50%, the most right button selects 100% and thus
makes notes with and without accent sound equal.

MIDI Modulation wheel: This sends MIDI CC#1 mes-
sages for the instrument. You can use this to map
changes in the sound, vibrato or similar effects.

Clock divider: These 16 buttons range from 1 (first but-
ton) to 16 (right most button). If that is not set to 1,
the sequencer advances to the next step after that many
clock ticks. You can use the clock dividers for polymetric
effects. Or you might have one instrument play at 1/16th
of the speed and play slowly changing chords.

Pattern length: If thisis not set to 16 (the right most but-
ton), the sequencer just plays the first X steps of the se-
quence and then jumps to the beginning. Using a differ-
ent pattern length for the left and right instrument can
create interesting polymetric effects.

Activity: This setting is usually at the right position,
which means an activity of 100%. If you select another
value, justarandom part of the selected notes are played.
That reduces the musical complexity of the pattern at just
one button press. Selecting an activity of 0% (left button)
mutes the instrument. You can this a mute button. Press
button 16 to unmute.

Transpose by semitones: This setting affects both se-
quencers. One of the 32 button in the row is active and
selects the base semitone (root note) for the sequences.
Each button is a different semitone.

DROID manual for blue-6

Master clock speed: One of these 32 buttons is active
and shows the selected speed of the internal clock.

Menu: Holding this button brings up the menu, if held at
least 0.2 seconds. Release the button to leave the menu.

Stop: The stop button toggles the running state. If it
is lit, the sequencer is running, otherwise it is stopped.
This overrides any start/stop signal from an external MIDI
clock.

Reset: A press on the reset button brings both instru-
ments to their first step of the sequence.

Normal / Alt / Accent / Scale: These last four buttons
select one of four global modes. Each mode is a kind of
“page” for the buttons - just like the menu page is a spe-
cial page. So alltogether there are five pages of 512 but-
tons. The Menu page is - as stated above - selected by
holding the menu button for at least 0.2 seconds. You
switch to one of the other pages by holding the menu but-
ton, selecting one of Normal/ Alt/ Accent/ Scale and then
releasing the menu button.

Normal mode: This is the mode the sequencer comes
when you first start it. Every button represents one note
to be played.

Alt mode: Every button in the “Alternate” mode repre-
sents one note - just as in the normal mode. The notes
in this mode are played every second bar - in addition to
the notes in the normal mode’s page. That way you can
create some extra fills or ornamental notes that are just
played half of the time.

If you select a note in the Alternate page that is already
active in the normal page thius note will be removed ev-
ery second bar. So basically every active button in the
Alternate mode inverts the corresponding button in the
normal mode - but just every second bar.

44

Accent mode: Again, every button represents one note
inthe sequence. Selected notes getanaccent. Perdefault
all the downbeats are selected and the offbeats are des-
elected. Notes with an accent are played at 100% veloc-
ity. Notes without an accent are played at lower velocity.
You can set that in the menu page (see above). Accents
can make your patterns sound more interesting.

Scale mode: This mode is completely different than all
the other modes. It gives you complete control over the
musical scale that is used. To be more precise: For every
of the 16 rows you can select which note to be played.

The field of buttons is divided into two parts. The left part
with 31 out of 32 buttons per row selects one note for
each row of the sequencer. Each button represents one
semitone. The following picture shows the default situa-
tion: a natural minor scale (aeolian):

Note for row 1 o

Note for row 2
Note for row 3
Note for row 4
Note for row §
Note for row 6

Note for row 7

Note for row 8 []

The last column of buttons shows a kind of “wave” ani-
mation to make clear that these buttons are special. They
are for loading one of 16 default scales into the configu-
ration. Pressing any of these buttons will set all 16 rows
to notes of the chosen scale. These are the default scales
that you can load:

Table of contents at page 2

DROID manual for blue-6

Note: any changes in the scale notes takes immediate ef-
fect. Try to setup some melodies in the sequencer that
use as many different notes as possible. Then go to the
scale mode and simply play around. You will see that in-
teresting musical effects can be achieved. Also have in
mind that it can be interesting if several rows play the
same note for a while. That reduces the harmonic com-
plexity of the melody.

45

Table of contents at page 2

Megasequencer menu cheat sheet for printing

Split Legato Reset Speedx?2 Clear Split Legato Reset Speedx?2 Clear
| ,/// _— AN | ,/// _— \
I A A ’/Octave Preset 1 - //[Jctave Preset \

MIDI channel

MIDI channel

Volume

Volume

Non-Accent Velocity

Non-Accent Velocity

MIDI Modwheel (CC1)

MIDI Modwheel (CC1)

Clock divider

Clock divider

Pattern length

Pattern length

Activity

Activity

(free)

(free)

(free)

(free)

(free)

Transpose by semitones

Master clock speed

- L

Z

(free)

7~ /
Menu Stop Reset No

DROID manual for blue-6

AN
7

N NN
rmal Alt Accent Scale

46

Table of contents at page 2

5 Creating DROID patches with a text editor

5.1 General procedure

If you don’t like to use the Forge, you can write patches
by directly editing the text file. This is the general proce-
dure:

Create a text file called droid. ini.
Copy this file to a micro SD card.

Insert the card into your DROID master.
Press the button on the DROID master.

HwN =

If the DROID finds an error in your patch, LEDs will blink
and tell you more about that error. Fix your error and try
again. That's all.

Onthe MASTER18 or if you have attached in X7 expander
to your MASTER, you have an additional option for load-
ing a patch, which is is a lot easier. The USB port on the
MASTER18 or X7 gives you direct access to the SD card.
The card is attached to your computer by putting the lit-
tle switch on the MASTER18/ X7 to the left. This s like in-
serting the card into your computer. Now you can edit or
copy your droid.ini. Afterwards simply put the switch
back to its center position. That will remove the card
from your computer (eject it first with your file browser).
Also the patch will be immediately loaded by your mas-
ter, no need to press the button.

5.2 Basic structure of the patch file

Droid offeres a long list of pre-programmed functionali-
ties - called circuits - from which you can pick and choose
for your needs. Each circuit takes input values, processes
them and produces output values. It is your task to set

DROID manual for blue-6

Since the Forge operates on the same kind of text files,
you can open such a manual file with the Forge and also
edit Forge-created files with a text editor. The Forge even
has a simple built in editor for editing the patch or just
parts of itin its text form.

Procedure in details

Here is the procedure again with some more details:

1. Use your PC, Mac or Linux box for creating a text
file with the name droid.ini. A text file is not a
MS Word file. In Windows you can create or edit a
text file with Notepad or with some more conve-
nient text editor. Note: some might want to edit
droid. inidirectly onthe SD card. Thisis possible,
of course. It's always handy, however, to have a
copy of that file on your computer, just in case.

2. When you are finished, copy this file to the micro
SD card your DROID has been shipped with or to
any other micro SD card that is compatible with
DROID. You need a micro SD card reader for this.

the inputs to values you like. Such a value could be taken
from a hardware input, a button, a pot, or simply be a
fixed value. The outputs of the circuit can be connected
to hardware outputs, LEDs or even to the inputs of other

47

Do not use any subdirectories on the card. Put the
file into the main directory. The card needs to be
formatted with the standard FAT filesystem. If you
buy a new card, itis most likely formatted that way
anyway. Hint: If you like, you can create and edit
your file directly on the card, of course. This saves
the extra step of copying it.

3. Insert the micro SD card into the small card slot
of your DROID master. Put it in with the metal
contacts downwards. Be gentle, as always :-)

4. Press the button left of the SD card slot. Of
course your DROID has to be powered up while
you do this. The DROID now reads the file
droid.inti, copiesitintoits internal flash memory
and restarts, in order to load and activate the new
patch. If everything is OK, one light will make one
quick circle around the 16 LEDs and your patchis up
and running. After that you can remove the card if
you like. Your DROID does not need it anymore.
Note: If you are using an X7 expander, the memory
card remains in the master module all the time. You
also don't need to press the button on the master,
just use the switch on the X7.

circuits in order to create more complex patches.

All this is configured in a simple text file with the name
droid.ini, which is also called the Droid patch. Using

Table of contents at page 2

a simple text file has lots of advantages:

+ You can edit it with nearly every operating system.

- No special software is needed. This will probably
still work in 30 years, when you just have bought
avintage DROID on ebay for a couple of thousand
bucks.

+ You can easily post and share your DROID patches
or patch snippets in our Discord community or on
other internet boards.

- You can copy & paste parts from other one’s
DROID patches.

5.3 Finding a problem in your DROID patch

It is not entirely unlikely that you got something wrong
in your patch, some syntax error, some invalid line, stuff
like that. Humans make errors, but this is no big deal,
since DROID helps you finding the reason and location
of any problem in your DROID patch by several means:

1. It blinks the button five times in a row.

2. It creates a file called DROIDERR.TXT on your SD
card.

3. It flashes some LEDs in a certain way.

So if you experience any strange button or LED blinking
after loading your patch, put the card back into your com-
puter (or put the switch on your X7 to the left again) and
look into the file DROIDERR.TXT, which should be there
now. This file just contains one line, maybe like this one:

ERROR IN LINE 17: Invalid output '09'.
is 01 ... 08

Allowed

This tells you the exact location and reason of your prob-
lem so that you can easily fix it.

DROID manual for blue-6

+ You can add comments to your patch.

Here - again - is an example of a DROID patch:

[1fo]
hz = 0.5
triangle = _CABLE_1
[contour]
gate = I1
decay = _CABLE_1
sustain = P1.1

LED blink codes on the MASTER

Asan alternative to the error file, the MASTER also shows
the location and reason of the error in form of LED blink
codesinits 4 x 4 LED matrix.

There are two types of errors that you can make:

1. General errors concern the patch as a whole. The
SD card is missing. You have misspelled the file
name. Things like that. In such a case all LEDs will
flash in the same color. The color indicates the
reason of the error. On the next page you find a
table of all global error codes.

2. Local errors concern just one specific /ine in your
DROID patch. In that case just some of the LEDs
will flash. Again, the color shows you the rea-
son for the error, according to the table local error
codes. In addition, the LEDs show you the exact
line number where your error occurs. This is done
in the following way:

48

I2
01

release
output

As you can see the droid. inti is a list of circuit declara-
tions. In the upper example we see two circuits: [1fo]
and [contour]. Each one comes with a list of inputs and
outputs which are assigned to jacks, fixed values or inter-
nal patch cables.

In the example all jack declarations are indented for bet-
ter readability.

- The input LEDS 1 ... 8 indicate the tens of the
line number. If the error happens to be in line
90, then LED 1 + 8 will flash. If itisinline 1to
9, then no input LED flashes at all.

- The output LEDS 1 .. 8 indicate the ones and
are added to that number. Again, if a 9 is
needed, then 8 + 1 will flash.

- If your patch has more than 99 lines, then the
error could be in line 100+. In that case one
of the input LEDs will flash white. That LED
indicates the hundreds of the line number.

- Iftheerrorisin some line at 900 or more, sev-
eral LEDs will flash white. Just add them up.
So e.g. if LED 2 and LED 8 flash white, this
means 10 times 100, hence 1000.

+ The maximum line number that can be shown
that way is, if all eight LED flash white plus
99. Thatis 100 + 200 + ... + 800 + 99 = 3699.
If your patch has even more lines, better look
into the file DROIDERR. TXT. There you can see
the line number of the error in clear text.

Table of contents at page 2

Examples for error codes

Invalid parameter value in line 81: Invalid register in line 99: The SD card was not found or could not be read:

Too many circuits or out of memory:

LED blink codes on the MASTER18

The MASTER18 does not have LEDs on the front panel. - If LD1 blinks, it’s a global error. The color matches The exact location of the wrong line is not visible in the
But it has four LEDs on its back. They do not show the those in the table below. LED blink code. You find it in the file DROIDERR.TXT on
location of the error but at least the type. The rule is this: - If LD2 blinks, it’s an error in some line of the patch. the SD card.

Again look for the color in the table below.

DROID manual for blue-6 49 Table of contents at page 2

5.4 Table of error codes

All LEDs flashing at once (global error)

Just some of the LEDs flashing (local error in one line in droid. ini)

yellow

cyan

magenta

white

Patch not found: This can happen in the following situations:

1. No file with the name droid. iniis present on the memory card.
2. You DROID started without having loaded a patch ever.

3. You did a factory reset without loading a patch afterwards.

Too many controllers: You have declared more than the allowed num-
ber of 16 controllers.

Patch is too big: The size of your droid. ini file is too big. The maxi-
mum of the size without spaces and comments is 64,000 bytes - which
is quite a lot.

Out of memory: The circuits in your patch use too much memory. So
you have too many large circuits or too many circuits in total. The mem-
ory consumption of each circuit only depends on its type. The smallest
circuit is bernoulli and has a size of about 200 bytes. The largest cir-
cuits are midifileplayer with 7000 bytes and cvlooper with 18,000
bytes. Most circuits need between 400 and 800 bytes. And the total
available memory is about 110,000 bytes.

Invalid firmware file: The firmware upgrade failed because the con-
tents of droid. fwis invalid. The file is incomplete or corrupted.

No SD card found: No card could be found. Maybe you inserted itin the
wrong way? Or your card is not supported. Or you pressed the button
too early. Sometimes it helps to simple press the button again.

Note: If you get your start animation with just white LEDs instead of colored ones, your

DAC calibration needs to be redone. See page 101 for details.

DROID manual for blue-6

yellow

orange

red

magenta

Unknownregister: You used a non-existing register name (registers are
the things like 01, I7 and so on). Please check the list of allowed regis-
ters in this manual on page 52.

Unknown parameter name:; that circuit does not support that param-
eter. Please check the circuit references in chapter 16.

Unknown circuit: This type of circuit does not exist. Please check the
exact spelling. Maybe you have an old firmware that does not support
that circuit yet? On page 98 you learn how to do a firmware upgrade.

Line too long: One line in your patch exceeded the maximum allowed
line length of 63 characters.

Internal patch cable misused: One of your internal patch cables (see
page 56) is not properly used:

1. No input: One patch cable is only used as output.
2. No output: One patch cable is only used as input.

3. Double output: One patch cable is used twice as an output.

1. Invalid header of circuit: DROID was expecting an opening square
bracket [, but found something else.

2. Invalid parameter line: DROID was expecting something like clock
= I7, but found something completely different. Parameters always
start with a letter. This is followed by an equals sign.

3. Invalid parameter value: Your parameter has an invalid value.
Please checkout this manual about allowed values for parameters and
their exact syntax.

Table of contents at page 2

5.5 Inputs, outputs and other registers

Your master has lots of inputs and outputs. Also the LEDs
on the MASTER and in the buttons of your controllers be-
have like outputs. Buttons and pots behave like inputs.
All these are called registers, because they behave like
things that can store values. Each register is named with
one special character followed by a number or number
combination.

The eight CV outputs of your master start with the let-
ter 0 and are named 01 through 08. The CV inputs of the
MASTER are called I1.. I8 With the normalizations N1 ...
N8 you can specify a signal or value that should be used
for I1, I2, .. I8 when no patch cable is inserted. But we
will come to that later.

The MASTER18 has two gate/trigger inputs called I1 and
I2 and four gate outputs called 61, 62, 63 and G4.

When you have attached a G8 expander, you get eight
more jacks. On the MASTER these are called G1 through
G8. On the MASTER18 they are G2.1 .. 62.8. Each of
these can either be used as an input or an output. They
are simple gate inputs/outputs that just know “On” and
“Off”, or 0 and 1. When used as an output they output
eitherOVor5V.

Starting with the blue-3 firmware and the new version
of the G8 expander, you can add up to four G8s to you
master. If you have more than one G8, you need a dot-
notation for the gate names, for example the gate 7 on

DROID manual for blue-6

the second G8is called G2.7 on the MASTER and G3.7 on
the MASTER18.

The stuff on your P2B8, P4B2, B32, P10 and other con-
trollers can also be accessed via registers. Here there is
always a dot in the name, separating two numbers, like
P1.2 or B4.8. The first number is always the number of
your controller. The second number is the number of the
element on the controller. So B4.8 is the Sth button on
the 4th controller. P10 controllers just have P registers,
noBor Lregisters. Likewise the B32 has just buttons and
thus no P registers.

Please note that each button has two registers: one with
the letter B for the button itself. DROID will set that to
1.0 while the button is pressed (and hold) and to 0.0 oth-
erwise. The second register is for the LED in the button
and begins with L. This is an output register where you
can write values to. A value of 0.0 will set the LED off,
while 1.0 creates full brightness. But the LEDs also sup-
port any number in-between and will have a brightness
according to that number. Negative numbers are treated
like positive numbers here, so -0.5 will produce the same
brightness as 0.5.

As long as you do not actively use the L-registers the
LED in a button will automatically be lit while you hold
it. Please look at the button circuit in page 141 for how
to convert a push buttoninto one that togglesits state on
each press.

51

Overriding the LEDs of master, G8 and X7

The registers R1 through R56 give you access to the 4 x 4
LED matrix on the MASTER and to the 2 x 4 LED matrices
on the G8s and X7. The let you override the normal func-
tion of these LEDs and give you a way to show internal
states of your patch. This is especially useful when you
have a couple of unused inputs (and thus unused LEDs).
Sending some internal values to one of these LEDs gives
you some feedback about what your DROID is doing.

Sending a value of 0.0 to such a register makes the cor-
responding LED dark. Other values select a color at full
brightness. Here is the table of colors (intermediate val-
ues give intermediate colors):

0.2 cyan
0.4 | green
0.6 | yellow
0.73 | orange
0.8 red

1.0 magenta

1.1 violet

1.2 blue

Table of contents at page 2

Registers on the MASTER:

Register Type Description
I1 I2 13 14 I5 16 I7 18 input The eight CV inputs
N1 N2 N3 N4 N5 N6 N7 N8 output The normalization of these inputs. When nothing is patched into an input, the according I-register will take its value
from the matching N- register instead. Any they are 0.0 if you have not set them.
01 02 03 04 05 06 07 08 output The eight CV outputs
Gl G2 G3 G4 G5 G6 G7 G8 input/output | The jacks of the first G8 expander. Each can be used either as an input or as an output. Instead of 61 you can write 61. 1.
G2.1 G2.2 G2.3 G2.4 G2.8 input/output | The eight gate jacks of the second G8 expander. Use 63.X and G4. X for the third and fourth G8 expander.
G9 G10 Gl1l G12 output The four gate jacks of the X7 expander. These are always outputs.
Rl R2 R3 R4 R5 R6 R7 RS output The colored LED squares in the first two rows (those for the inputs)
R9 R10 R1l R12 R13 R14 R15 R16 | output The colored LED squares in row three and four (those for the outputs)
R17 ... R48 output The colored LED squares on the first, second, third and fourth G8 expander
R49 ... R56 output The colored LED squares on the X7 expander
X1 output Special register for displaying a value encoded in the 4 x 4 LED matrix
Registers on the MASTER18:
Register Type Description
I1 I2 input Gate/trigger inputs
01 02 03 04 05 06 07 08 | output The eight CV outputs
Gl G2 G3 G4 output The four gate/trigger outputs
G2.1 G2.2 G2.3 G2.4 G2.8 | input/output | The eight gate jacks of the first G8 expander. Use G3. X, G4.X and G5. X for the an, 37 and 4th G8.
G9 G10 Gll1l Gl12 output The four gate jacks of the X7 expander. These are always outputs.
Rl R2 R3 R4 output The colored diagnostic LEDs on the back of the module
R17 ... R48 output The colored LED squares on the first, second, third and fourth G8 expander
R49 ... R56 output The colored LED squares on the X7 expander

DROID manual for blue-6

52 Table of contents at page 2

Registers on the controllers:

Register Type Description

P1.1 P1.2 P2.1 P2.2 P3.1 P3.2 .. input The pots on your P2B8, P4B2, P10 or M4 controllers. P3.2 is the 2nd pot on your 3™ controller.

El.1 E1.2 E1.3 E1.4 E2.1 .. special | The encoders of you E4 controllers. These registers can only be used in junction with the circuits encoder (see page
189), encoderbank (see page 185) and encoquencer (see page 198).

Bl1.1 B1.2 B2.1 .. B2.1 B2.2 B2.3 .. | input The push buttons on your P2B8, P4B2 or B32 controllers. B3.6 is the 6th push button on your 3" controller.

L1.1 L1.2 L2.1 .. L2.1 L2.2 L2.3 .. | output | The LEDs in these push buttons

R1.1 R1.2 R1.3 Rl.4 output | The LEDs in the touch buttons of the M4 controller at position 1

DROID manual for blue-6

53

Table of contents at page 2

5.6 Specifying numbers in your patch

Note: you always need to write the numbers in ”plain”
format, forexample 0.01 or 12345.67 or -5.0. Scientific
notations like 3.4”~-10 are not allowed. It's also not al-
lowed to write just .5 instead of 0.5.

There are two suffixes that you can attach to a number:
% and V. Appending a percent sign basically divides the
number by 100, so ...

pulsewidth = 45%
... isjust the same as
pulsewidth = 0.45

Appending a V divides the number by 10, which is exactly
what you need in order to convert a number to a voltage

5.7 Attenuating and offsetting inputs

Attenuation / Amplification / Multiplication

Eachinput of a circuit (not the outputs!) has a built-in op-
tion for attenuation and offsetting. Attenuation is done
by multiplying the input with a value. Well, if you “atten-
uate” with a number greater than 1, the name attenua-
tion would not really be correct, since the signal in fact
gets amplified and not attenuated.

Let’s assume you want to control the level parameter of
an LFO with the first pot of your first controller (see page
239 for details on the LFO circuit). That pot can be ad-
dressed with P1.1:

[1fol

DROID manual for blue-6

to be output at a jack. So:
pitch = 2V

... is just the same as
pitch = 0.2

Sometimes thisis easier toread. Please be just aware that
the Vis applied just to the number itself. You could write
1/12V, but that is not 5 V, but is -y, which is - when
you convert the voltage back to a number - ﬁ which is
0.8333. Whereas ﬁ V would be 0.008333 - a hundred
times smaller!

Some inputs or outputs behave like gates that only know
0 or 1, low or high, on or off. For your convenience you

level = P1.1
output = 01

The pot has arange from 0 to 1, which corresponds to 0 V
..10 V. That’s maybe too much for you application. So
let’s limit the range to 5V, which is the same as 0.5. This
is done by multiplying the pot with 0.5:

level = P1.1 * 0.5
Now level will range from OV to 5 V.

The attenuation does not need to be a fixed number. Let’s
CV control the level of the LFO with the external input I1.
Now we multiply that with the pot P1.1, which makes the
latter an attenuator for the CV. How cool is that?

54

canuse the words of f - whichis justashort hand for0.0,
and on - which stands for 1.0, if you like. Here is an ex-
ample:

[contour]
loop = on
output = 01

This is exactly the same as:

[contour]
loop =1.0
output = 01

level = I1 * P1.1

Fixed numbers can also be negative. The following line
basically inverts the LFO’s output since its output voltage
is negated:

level = P1.1 * -1
If you like, you can use a short hand for that:
level = -P1.1

But that is really just an abbreviation for -1 * P1.1.
From that follows, that -P1.1 * Ilisnot possible, since
thiswouldbe -1 * P1.1 * I1, whichwould be two mul-
tiplications!

Table of contents at page 2

Division

There is another shorthand: It is allowed to use division,
if the thing you divide by is a fixed number. So Instead of
pitch = I1 * 0.0833333 you can write:

pitch = I1 / 12

Again, this is a short hand for I1 * 0.0833333 and this
its treated as a multiplication. For that reason you can-
not write I1 / P1.1 or anything similar, since here the
DROID would really have to do a dynamic division with
the current value of P1.1. Use the math circuit for such
things (see page 248).

Offsets / Summing

An offset is applied by adding a number. This must be
written after the (optional) attenuation. Let’s have the
level of the LFO set by P1.1 but be at least 2 V:

[1fol]
level = P1.1 + 0.2

Now the level would range from 2 V to 12 V. Since 10 V
is the maximum, we could multiply the pot with 0.8 first,
which results in arange from2 Vto 10 V:

level = P1.1 * 0.8 + 0.2

Again you are not restricted to fixed numbers. You can
also use any DROID register you like. In this example

DROID manual for blue-6

we use P1.1 as a coarse tune and P1.2 as a fine tune (20
times finer) for the rate of an LFO:

[1fo]
square

=0
rate = 0.0

1
5 * P1.2 + P1.1

Using + can even be used for mixing together two input
signals. The circuit copy just copies aninput to an output,
but since the offset can be used with any register you can
build a simple CV mixer:

input = I1 + I2

Note: If you want to sum more than two signals, use the
mixer circuit (see page 285 for details).

Subtraction

Mathematics says, that subtraction is nothing else than
the addition of a negative number. So you can subtract
0.5 from P1.1 by writing:

input = P1.1 + -0.5

Since this looks clumsy, you are allowed to write as a
short hand:

input = P1.1 - 0.5
Note: you can also use the negation on a register:

input = I1 - I2

55

But note: here this is an abbreviation for -1 * 12 + I1!
So you already have “used up” your multiplication, even
ifyoudon’t seeit. The generalruleis: If DROID can trans-
formyour line into the form A * B + C, everything is good.

Summary and Further notes

+ Generally the formatis A *B +C. Soyou are limited
to one attenuation (multiplication) and one offset
(addition / subtraction)

-+ Each of A, B and C can be a fixed number, any of
the registers or an internal patch cable (for those
see page 56).

- Attenuation must be written first, offset last.

+ There are some abbreviations for subtraction and
division. They work if the thing can be transformed
intoA*B+C.

+ No other operations are allowed (no brackets, ad-
ditional operations, divisions, etc.)

- If you need more complex math operations, have a
look at the math circuit (see page 248).

Are you curious why DROID does not allow more com-
plex operations here? Why is it so restrictive? The rea-
son is a matter of CPU performance! When your patch is
parsed, everything is converted to A * B + C. If you don't
use the multiplication, B is set to 1. No offset? Then C
is 0. So when it comes to the real time computation of
these values, it’s just the simple A * B + C. No conditions
to be tested, no if/then/elses or similar stuff. It's really
super fast. And that’s important because you want your
DROID to have low latency and smooth envelopes.

Table of contents at page 2

5.8 Internal patch cables

One of the fun parts is the fact, that internally you can
connect several circuits without using any real inputs or
outputs. Instead of an output you simply put a name of
your choice that begins with an underscore. That same
name can be used at another circuit as an input. Here is
an example of an internal LFO triggering an envelope:

[lfo]
square = _TRIGGER
[contour]
trigger = _TRIGGER
output = 01

5.9 Using outputs as inputs

There is another way of connecting circuits: You can use
an output register as an input to another circuit. The
following example creates an LFO that outputs a square
wave to LED R1, in order for it to flash in the speed of the
LFO. R1 is the LED designated for input 1, but we sim-
ply misuse that as a signal LED for our LFO. Then an eu-

5.10 Usinginputs as outputs

Using input registers as outputs is not allowed. And it
would not make any sense. If you try so, you will get a
yellow blinking error message for the according line.

Look at the following example. Here - due to a copy &
paste error - the LED states are sent to the button regis-

DROID manual for blue-6

This patch cable is always a multiple, so it can be used by
more than one circuit:

[1fo]
square = _TRIGGER
[contour]
trigger = _TRIGGER
attack = 0.0
release = 0.2
output = 01
[contour]
trigger = _TRIGGER
attack = 0.5

clidean rhythm is triggered with that same signal, simply
by using R1 as an input here:

[1fo]
hz =2
square = Rl

ters. That won’t work. And for that reason DROID won’t
allow it:

[buttongroup]
buttonl = Bl.1

56

0.8
02

release
output

Note: There are two rules that are checked by the DROID.
And it will show an error message in green if one of these
are found to be broken (see page 48 for an explanation of
the error codes).

1. Eachinternal patch cable must be used as an input
and as an output (otherwise it would be useless).

2. No internal patch cable may be used twice as an
output. This would make no sense and is in effect
a short circuit.

[euklid]
clock = R1
length = 12
beats =5
output = 01
button2 = B1.2
button3 = B1.3
ledl = B1.1 # Argr. should be L1.1!
led2 = B1.2 # Argr. should be L1.2!
led3 = B1.3 # Argr. should be L1.3!

Table of contents at page 2

5.11 Parameter arrays

Some of the circuits have arrays of similar jacks, like
outputl, output2, output3 and so on. Here you can al-

5.12 Comments & spaces

You can use comments in your DROID patch by making
use of #. Then all further text until the end of the line is
being ignored: # Here comes the envelope for the foobar
voice

5.13 Abbreviated parameter names

There is a limit of 64,000 bytes that a patch may be long.
Since spaces and comments are removed automatically
by the master when you load a patch, they do not account
for. Nevertheless, you can runinto this limit if you create
more complex patches.

A new way to reduce the patch size has been introduced
in the firmware blue-6. Now every parameter has an ab-
breviation. You find the complete list of all abbreviations
in the firmware ZIP file in the subdirection manual. There
isafilecalleddroid-cheatsheet-. . .pdf (withthe name
of the firmware inserted). This how it looks for the circuit
algoquencer (see page 115):

DROID manual for blue-6

ways omit the digit 1 if you just want to address the first
jackin the list. So output is just the same as outputl.

[contour]

trigger = _TRIGGER # wired to sequencer

attack = 0.5 # another comment

release = 0.8
algoquencer
clock I
reset I
buttonl ... buttonl6 i
length 10203
pattern 10203
nextpattern I
prevpattern I

For example you can write just c instead of clock, r in-
stead of reset and b instead of button. Some abbrevia-
tions use more characters such as pt for pattern.

57

output

So instead of

[algoquencer]
clock = I1
reset = I2

pattern = _PATTERN
buttonl = Bl.1

button2 = B1.2
... you can write
[algoquencer]

c =1I1

r = I2

pt = _PATTERN

bl = B1.1

b2 = B1.2

= 02 # wired to foobar trigger

Table of contents at page 2

The Forge has an option called Use abbreviated parame-
ter names in the preferences. If you work with the Forge,

5.14 More than one patch on the memory card

Sometimes you might want to have more than one
DROID patch on your card and switch back and forth be-
tween these without going back to your computer. This
can be done if you have at least one controller with but-
tons, such as P2B8, P4B2 or B32.

It goes like this: Put your additional patches on the
card with special filenames in the formatdroid XY . inti,
where X is the number of the controller and Y the num-
ber of the button. Then for example droid14. inti will
be loaded if you first press and hold the button 4 on your
first controller while then pressing the load button on the
master.

This way if you have one P2B8 you can choose between
nine different patches. If you have a second P2B8 con-
troller, this extends to 17 patches, because now holding
button 1on controller 2 will load droid21.inti and soon.
A B32 gives you a total of 32 alternative patches to load
and so on. And yes: if you have 10 or more controllers
and some B32 amongst them, droid124.ini would be
loaded by button 24 on controller 1, but also by button
4 on controller 12.

Important: It is crucial that every of your patch files con-
tains the appropriate [p2b8] or other controller declara-
tions! Otherwise you won'’t be able to switch over to the
other patches since button presses will not longer be reg-
istered by the DROID master. It will instead fall back to
the normal droid. int in that case.

If you load a patch that way, the states of your circuits
are saved in a special file that accompanies the patch.

DROID manual for blue-6

just tick that option and your patches will be compressed
by abbreviating parameter names, automatically.

The name of that file is DSTAXY .BIN, so for example
DSTA14.BIN if you load the patch droid14.ini. All you
need to know is that each patch has it separate state. So
if you e.g. have an algoquencer in each of two patches,
it's patterns will seperately loaded and saved.

58

Table of contents at page 2

6 Controllers

6.1 Installing the controllers

Controllers are easy to install and use. The picture on the
right shows the back of the P2B8 controller, but the other
controllers look similar.

Each controller has two 6-pin connectors that are
mounted in boxes (shrouded). They are labelled “LINK
OUT” (left) and “LINK IN” (right). These connectors are
for building a chain of controllers. Don’t mix this up with
the 6-pin header that is labelled “Debug”, which doesn’t
have a box!

With your controller you got a 6-pin ribbon cable. Con-
nect one end of it to the shrouded 6-pin controller con-
nector of your master and the other end to the “LINK IN”
of your first controller.

Take another 6-pin cable and wire the “LINK OUT” of your
first controller to the “LINK IN” of your second controller.
Continue until all controllers are chained together.

Finally: Every controller also has a three-pin header with
the labels “LAST” and “PARK”. When you get the mod-
ule there is a small connector (“jumper”) between the two
pins that are labelled “LAST”. This jumper is crucial for
making the chain work. Here is the rule:

+ On the /ast controller, the jumper must be in the
position “LAST".

- On all other controllers, the jumper must be in the
“PARK"” position or removed (The park position is
just for your convencience that you don’t lose the
jumper).

DROID manual for blue-6

Jumper for terminating the
chain

Use these connectors.

Don’t use this one!

HW design by
Uladimir Pantelic
vpme.de

59

Thisis how a setup with two P2B8s on a master looks like:

Ol el

o«
‘ydmmdm.deo

If you switch on your system after connecting the con-
trollers, those with LEDs should make a short power up
animation. This does not mean that they are wired and
jumpered correctly, though. To make a real test, you need
to prepare a DROID patch, as you will see below.

Note: The M4 controller (see page 71) needs an addi-
tional power connector to your Eurorack system. The
other controllers are powered by the master.

Table of contents at page 2

6.2 How to use controllers in your patch

Working with the Forge

Before you can use the controllers in your patch, you need
to declare themin your patch. If you are working with the
Forge, that’s super easy. Double click on the top area with
the modules, click the “Controller” icon on the left, or use
the menu entry Edit / New controller.... This brings up a
collection of controllers:

Double click a controller to add it to your patch. Make
sure that the controllers are in the same order as you have
wired it to the master - from left toright. In case you have
mounted your master on theright side and the controllers
from right to left, you can switch how Forge displays your
patch with View / Show master on the right side.

Now if you want to use one of the controls, bring the cur-

DROID manual for blue-6

sor in your patch to the cell that shall “receive” the value
of the pot or button and click on this control in the rack
view. The Forge then inserts something like Button B2.7
into this cell. This means Button 7 on controller number
2.

Working with the motor faders in the M4 is a bit more
complex. Please have a look into the chapter about the
M4 (see page 71).

Working with a text editor

If you write your patch with a text editor, Just write
one line with the content [p2b81, [p101], [b32], [p4b2],
[s10], [m4] or [p8s8] for each for your controllers at the
top of your patch. The order of these declarations must
match the order of your controllers in the chain, begin-
ning with the one that is directly connected to the mas-
ter. Here is an example with two P2B8s followed by one
P10:

[p2b8]
[p2b8]
[plo]

Now you can use the pots, buttons and LEDs by indicat-
ing these special registers in your patch as follows:

Px.y | potentiometers

Ex.y | encoders

Bx.y | buttons

Lx.y | LEDsin buttons

Sx.y | switches (510 and P8S8)

60

Replace x with the number of the controller and y with
the number of the pot, button, LED or switch on that con-
troller. Examples:

+ P1.2is the second pot on the first controller
. B3.8is the eighth button on the third controller
+ L3.8isthe LED in that button

Table of contents at page 2

Here is a schematics of the numbering of three P2B8 con-

trollers:

O P2B8

@

@

O P2B8

@

@

O P2B8

@

@

DROID manual for blue-6

Look at the following example. Here we have three con-
trollers attached to the master: One P2B8, then one P10
and finally one more P2B8. Then we use some of the pots
of the P10 for controlling the timing of an envelope cir-
cuit:

[p2b8]
[plo]
[p2b8]

[contour]
trigger = G1
output = 01
attack = P2.5
release = P2.6

Details on the potentiometers

The potentiometers of the P2B8 and P10 output a num-
ber in the range 0.0 ... 1.0. This corresponds to a voltage
from 0.0 V to 10.0 V. Wherever there is a CV parameter
ina circuit (labelled “\\/~in the table of inputs) you can
set a pot here. An example would be an envelope gener-
ator:

[plo]

[contour]
gate = Gl
output = 01
attack = P1.3
decay = P1.4
sustain = P1.5
release = P1.6

If you do not like the range of the pot you can easily
change it by attenuation and offsetting as described on
page 54. Let’s make attack just go from 0.0 to 0.3:

61

[p10]

[contour]
gate = Gl
output = 01
attack = P1.3 * 0.3
decay = Pl1.4
sustain = P1.5
release = P1.6

Of course you could use the same pot for more than one
input. The following example use one single pot for at-
tack, decay and release - with different scaling, however!

[p10]

[contour]
gate = Gl
output = 01
attack = P1.3 * 0.3
decay = P1.3 * 0.5
sustain = P1.4
release = P1.3 * 0.7

Sometimes you want to use a potentiometer in a bipo-
lar way - e.g. with a range from -1.0 to 1.0. This can be
achieved by multiplication with 2 and subtracting 1:

[p2b8]

[copy]
input =P1l.1 *2 -1
output = 01

For more complicated tasks about pots there is the circuit
pot (see page 329). Here are some of its features:

- Make it easy to exactly dial in 0.5 by creating an ar-
tificial notch.

Table of contents at page 2

+ Overlay the same pot with several independent vir-
tual values.

- Easily create a bipolar pot with access to the left
and right half of the values.

+ Use the master’s 16 LEDs for highlighting the cur-
rent pot value

Details on the buttons

The buttons like on the P2B8, B32 and so onyield a value
of 1.0 while pressed and hold and 0.0 otherwise. While
this is sufficient for using them as trigger, in most cases
you want the button to toggle its state between on and
off each time you press it.

6.3 Troubleshooting

Here are the most common reasons why controllers don’t
work as expected. If you have trouble with the con-
trollers, please try the following before you reach out to
our community or us. We have a production error rate of
less then 1 in 1000 modules so far. So the chances are
huge that you can fix your problem yourself.

Jumpers: If your LAST/PARK jumpers are not set cor-
rectly, the controllers will powerup anyways. The LEDs
will show their boot up animation. A patch might even
be able to use the LEDs in the buttons. But you won’t
get button presses or pot positions back to your master.
That’s because the jumpers organize the transportation
of the output data of the whole chain back to the master.

IN/OUT swapped: If you mix up the two connectors, the
LEDs on the module will still light up on boot time. But
no communication works. It happens to me all the time,
since it's easy to get confused by the fact that left/right

DROID manual for blue-6

Here the circuit button helps (see page 141). It converts
a push buttoninto an on/off switch. The following exam-
ple usesB1.1in order to switch an LFO between unipolar
and bipolar:

[p2b8]
[button]
button = B1.1
led = L1.1
[1fo]
bipolar = L1.1
sine =01

Please note, how the LED L1.1 is set by the button, so

changes when you turn the module around.

Wrong declaration of controllers in your patch: The
controllers need to be added in their correct order to your
DROID patch. Make sure that you have setup the con-
trollers in the FORGE in their correct order from left to
right. If you mix them up, they get garbled data from the
master that they cannot interprete.

Bad cables: This happened, even if it’s super rare. If you
are unsure and you have more than one cable, make a
setup with just one controller on the master. Make a
simple patch that uses that single controller. Now try
your other 6-pin cables. If one cable works and another
doesn’t, its an almost 100% indication that you have de-
tected a broken cable.

M4 blinking in rainbow colors: If the four LEDs of a M4
controller (see page 71) flash in the alternating four col-

62

that you have visual feedback of the current state. And
since that register contains 0 or 1 depending on the but-
ton’s state it can directly be used for the input bipolar of
the LFO.

The button circuit can do much more interesting things,
for example:

- Create buttons with three or four toggle states

+ Combining more buttons into a group, similar to
“radio buttons”.

. Overlay one button with severalindependent func-
tions

+ Detect double clicks and long presses

See page 141 for all the details.

ors red, green, yellow and blue, it indicates that it does
not have a communication with the master. It does this
in any of the upper situations. So checkout the hints. If it
slowly “pumps” in one color (starting with red, then yel-
low, then green), it’s currently charging its super capaci-
tors and needs some time to get ready to work (1-2 min-
utes at most).

Bad module: If you really got a bad module, we apologize!
You just won a 1in 1000 price for bad luck. But you still
get a chance to get things to work. There is a chance that
the problem just appears if the module is the last in the
chain, orif its not the last in the chain. If you have a sus-
picious module, try both situations. There was one defec-
tive module where just the “PARK” position was broken.
The solution was to put that module as last or simply re-
move the jumper from PARK.

If your thing your module is defective, please contact out

Table of contents at page 2

community on Discord. It’s still a good chance that you And here is last hint: If you have correctly declared your If this works, that the communication with the master is

can fix it yourself. Sometimes people are blind. You controllersinyour DROID patch, the LEDs in the buttons working fine.
module really looks broken, anyway: Please contact your should be lit as long as you hold the button (this is the
dealer or us directly. default behaviour until you use the button in our patch).

DROID manual for blue-6 63 Table of contents at page 2

6.4 The P2B8 controller

O P2B8 O P2B8 The P2B8 controller was the first available controller and

DROID DROID

On the first P2B8...
is still the most popular one, since it has a balanced num-

ber of pots and buttons and is very flexible. It is good

- the two pots are addressed with P1.1and P1.2.
choice if you have just one or two controllers.

. the buttons range fromB1.1to B1.8.
- the LEDs in these buttons are L1.1to L1.8.

DROID manual for blue-6 64 Table of contents at page 2

6.5 The P4B2 controller

O P4B2 O P4B2 The P4B2 controller give your four nice pots and still two - the four pots are addressed with P1.1 through
DROID DROID buttons. Otherwise it’s very similar to the P2B8. The P1.4.

P4B2 is a good choice if you like to work with a larger

- the two buttons areBl.1and B1.2.
number of big pots.

- the LEDs in these buttons are L1.1and L1.2.
On the first P4B2...

DROID manual for blue-6 65 Table of contents at page 2

6.6 The P10 controller

DROID manual for blue-6

The P10 controller has two big pots (the same as the P2B8
controller) and eight small pots. That makes a total of 10
pots, which are all behaving in the same way. They are
numbered from 1 to 10, so if your P10 would be the first
in the chain, these pots are adressed ina DROID patch by

66

P1.1,P1.2,P1.3... P1.10.
The P10 is handy if you need to control lots of continuous

values. The small pots are not as easy to operate as the
big ones but they are very space efficient.

Table of contents at page 2

6.7 The S10 controller

O s18] O si6

%

DROID manual for blue-6

The S10 controller has ten switches. They have the regis-
ter abbreviation S. The first two are rotary switches and
have eight positions. They output the discrete numbers
0,1,... 7. The small switches just have three positions: 0
(down), 1 (center) and 2 (up).

In many cases the output values of the switches can be
used directly for controlling something. In other sitations
you might want to use the switchcircuit. It's a perfect so-
lution for having the switch select one of a list of values.
Here is an example:

[switch]

offset = S1.1
inputl = 0
input2 = 2
input3 = 3
input4 = 5
input5 = 6
input6 = 10
input7 = 11
input8 = 100

outputl = _FADERMODE

Here the switch 1 (S1.1) sets on offset to a switch cir-
cuit and sends one of the values 0, 2, 3, 5, 6, 10, 11 and

67

100 into the cable FADERMODE.

As always: inputs can be CVs. So you can also have dy-
namic inputs into the switch circuit. Here we use one of
the small three-way switches to select one of three wave-
forms of an LFO:

[1fo]
hz = 3
sine = _SINE
saw = _SAW

square = _SQUARE

[switch]
offset = S1.3
inputl = _SINE
input2 = _SAW
input3 = _SQUARE
outputl = 01

The switches are programmed in a way that if you move
them fast, intermediate values will not be seen by the
Droid circuits. So for example if you move one of the
small switches directly from down (0) to up (2), the in-
termediate middle position with the value 1 will not get
“visible”, not even for a short time.

Table of contents at page 2

6.8 The P8S8 controller

O P8S8 O

i

DROID
1 2 3

DROID manual for blue-6

The P8S8 controller is for those who love those little
sliders. The P8S8 has eight Alpha sliders with a range
of 20 mm. They behave like the normal pots and are
adressed with P1.1 through P1.8. The bottom position
is 0, at the top position their value is 1.

As a speciality the faders contain LEDs that can be con-
trolled and used for any purpose. Use the registers L1.1

68

through L1.8 for these. As long as you don’t use the LED
registers, the brightness of the LEDs reflect the current
fader positions.

At the bottom the P8S8 has eight toggle switches - just
thesameasinthe $S10 (see page 67). These switches have
three positions: 0 (down), 1 (center) and 2 (up). You ac-
cess them with the registers S1.1 through S1.8.

Table of contents at page 2

6.9 The B32 controller

o B32 o

DROID

9 10 11 12
13 © 14 15 © 16

17 18 19 20
‘.2.70
'YX X

o M o

DROID manual for blue-6

You can never have too many buttons! And the B32
gives your not less than 32 of them. The B32 is a per-
fect companion for the M4 motor fader controller as the
M4 provides lots of virtual “pots” and the B32 is handy for
switching between these.

Of course the B32 is also a good play ground for trigger
sequencers based on the algoquencer (see page 115).

The buttonsare numberedB1.1through1.32 (aslabelled
on the face plate) and the LEDs accordingly L1.1 through

69

L1.32.

They LEDs have one restriction: The just support four
brighness levels: off, low, medium and full. This is a de-
sign decision for the sake of fast data transfer and low
latency.

You will notice that the B32 is super fast in detecting but-
ton presses. You can slide with one finger through a col-
umn of eight buttons as fast as you like, but you will never
make the B32 be too slow to detect one of the presses.

Table of contents at page 2

6.10 The E4 encoder controller

The E4isa DROID controller with
four encoders. These are rotary
knobs that can be turned end-
lessly in either direction. Instead
of giving a certain position they
report movement. They do this
by sending digital signals when
they are turned to the left or to
the right. The encoders of the E4
have a resolution of 96 steps on
one full turn.

Each of the encoders is sur-
rounded by a square of 32
multicolor LEDs. This “ring”
is used to indicate the current
logical or virtual value of the
encoder. Encoders are ideal for
mapping multple virtual values
or presets to one knob and then
switch between these. The LEDs
will help you to orient yourself
“where you are” and which value
is currently being set.

Each encoder contains a push
button, which can be used just
like those on the P2B8 or on the
B32.

Installing the E4

You install the E4 just as all the other controllers (for more
about controllers see page 59): Connect the IN connec-
tor to your master with the 6-pin ribbon cable that came
with your module. Make sure that you always use the

DROID manual for blue-6

shrouded pin headers (there is an additional 3x2 connec-
tor at the top, which is just for the intial programming of
the hardware).

The E4 has a green jumper onits back. If the E4 is the last
controller in your chain, set this jumper to Last. If other
controllers follow, connect the next one to the OUT con-
nector and remove the jumper or set it to Park.

The E4 also needs a connection to the power of your Eu-
rorack modular case. It will not take the power from the
master as most other controllers do. This is because the
master is not able to power all the 128 LEDs on each E4
via the controller cable.

Using the E4 in your patches

The encoders have special registers with the letter E. For
example E2.3 is the third encoder on your second con-
troller (which is presumably an E4). There is something
special about these registers. Because of the nature of
the encoders that do not have a current position, you can-
not directly use them. Instead you always have to use a
circuit for accessing an encoder. Currently there are three
circuits for this:

+ Thecircuitencoder (see page 189) gives you access
to one encoder.

+ The circuit encoderbank (see page 185) gives you
access to up to eight encoders at once.

- The circuit encoquencer (see page 198) is a
performance sequencer that can be controlled
with encoders and has the same features as the
motoquencer (see page 286).

Please read the chapter about the encoder circuit (see

70

page 189) for all details on how to use the E4. There are
lots of examples.

You can access the push buttons in the encoders with a
B register, e.g. B1.1 for the first button if the E4 is your
first controller.

There is also an L register for each encoder (e.g. L1.1).
This allows you to use the whole LED ring around the en-
coder as one big white LED - nicely overlaying with any
actual animation from the encoder itself.

Software update for the E4

Because the E4 has a more complex firmware than for ex-
ample the P2B8, it has built in a method for a software
update. This makes it future proof. It is not very likely
that you need to do an update any soon, but here is the
procedure anyway.

Basically you do exactly the same as for the X7 (see page
85 with the following additional notes:

+ The firmware file on the SD card must have the
name e4.fw. You find the firmware file with a dif-
ferent name in the DROID firmware release ZIP file
in the sub directory firmwares.

+ In the master’s maintainance menu the upgrade of
the E4 is on position 5 (not 8 as the X7). And its
color is orange (not green).

+ The E4 that you want to upgrade must be the only
module that is attached to the master!

+ The green jumper on the back of the E4 must be set
to “Last”.

- The firmware upgrade does not work reliably over
a R2ZM/R2C bridge.

Table of contents at page 2

6.11 The M4 motor fader controller

DROID manual for blue-6

Quick start

Here is how you get started with your M4 as fast as pos-
sible:

1. Wire the M4 to your master just as the P2B8 or any
other controller. If the M4 is your last controller,
set the green jumper to “Last”, just as usual.

2. Connect the M4 to the bus power of your Eurorack
case. Itis the only DROID controller that needs its
own power connection.

3. Add the M4s to your patch with the Forge or de-
clare them in your patch with [m41].

4. Use the circuits motorfader (see page 311),
faderbank (see page 220), fadermatrix (see page
222) and motoquencer (see page 286) for using the
M4 in your patches.

Note: Whenyou switch on the power, your M4 unit needs
some time for charging their internal power system. That
can last 60 - 90 seconds. While they are charging, here
LEDs show a colored animation and go from red through
yellow to green and finally off.

Installing the M4

You install the M4 just as all the other controllers (for
more about controllers read about the P2B8 on page 64):
Connect the IN connector to your master with the 6-pin
ribbon cable that came with your module. Make sure that
you always use the shrouded pin headers (there is an ad-
ditional 3x 2 connector at the bottom whichiis just for de-
bugging the hardware).

71

If the M4 is the last controller in your chain, set the left
jumper to Last. If other controllers follow, connect the
next one to the OUT connector and remove the jumper or
set it to PARK.

The M4 also needs a connection to the power of your Eu-
rorack modular case. It will not take the power from the
master (as the other controllers do). The reason is obvi-
ous: motor faders need a decent amount of power.

There are two more jumpers, labelled with +150mA and
+100mA. These jumpers configure the power manage-
ment. Read below for details and then decide which posi-
tion you want to use. If you are unsure, put both jumpers
into the right position (+0mA). In that setting each M4
needs up to 350 mA from you 12 V rail.

After you switch on your rack you will see an LED anima-
tion on the M4. It starts with red, then gets yellow, then
green and finally the LEDs go off. This animation shows
you that the power management of the M4 is charging its
gigantic capacitors in order to provide the full strength to
the motors later. During this charging phase the M4 will
not respond to anything that happens in your patch.

Similar - when you turn off your rack - the M4 needs to
discharge the capacitors for safety reasons. It does this
by running all motors at full speed down and also doing
an LED animation in white and blue. Just before the end
the LEDs just glim red, because the green and blue part of
the LEDs need a higher voltage and go off first.

Before unmounting the M4, switch of the rack and wait
until this animation has stopped completely. Then it is
save to remove and put away the M4.

Table of contents at page 2

Using the faders in your patches

The traditional way of using motor faders is that you have
several presets. Every preset holds a certain fader posi-
tion. With some other control, e.g. a button, you can
switch between presets and the new setting of the fader
becomes active immediately. This is the classical applica-
tion for mixing desks, where you can use presets for dif-
ferent mixes that you have prepared for different musical
situations. You find general information about presets on
page 21.

Thereis a second even more interesting application, how-
ever: You can assign multiple overlayed functions to one
fader. For example one single fader could control attack,
decay, sustain and release of an envelope. So justin or-
der to save rack space and money you use one input de-
vice for controlling several parameters. In this applica-
tion switching between the different functions does not
alter any value. It just gives you access to control another
parameter. And - as opposed to encoders - the motor
faders act as a display for showing you the current values
of the parameters.

The DROID motor faders are designed to do both applica-
tions: presets, overlayed functions and even both at the
same time, because it make absolutely sense.

A speciality of the M4 - however - are its capabilities for
force feedback. With the help of the motors it can sim-
ulate artifical notches or dents and thus convert a fader
into a linear switch with a specific number of fixed po-
sitions. You can really feel these notches and that way
easily switch between clock divisions, notes of a musical
scale and whatever else you like - without the need of any
display. It can also simulate something similar to a pitch
bend wheel, where the fader always wants to move back
into the center.

DROID manual for blue-6

The most basic and elementary way to use faders in
your patch is using the motorfader (see page 311) cir-
cuit. When you are creating patches with banks of many
faders, please also have a look at faderbank (see page
220) and fadermatrix (see page 222). Those circuits
manage a collection of faders with a single circuit and
make your patches simpler.

In addition there is the motoquencer (see page 286) cir-
cuit which is a building block for simple and complex per-
formance sequencers based on motor faders and the ex-
perimental specialised firefacecontrol (see page 228),
which turns an RME Fireface audio interface into a mo-
torized mixing desk.

As a starting point for further reading | suggest starting
with the circuit motorfader (see page 311).

The touch plates

Below each fader the M4 has one touch plate with aninte-
grated RGB LED. The touch plates are usable as buttons
in your patch. Whenever a finger is touching the plate,
the respective buttonregister Boutputs 1, otherwise 0. In
addition, the circuit motoquencer (see page 286) makes
implicit use of the touch plates (and maybe some future
circuits, too).

Unfortunately, however, touch plates don’t have two def-
inite metal contacts like in the buttons of the P2B8, B4B2
and B32, but work by measuring the time an internal ca-
pacitor needs to load. If you lay your finger on a touch
plate, this time increases as some of the current is devi-
ated into your finger and thus the loading time increases.
Which means some inherent fuzziness and the touch
plates need some preconditions in order to work reliably.
If you experience your touch plates not to react properly
to your finger, check the following:

72

+ The wetter your fingers are the better the plates
work.

. They also work better, if your power supply pro-
vides a ground connection to the 120 /240 V net-
work.

+ As alast resort touching some jacks of your modu-
lar with one hand while using the touch plates with
the other hand will almost always work.

“Real” buttons would have been a better solution, but
alas - there is simply not enough space behind the face
plate for them. The motorized faders don’t come in
smaller sizes and we already have worked hard in mak-
ing touch plates and LEDs possible. Consider the touch
plates as a bonus add-on. If you don’t like them, use the
normal buttons in your controllers. Also, with the the
motoquencer (see page 286), you can use the faders as
an alternative for settings gates.

The LEDs

The LED below the touch plates can be accessed withan L
register - just like in the P2B8. In addition, thereisaRreg-
ister that controls the color of the LED, similar to those
on the master. If you just use the Rregisters, the LED will
light in full brightness. If you just use the L register, the
LED lights white in the brightness specified by the value
you feed into that register. Using bothRand L at the same
time gives you control over brightness and color.

Registers

Here is the summary of all M4 registers, assuming that
[m4] is your first declaration in your patch:

Table of contents at page 2

Bl.1...B1.4 | Touch plates

L1.1...L1.4 | LED brightness

R1.1...R1.4 | LED color

P1.1... P1.4 | Currentreal physical fader values

The motor faders

The DROID M4 has four industrial class motorized faders
with 60 mm action range from ALPS. They are a combi-
nation of normal linear potentiometer with an electrical
motor that can move that potentiometer. The motor is
not a step motor but runs continously. The M4 software
determines the current position of the fader by reading
out the value of the potentiometer and controls the mo-
tor to move to the desired position.

The motor control is done via pulse width modulation
(PWM), whose frequency is way beyond the audible
range.

Adapting the fader power

Using the circuit droid (see page 183) you can adapt the
motor power of the faders. There are two settings. Oneis
for the normal movement power (and hence speed). The
other one is for tuning the power of the haptic feedback
when you work with notches. Try mapping both parame-
ters to pots and you can test their influence:

[droid]
m4faderspeed = P1.1
m4notchpower = P1.2

DROID manual for blue-6

The power management

Motor faders are nice but need lots of power. As a matter
of fact, one fader could use up to 800 mA from your 12V
rail when the motor is running at full power - if you would
run it directly from the Eurorack power supply. So even a
single M4 would need 3.2 A for full operation. That’s a
lot more than a typical power supply provides. And it's
just one module! That’s probably the main reason why
we haven’t see flying faders in Eurorack sooner.

We have solved the issue in the M4 by means of mod-
ern supercapacitors (supercaps). Those little miracles
can store up to 100 times more energy per volume than
than electrolytic capacitors and can accept and deliver
charge much faster than batteries. They also tolerate
many more charge and discharge cycles than recharge-
able batteries. The four supercaps of the M4 can deliver
3.2 A for the faders with ease - of course with the limita-
tion of doing it just for a short time. That’s not an issue
in a normal usage pattern of the faders, since they move
super fast and just for fractions of seconds.

When you power up your M4, you will notice that it takes
some time to become operational. That is because it
needs to load the supercaps before the show can begin.
That time is somewhere in the range of 60 to 90 seconds.
The current loading state is indicated by an LED travel-
ling from left to right again and again. The colors starts
red, goes yellow and gets green just before the module is
powered up.

Note: when you work with the faders and let them jump
back and forth very fast very often, it can be the case that
the supercaps run out of power. In that case the fader
motors will go off for a couple of seconds, the supercaps
recharge and the powerup LED animation is visible (with
green LEDs).

73

The M4 has an intelligent charging mechanism that man-
ages the power of the supercaps and makes sure that
there is enough power for fader movements while not ex-
ceeding a limit of current that is drawn from your Euro-
rack +12 V power rail. With two jumpers on the back of
the module you can set the maximum charging current of
the M4:

+ The minimum charging limit of the M4 is 350 mA.
- With the left jumper you can raise that by 150 mA.
+ With therightjumperyou canraise that by 100 mA.

That way you can choose between 350 mA, 450 mA,
500 mA and 600 mA. The more power your allow the M4,
the faster it charges up and the more fader movements
per second it can do.

If you allow the M4 to draw too much current, your Euro-
rack power supply can overload. That might lead to vari-
ous problems:

+ It could overheat.

+ It could blow its fuse.

+ Itcould triggerits short circuit detection and switch
off itself.

+ The voltage of the 12 V rail could drop too much.

Please make sure that you use the M4 in a way that is
within the specification of your power supply.

The good new for last: once the M4 is charged up and
when you use the fader in a reasonable way, the power
consumption of the M4 is much lower than the maximum
limit. This is an important difference from modules like
those with vacuum tubes that need their heating power
all the time.

Table of contents at page 2

Discharging

When you switch power off, the M4 still has lots of en-
ergy stored in its supercaps. For safety reasons, it will
discharge the supercaps as fast as possible as soon as
it detects main power off. Dischard is done by con-
stantly moving all fader motors downwards and lighting
the LEDs in which with the maximum brightness - with
one blue LED wandering from left to right.

At some point in time the voltage is not suffient to drive
the motors anymore. The LEDs are still animated. Later
they will get red and slowly fader out.

DROID manual for blue-6

Do not unmount the M4 from the rack until all LEDs are
off!

This is important to avoid short circuits by accidentally

connecting the supercaps with metal of the case or the
like.

Software update for the M4

Because the M4 is much more complex than the other
controllers, it has a more complex software that might
need firmware updates from time to time.

74

The procedure is exactly the same as for the X7 (see page
85 with the following additional notes:

+ The firmware file on the SD card must have the
name m4. fw.

+ In the master’s maintainance menu the upgrade of
the M4 is on position 6 (not 8 as the X7). And its
color is yellow (not green).

- The M4 that you want to upgrade must be the
only module that is attached to the master! The
jumper on the lower edge of its back must be set to
"Last”.

- The firmware upgrade does not work reliably over
a R2ZM/R2C bridge.

Table of contents at page 2

7 The G8 expander

7.1 Introduction 7.2 Installation The G8 version 2 has two connectors. Here use the right
one labelled “Master”:
The G8 expander gives you eight addi- If you have just one G8 version 1, simply use the 8 pin rib- B 5 AR
tional jacks, each of which can be used bon cable that has been shipped with your G8 and con- iad - O <) n%‘i"r‘r"%o
as a gate or trigger input or output. nect the G8 to the 8 pin port of the master as shownin the RN ____“ = Sgei) (0
They are ideal for working with clocks, following picture. Put the red stripe down in both mod- O ' & 3,«’., :
gates and triggers, but can be used for ules. == _ ‘ .;;fm“ =

simple CV modulations, as well. There

are two hardware versions of the G8.
Version 2 was introduced 2023 and al-
lows you to chain up to four G8 ex-
panders to one master. For that pur-
pose it has two connectors on the back:
one to be connected to the master, one
for the next G8.

The original G8 version 1 has only one
connector. There is no need to be sad
if your G8 is version 1, since it still can
work in a chain with more G8s if it is the
last one. So if you want a second GS§,
simply get a version 2 one and use the
old one as the second G8.

o

e

DROID manual for blue-6 75 Table of contents at page 2

To create a chain, wire the master to the “Master” input of
the first G8, which must be version 2. Then wire the other
connector of this G8 to the “Master” input of the second
G8 and so on. No termination jumper is needed. The last
G8in the chain can either be version 1 or version 2.

o, O

o

v
e

P
3

DROID manual for blue-6

7.3 Using the G8 in patches

The name of the registers of the G8 jacks in your patch
depend on which master you use.

MASTER: You can access the jacks of the first G8 with the
registers 61, G2 ...G8. If you work with more than one G8,
you need to use a dot notation and write the number of
the G8 in the chain before the dot. So the gate 5 on ex-
pander 3 would be 63.5. If you want, you can use this
“dot notation” also for the first G8, hence G1.1 ... G1.8.

MASTER18: Since this type of master has four gate out-
puts integrated, the gates of the G8 have to get other
numbers. So the first G8 has the eight registers 62.1 ...
G2.8 and the fourth G8 would get 65.1 ... G5.8.

This is how the gates on the G8 work:

+ Each jack can either be used as input or as output.

- When used as input it will read a value of 1 at an
input voltage of approx 0.75 V or above and 0 oth-
erwise (also for negative voltages).

+ When used as an output, it outputs 5 V when you
send a value 0.7 or higher to its register, and 0 V
otherwise.

76

Why do the gates not output 10 V? Well, while this would
be more logical, but it was actually impossible to do in
hardware easily since the G8 needs a very special chip
that is able to switch between input and output via soft-
ware. This chip does not support 10 V.

99.9% of all Eurorack modules will happily accept 5V as
a valid trigger. Some analog envelopes with vintage cir-
cuitry might need higher voltages. If you encounter such
a module, you can use one of the outputs of the master,
which is able to output 10 V.

The G8 also has eight multicolored LEDs. These indicate
inputs in blue lights and outputs in red, when high. You
can override the default function of LEDs in order to dis-
play something or your own liking. Use the registers R17
... R48 for that purpose.

There is nothing special to do in your droid. ini for set-
ting up the G8 expanders. They don’t need to be declared
like the controllers. Using the G registers enables the ex-
panders automatically. If you load a patch with G regis-
ters but don’t have a G8, nothing dangerous happens and
the rest of the patch will work normally.

Table of contents at page 2

8 The X7 expander
8.1 Quick start

You already know what the X7 is all
about? Want to start immediately? Here
is a super short quick start guide for ex-
perienced DROID users:

1. Wire the X7 to your master just like
a controller. It must be the first in
the chain.

2. Use the MIDI functionality via
the circuits midiin (see page
260), midiout (page 268) and
midithrough (page 277).

3. Access the four gates via G9, G10,
Glland G12

4. Connect the USB cable and set the
switch feft for USB access to the
SD card. Set it back to the middle
position for disconnecting USB and
loading the patch.

IN MIDI OUT

Q0O

DROID manual for blue-6

8.2 General overview

Features and applications

Welcome to the X7 expander. The X7 gives you USB and
MIDI connectivity for your MASTER and also four gate
outputs with modular levels.

The X7 can also be used with the MASTER18 in order to
add more MIDI connectivity and the four additional gates,
even if the MASTER18 already has USB and MIDI inte-
grated.

You can process incoming and generate outgoing MIDI
streams, both via classical DIN cables and via USB. Bothin
and out directions support polyphony with eight or even
more voices.

For size reasons the X7 uses 3.5 mm TRS jacks for MIDI
instead of the classical DIN jacks. But it comes with two
DIN < TRS adapters, so you are free to use either form
factor.

As a bonus feature, the X7 provides super fast loading of
DROID patchesviaUSB - without any need for putting the
SD card in and out anymore.

Here are some examples of what you can do with the X7:

+ Attach an external keyboard to your modular.

- Use an external hardware sequencer for playing
melodies and beats in your modular.

- Use an external MIDI controller to control your
DROID patch.

+ Do the same with a MIDI controller app on your
tablet or phone (via USB).

77

+ Use your modular for playing polyphonic music and
beats on your hardware synths or software synth
plugins in your DAW, tablet or phone.

+ Connect two DROIDs (both with X7) and exchange
values and triggers via CCs and notes.

+ Use the four additional gate outputs on the X7 for
sending clocks, gates and triggers and free your
valuable CV outputs for other things.

+ Access the SD card in your master just like a USB
thumb drive for direct access to it via your PC, Mac,
phone or tablet.

. Alternatively load new patches to your master via
MIDI sysex from your PC - and get your new patch
ideas up and running in less than a second.

The switch

At the top the X7 has a switch with three positions. This
switch selects the current function of the USB port:

left Activate USB access to the SD card

middle | Don’t use the USB port

right Activate MIDI via USB

Beware: in the left position the master will not work as
usual and does not run your patch. See below for details.

The jacks

The X7 has the following jacks:

+ One USB-C port for MIDI via USB and for access to

Table of contents at page 2

the master’s SD card from your PC

+ One 3.5 mm stereo jack (also called TRS, which
stands for “tip ring sleeve”) for MIDl input, with au-
tosensing for MIDI TRS type Aand B

+ One 3.5 mm stereo jack for MIDI output

- Four gate outputs for gate and trigger signals at
modular level

This sums up to a total of seven ports, hence the name X7
(the original idea of naming it “UTM2G4” was soon aban-
doned, since that was too clumsy and also wouldn’t fit on
the face plate).

The LEDs

Similar to the master, the face
plate has multicolor LEDs indicating
what’s going on at the seven ports:
+ The top left LED shows the
current state of the SD card in
the master.
+ The top right LED shows
what’s going on on the USB
MIDI connection.
+ The LEDs in the second row
show incoming and outgoing
MIDI data at the TRS ports.
- The four LEDs labelled 9, 10,
11 and 12 show the current
state of the four gate outputs.

t(o
I3

|EEI
M=

8.3 Installation

The installation of the X7 is very easy. These are the rules:

DROID manual for blue-6

1. Wire the X7 to the shrouded 6-pin header on the
top right of the master, just like P2B8, P10 or other
controllers.

2. Thereis no jumper. You don’t need one here.

3. Always install it as the first module in the chain!

4. Make sure that the switch is in the middle position
when you start.

5. You can only attach one X7 to your master.

Just like all the controllers, the X7 has an input connector,
whichis at the top right side if you look from the back. On
the left side is the output connector. Connect the master
with the shipped 6 pin ribbon cable to the input connec-
tor. If you have any controllers, like P2B8, P10 and so on,
wire the first of these to the output connector of the X7.

That's all. the X7 is powered from the master so there is
no dedicated power cable.

Note: You don’t need to change anything in your DROID
patches for now. Even if the X7 is connected to the mas-
ter like a controller, it does not need to be declared. And
it also does not count when it comes to the numbering of
P1.1andsoon.

8.4 USB access to your SD card

The X7 can give you direct access to the SD card of the
master via USB. Start with the switch in its middle posi-
tion. And make sure the micro SD card isin its slot on the
master. The top left LED of the X7 always shows you dim
white light whenever a SD card is present.

78

i
Ti3

|EEI
T=

Now connect the USB-C port on the X7 with your PC, Mac,
Linux, phone or tablet (I'll just use “PC” for the rest of this
manual) and set the switch on the X7 to the left. This en-
ters “USB stick mode”.

Note: For a USB-C <> USB-C cable to work, your X7
must at least have hardware revision “Rev 1.5.1”. The
revision is printed on the back of the module top right.
Also you need at least the firmware “orange-912” on
your X7 (see below for firmware upgrades). If your X7
has “Rev 1.3” or “Rev 1.2” or you have “orange-911” or
earlier, the X7 needs a USB-A <> USB-C cable. For that
reason such a cable is shipped together with the X7.

After a few seconds, your PC should detect a new stor-
age device with the exact contents of the micro SD card.
Since X7 is a “class compliant” mass storage device you
don’t need any driver on your PC.

If you work with the Forge, you should see the Save to
SD icon become active and you can use that to write your
patch to the SD card. Much faster is using MIDI Sysex,
however.

If you don't like the Forge, you can edit droid. ini di-
rectly on the card or copy a patch from your PC to the
card, just as you are used to when you are working with
your SD card reader. The USB-Stick mode is also helpful

Table of contents at page 2

for getting the ERRORS . TXT or STATES1. TXT file from your
SD card, even if you work with the Forge.

When you are finished, eject the volume / disk on your PC.
After that set the switch back to its middle position. This
will remove the USB connection and also automatically
launch the new DROID patch. So you don’t need to press
the button on the master.

A few notes:

+ If your patch has an error (blinking LEDs and stuff,
see page 48) put the switch back to the left, wait for
the SD card window to popup and look for the file
DROIDERR.TXT. Open it and you will see the exact
reason for the error.

+ The access to the SD card via the X7 is slightly
slower than using an SD card reader on your PC
since it takes the extra miles via the X7

- If you need to re-format the card for some reason,
better do this in the micro SD card reader that was
shipped with your master. It's much faster that
way.

- If you are working with Mac and experience that
the access is slow, check out disabling Spotlight on
the card. A script for that can be found on page
103.

8.5 MIDI

MIDI features overview

One key feature of the X7 is working with MIDI. The com-
bination of the DROID master with the X7 probably forms
the most flexible, comprehensive and powerful MIDI con-
verter in Eurorack land. Here are some of the key fea-
tures:

DROID manual for blue-6

+ Support for both MIDI — CV and CV — MIDI at the
same time.

+ Unlimited polyphony (number of simultaneuous
notes) except that you run out of jacks.

+ The MIDI streams of USB and TRS can be used in-
dependently in parallel, so you have two input and
two output streams.

- Flexible “MIDI through” routing while splicing in
and out events

+ Comprehensive support and access to the vast ma-
jority of MIDI features such as CCs, clocks, the run-
ning state, pitch bend, all types of pedals and much
more.

- Automatic pitch stabilization detection in the
CV/gate — MIDI conversion, thus working pre-
cisely with Eurorack sequencers and quantizers.

+ Super fast DROID patch upload via USB-MIDI Sy-
sex.

And of course you benefit from DROID’s own flexibility
when it comes to quantization, LFOs, chord generators,
switches and all that stuff.

MIDI over DIN

For space reasons, the X7 uses 3.5 mm stereo jacks (TRS)
for MIDI. But we ship two TRS to DIN adapters with the
X7. Use these for connecting classical DIN MIDI devices.

Note: When you use one of the shipped adapters for the
MIDI output via DIN, make sure that the switch at the
back of the X7 is set to position B (up).

79

MIDI over USB

The X7 supports MIDI over USB. Hereby it acts as a USB
device. This does not mean any limitation of being an in-
put or output device. It can be both. Even at the same
time. But the actual limitation is that the X7 cannot pro-
vide power to your MIDI devices and cannot be a USB
host.

That means that MIDI devices that are USB devices them-
selves cannot be connected to the X7 via USB, eveniif you
have a matching cable. Connect your MIDI keyboards and
controllers with the TRS jack if USB doesn’t work for you
here.

But the USB port is perfectly suitable for connecting the
X7 toyour PC, Mac, tablet or phone. The MIDIimplemen-
tation is “class compliant”. That means that you do not
need any driver software. Simply connect the X7 with the
shipped (or any other) USB-C cable to your PC and set the
switch to the right. You should now see a new MIDI de-
vice, which can be selected as input or as output depend-
ing on what you are going to do.

Note: As of now the USB-MIDI standard has a concept of
up to 16 virtual MIDI “cables”. The X7 receives data on all
cables and always sends on cable 0. Future software up-
dates might make this more flexible, if there is demand.

Table of contents at page 2

By the way: MIDI over USB is not restricted to the stan-

dard MIDI data rate of 31250 bits per second.

The LEDs

When working with MIDI, watch the corresponding LEDs.

Here is what the colors mean:

black no data transmitted
dim white | steady activity

green note on

red note off

blue some other MIDI event

The top right LED shows the status of USB-MIDI:

M=

The third LED shows MIDI data via incoming TRS:

DROID manual for blue-6

= o llc
|i-|EI|HH|

The fourth LED shows MIDI data via outgoing TRS:

m=i|L 1k

MIDI to CV (MIDI input)

The most common application for MIDI and modular syn-
thesizers is converting MIDI note events to CV/gate sig-
nals. When you press a key on a MIDI keyboard or when
a MIDI sequencer starts playing a note, a MIDI “note on”
message is being sent over the wire. Likewise at the end
of the note a “note off” message is sent.

A typical MIDI to CV module receives these messages and
feeds at least two jacks: one with the pitch of the cur-
rently played note in form of the typical 1 volt per octave

80

scheme. And one gate output which is high (e.g. at 5V)
while the key is being hold.

Of course there is much more, like clock signals, con-
trollers and so on. This X7 can give you access to the vast
majority of MIDI features.

The hardware connection is done either with the 3.5 mm
TRS jack or via USB (or both at the same time). The X7
comes with two identical TRS <+ DIN adapters, soyou can
use the much more wide spread classical MIDI cables with
DIN plugs.

Even if you don’t use our adapters but use the 3.5 mm
jacks directly, you don’t need to care about MIDI “A and
B”. The X7 does autosensing at its input. Either way will
work. Just make sure you use stereo cables. Normal mod-
ular patch cables don’t work.

The basic operation is super simple. All is done with the
circuit midiin (see page 260). This example converts
MIDI to a pitch CV at output 01 and a gate at output 02:

[midiin]
pitch = 01
gate = 02

The source is the TRS jack. But you can easily select MIDI
via USB instead with the usb parameter:

[midiin]

ush

Per default, midiin processes notes from all 16 MIDI
channels. You can select one specific channel with the
channel jack:

Table of contents at page 2

[midiin]
channel = 5
pitch = 01
gate = 02

Note: You can use up to 32 midiin circuits in your patch.
So you could add one circuit for each MIDI channel that
you want to process.

For polyphonic patches with more voices simply specify
more pairs of gate and CV. This example supports three
simultaneuous notes:

[midiin]
pitchl = 01
pitch2 = 02
pitch3 = 03
gatel = 05
gate2 = 06
gate3 = 07

If you have a G8 expander (see page 75), you can directly
control eight analog voices:

[midiin]
pitchl = 01
pitch2 = 02
pitch3 = 03
pitch4 = 04
pitch5 = 05
pitch6é = 06
pitch7 = 07
pitch8 = 08
gatel = G1
gate2 = G2
gate3 = G3
gated = G4
gate5 = G5
gateb = G6

DROID manual for blue-6

G7
G8

gate?
gate8

Notes have velocities, also there are MIDI controllers like
the volume, the modulation wheel or more. These can di-
rectly be accessed via output parameters:

[midiin]
pitch = 01
gate = 02

volume = 03

modwheel = 04

ccnumberl = 17 # get CC number 17
ccl = 05 # output that on 05

Also you get simple access to various MIDI clocks and the
start and stop status:

[midiin]
clock = G1
start = G2
stop = G3

running = G4 # alternative to start/stop

The MIDI notes needn’t be used for playing voices. The
following example uses the note for selecting a root note
for aminifonion (see page 279):

[midiin]
pitch = _PITCH

[minifonion]
root = _PITCH * 120

You even can use MIDI keys (maybe from controller pads)
as buttons.

81

[midiin]
notel = 24 # MIDI note number of C-0
notegatel = _KEY_C

[button]
button = _KEY_C
onvalue = 0.8
offvalue = 0.2
output = 01

This was just a quick overview and there are much more
inputs and outputs available. Please have a look at page
260 for more details on midiin.

CV to MIDI (MIDI output)

While MIDI to CV interfaces still are the vast majority of
MIDI modules, the other way round becomes more and
more interesting. With more and more complex quan-
tizers, sequencers and other fascinating and inspiring CV
modules people want to integrate existing hardware or
software synths into their modular systems for playing
melodies and beats that are generated by these modules.

For that task you need a CV to MIDI converter. That con-
verts pitch and gate information that are present in form
of CVs, into a stream of MIDI events and sends these over
DIN or USB to the sound modules.

Such CV to MIDI converters are still rare in Euroland and
many of the existing modules have severe restrictions or
instabilities. One crucial problemis that most sequencers
do not output gate and pitch information exactly syn-
chronously. Another is that you need to have high quality
jitter free AD converters for precisely catching your pitch
CVs.

The X7 aims to be the most precise, comprehensive and

Table of contents at page 2

flexible CV — MIDI converter available and we are confi-
dent thatitindeed is. It supports an unlimited number of
voices (even if your master just has eight CV inputs, more
voices can be created internally with all your sequencer,
algoquencer, chord, arpeggio, minifonion and other
circuits). Also it gives you access to almost every con-
ceivable MIDI feature. And it benefits from the master’s
super precise and stable AD converters.

So let’s get started with the hardware. Just as with MIDI
IN, you can choose between USB and TRS. But here there
is a difference. The problem arises from the fact that the
mapping of the MIDI DIN plug to 3.5 mm stereo jacks has
been - well - fucked up by the hardware vendors. Some
have chosen the tip of the plug to be the TX signal, others
have found the ring to be more suitable. So two incom-
patible “standards” haven arisen, which were later called
MIDI “type A” and MIDI “type B”.

While at the input there is an autosensing, at the output
side this is not possible. So this time you need to get it
right. For that reason on the back side of the X7 there is
a small switch where you can select either type A or type
B for your TRS output. If you are unsure which one is the
correct one for your specific device, simply try both.

Note: For our shipped adapters set the switch in posi-
tion B!

Using the CV — MIDI feature of the X7 is easy. Use the

DROID manual for blue-6

circuit midiout (see page 268) for that purpose. Here is
an example for a monophonic patch with just one voice.
The pitch input is read from I1, the gate from I2:

[midiout]
pitch = I1
gate = I2

Per default, X7 sends on MIDI channel 1 on TRS. You can
change both with the parameters usb and channel:

[midiout]
ush =1
channel = 7
pitch = I1
gate = I2

To create a polyphonic patch simply add more pitch/gate
pairs:

[midiout]
pitchl = I1
pitch2 = I2
pitch3 = I3
gatel = I5
gate2 = I6
gate3 = I7

Of course you can use internally generated or shaped
pitch information, as well. In this example the pitch in-
put from I1is quantized to C minor before sending it to
MIDI (see page 279 for details on the minifonion circuit):

[minifonion]
input = I1
degree = 7

82

output = _PITCH

[midiout]
pitch = _PTICH
gate = I2

You can even create a MIDI to MIDI quantizer - without
any further eurorack module:

[midiin]
pitch = _INPITCH
gate = _GATE
[minifonion]

input = _INPITCH
degree = 7
output = _OUTPITCH

[midiout]
pitch = _OUTPITCH
gate = _GATE

Of course you can also access all the CCs and other con-
trollers, such as velocity, aftertouch, and polyphonic key
pressure. Also you can send your modular clock and reset
signals via MIDI. Please see page 268 for all details on the
midiout circuit.

And by the way: as always, all parameters are CV con-
trollable and can be changed on the fly - even things like
channel and usb.

I think you can guess the flexibility of this approach!

8.6 MIDI through

The X7 can forward MIDI data, that are incoming via TRS
or USB, to one of its two outputs (TRS / USB), while still

Table of contents at page 2

being able to “feed in” additional events into the same
output (using midiout (see page 268)) or processing the
events (using midiin (see page 260)).

Use the midithrough (see page 277) circuit for forward-
ing data from an input to an output. Here is an example:

[midithrough]
fromush = 1
tousb = 0 # means TRS jack for output

This will forward MIDI events from the USB port to the
TRS output. Note: All midiin and midiout circuits still
work, so the output stream on the TRS jack will both con-
tain the original events from MIDI-USB and the events
you create with your midiout circuits.

midithrough cannot do any filter or processing on the
fly. But if it would become an issue, we might add use-
ful feature here in future.

8.7 Four gate outputs

The X7 has four gate outputs. These are easy to use and
also not very thrilling. But useful. Each of these can out-
put modular level triggers or gates of 5 V.

Forusing the gates, refer to them as 69, G10, 611 and G12.
Why not starting at 61?7 Well, the gates G1 ... G8 are re-
served for the first G8 expander (see page 75), even you
don’tuse one. Note: the gatesonthe X7 are only outputs,
whereas the G8 can also use them as inputs.

Of course you can use the gates in combination with
MIDI. Here is an example for outputting three different
MIDI clocks as well as a reset signal at the gates:

DROID manual for blue-6

[midiin]
clock = G9 # 16th notes
clock8 = G10 # 8th notes
clock4 = G11 # quarter notes
start = G12 # trigger at MIDI start message

8.8 Eight multi color LEDs

Just as with the master and the G8, you can override
the functions of the eight LEDs on the X7 with your own
choice of colors. Use the registers R49 through R56 for
that purpose.

Here is an example for changing the LED color with a pot:

[p2b8]

[copy]
input = P1.1
output = R49

|EEI|IICI|
LEITIT

8.9 Fast patch upload via Sysex

MIDI defines a type of event that is called “Sysex”, which
is an abbreviation for “MIDI System Exclusive Message”.

These are portions of data bytes that just have a mean-
ing to certain types of devices and are not standardized
by MIDI. These messages can mean anything to a device.
In fact one of the original ideas was to load “patches” to
and from a hardware synth.

And exactly that original application is implemented by
the X7: You canupload DROID patches to your master via
MIDI sysex. Why would you do that, if you could simply
use “USB stick mode”? Well, there are a couple of advan-
tages:

+ The upload via sysex is really super fast.

+ Your DROID does not stop playing music for more
than a fraction of a second.

+ You don’t need to touch the switch nor the button
of the master. Soit’s a complete remote control.

- You don’t need to do this cumbersome “eject” of
the USB drive.

If you use the Forge, using Sysex works just out of the
box. Put the X7 switch to the right. Let it there. At any
time you can upload your current patch just by clicking
the Activate! icon in the toolbar!

If you don’t use the Forge, it’s a bit more complicated to
setup, since you need a software for sending patches via
Sysex. But if anything goes wrong you can always fall
back to USB stick mode.

Patch upload via sysex on Linux

The best way to setup the patch upload via sysex de-
pends on which operating system you use. Let’s start
with Linux, just because it’s the easiest. On any decent
regular Linux installation there usually is a tool called
amidi. It's part of the sound driver (ALSA), so it’s usually
already installed. amidicansend any MIDI commandsin-

Table of contents at page 2

cluding sysex.

Now in the Firmware ZIP-file that you find for
download on your shop, you find the directory
utilities/sysex/linux and in there the script
droidpatch. Copy that script to /usr/local/bin and
make sure it is executable.

Now you can upload a patch file by calling droidpatch
with the name of your patch file. It needn’t be called
droid.ini:

user:~ $ droidpatch mypatch.ini

Of course the switch on the X7 needs be on the right
(MIDI). That's it.

Patch upload via sysex on Mac

Now let’s look at the Mac. It’s basically the same pro-
cedure as on Linux just with one change. Mac does not
have amidi. Instead you need another tool for doing MIDI
on the command line. | recommend to use sendmidi.
This has several advantages over more complex software
suites:

« Itis small.

- Itis free.

+ It is command line based and thus good for au-
tomating things.

You can get sendmidi here: https://github.com/
gbevin/SendMIDI/releases. Choose your operating
system and download and unpack it. Basically there is no
installation necessary since this tool really just consists
of one single file, which is called sendmidi. | suggest that
you copy that file to /usr/local/bin, so thatitis always
ready for you to use.

DROID manual for blue-6

Just as with Linux, in the Firmware ZIP-file you find the
directory utilities/sysex/mac and in there the script
droidpatch. Copy that script to /usr/local/bin and
make sure it is executable. Put the X7 switch to the
right and you can send patches with the new command
droidpatch:

user:~ $ droidpatch mypatch.ini

One side note: sendmidi on Mac sometimes has a prob-
lem that every 256th byte is lost. The problem seems to
lie deep in the APl of Mac itself. If you run into that prob-
lem, you can try to enter a space into your patch file at
the right position. Or you might consider using the Droid
Forge instead of the command line.

Patch upload via sysex on Windows

Just as with Mac, the first step is to install sendmidi.
You can get it here: https://github.com/gbevin/
SendMIDI/releases. Thereis no real “installation”. Just
take the program sendmidi.exe and copy that to the di-
rectory where you keep your DROID patches. If you have
none, it’s a good time to create one now.

Open a terminal window, go to the directory with cd and
try it out by simply calling that program. It should outupt
aversion number:

C:\Users\dmmdm\patches> sendmidi
sendmidi v1.0.15
https://github.com/gbevin/SendMIDI

Usage: sendmidi [commands] [programfile]...

Now connect your X7 with USB to your computer. And
put the X7’s switch to the right. Then check if sendmidi
detects the X7, by adding the word 1ist:

84

C:\Users\dmmdm\patches> sendmidi list
Microsoft GS Wavetable Synth
DROID X7 MIDI

Hereitis! Now for every subsequent call to sendmidi add
dev x7inorder to select the X7 as output devices.

Now let’s try the MIDI connection by sending a note
event. This small tool is really cool. In fact you can send
all sorts of MIDI events. You can even create sequences
with lots of notes events and pauses in between. It’s kind
of really low level MIDI sequencing. So let’s play a C2 at
full velocity (value 127):

C:patches> sendmidi dev x7 on c2 127

If everything goes well, you should see the LED 2 on the
X7 shortly flash green:

b |
kaad

—afld]o
M=

If this works, you know that the USB-MIDI connection is
working and sendmidi is also ready. The next step is to
convert your DROID patches into MIDI sysex files. To do
this you just need to add a sequence of five specific bytes
at the beginning, then add the patch and one final special
byte at the end.

Table of contents at page 2

https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases
https://github.com/gbevin/SendMIDI/releases

With the X7 software releases there are the files
sysexhead.txt and sysextail.txt in the subdirec-
tory utilities/sysex/windows. These need to be glued to
the beginning and the tail of the patch in order to form a
MIDI sysex file. | recommand that you copy them to your
patch directory.

Note: For this all to work it is very important that your
patch files don’t contain non-ascii characters. So don't
use German umlauts or any other special character that’s
not part of the English language (you would do that just
in comments anyway).

On the command line you can use the command copy for
gluing together the head, the patch and the tail. Use a
plus sign between the file names like this:

C:patches> copy sysexhead.txt + yourpatch.ini
+ sysextail.txt yourpatch.syx

Write this in one line. This will convert yourpatch.ini
into a new file called yourpatch.syx. That file can easily
be sent via sendmidi:

C:patches> sendmidi dev x7 syf yourpatch.syx

That’s all' Your master should now load the patch, show
a very short restart animation and your patch is up and
running.

8.10 Software update for the X7

Unlike the simple expanders like the P2B8 or the P10, the
X7 has arather sophisticated software. Some bugs might
be found. And new feature ideas will be implemented. So
The X7 has a software update procedure.

DROID manual for blue-6

When you start the X7, it shows its current sofware ver-
sion in the 2x2 LED field of the gates. The first released
version is called orange-9 and is indicated by the G9 LED
shining orange:

m=|ElE0

In order to make things as easy as possible for you, the
software update for the X7 is done by the master. You
don’t need to change anything in your cabling for that.
Leave the X7 attached as the first expander on the mas-
ter. The firmware upgrade does not work reliably over a
R2M/R2C bridge!

First you need the new firmware file. This is con-
tained in the DROID software release package (ZIP
file) in the subdirectory firmwares. It is called like
x7-orange-1012.fw. Copy this firmware file to the SD
cardinthe master and rename it to x7 . fw. Put the SD card
back into your master. The next steps are dependent on
the type of master that you use.

X7 upgrade with the MASTER

Here are the next steps for an X7 firmware upgrade if you
have an MASTER:

1. Bring the master into the maintenance mode (see

85

page 100 for details). Long things short: this is
done by a very long button press.

2. Your maintenance menu should show a green menu
item at position 8 (if not, the SD card or the file
x7.fwon it is missing):

3. Now press the button a couple of times until the
blinking cursor is at position 8.

4. Pressthe button longerin order to start the update
procedure.

If everything goes well, you see a kind of progress bar run-
ning through all 16 master LEDs, while the X7 does the
same kind of animation with its 8 LEDs.

In case of an error, all 16 LEDs blink in one color. If all
LEDs blink yellow, the firmware file is missing (which is

Table of contents at page 2

strange, because it was there at the beginning):

Allblinking blue means aninvalid size of the firmware file:

And orange means that the file could not be read from the
SD card:

DROID manual for blue-6

™ P
Rl Bl
| e 1 saley B o
| TF § “Qy | °
™R
| e a
R P
e dik DAK

After the upgrade, you need to leave the maintenance
menu on your master. Do this by navigating the blink-
ing cursor to the white LED 1 and press the button a bit
longer:

X7 upgrade with the MASTER18

The MASTER18 does not have LEDs and also no mainte-
nance menu. The procedure here is in fact simpler. You
just need to power off and on your master.

If the MASTER18 detects the file x7.fw on the SD card
while starting, it will automatically go into firmware up-
grade mode. If you have visual access to the four diag-

86

nostic LEDs on the back of the module, you will see a
pulsating white “dot” moving in circles through the four
LEDs. This indicates that the master is ready for the up-
date. Also the LED in the button blinks slowly (once a sec-
ond).

As soon as the X7 is attached (which might be immedi-
ately if it was already attached when you powered up),
the X7 fetches the firmware file and loads it into its inter-
nal flash memory. While this is ongoing, the button LED
is lit permanently.

If everything goes well, the four diagnostic LEDs on the
MASTER18 show a green “progress bar” and the eight
LEDs on the X7 do the same with the same color. Then
the X7 restarts and does it’s usual small LED start anima-
tion and should display the new version number.

Now the button of the master flashes fast. You can now
press the button to repeat the upgrade procedure or up-
date another X7.

Note: When you are finished with the update, you need
to remove the file x7. fw from the master’s SD card.
Otherwise the master will enter the procedure again
and again!

Hint: if enter USB-Stick mode, the upgrade procedure is
aborted, too, and you can easily remove the firmware file
from the SD card without having the remove it from the
master.

8.11 Some technical details

Are you interested in the technical issues of the X7? Here
are some details.

The X7 uses the same micro controller (MCU) as the

Table of contents at page 2

DROID master: The STM32F446RET6. It is running at
180 MHz and has a 32-bit hardware floating point unit.
It's a very powerful processor and hard to get these days
(chip crisis). But it's worth it for short latencies and high
data rates.

The communication between the master and the X7 is
running at a much higher bit rate than is used for the con-

DROID manual for blue-6

troller communication. It’s using 1 MBit/sec, whereas the
controller bus is running just at about 50 Kbit/sec. This is
the reason why the X7 needs to be attached as first mod-
ule directly to the master. This higher bitrate allows for
transferring MIDI data with low latency - while the con-
trollers are still being process at the same speed as with-
out the X7.

87

When you switch to “USB stick mode” (switch to the left),
the bit rate is even increased to 2 MBit/sec in order to
make the access to your micro SD card as fast as possi-
ble.

The auto sensing of the MIDI TRS input is done with a

bridge rectifier, four diodes, so the polarity of the input
is ignored.

Table of contents at page 2

9 The MASTER18

9.1 Introduction

You can think of the MASTER18
as a smaller and cheaper version
of the MASTER without CV inputs
and LEDs, but with an integrated
USB and MIDI. Also it as six addi-
tional gate jacks, two of which are
inputs and four are outputs.

O DROID

MASTER18

And it comes with two interesting
bonus features:

+ It can be connected to the
Sinfonion as a follower of
the Harmonic Sync.

. It has an integrated tuning
device for VCOs (can mea-
sure their frequency).

The MASTER18 is a good choice if
you are intend to just create CVs
and not need to process incoming
CVs. It's perfect for building se-
quencers and MIDI to CV convert-
ers.

DROID manual for blue-6

9.2 Using the Forge

If you are working with the Droid Forge, you need to se-
lect your type of master in the menu Rack. There you find
the item Master module where you can select either MAS-
TER or MASTER18. Your selection is saved as a comment
in the patch, so next time you load it, the selection is al-
ready done for you.

If you load a patch that has been built for a MASTER, it
might or might not work with the MASTER18, depending
onthe features that have been used. In general, when you
switch to a different master in the Master module menu,
some new patch problems might be shown, others might
vanish.

9.3 The switch

Below the button of the MASTER18 there is a switch with
three positions. It selects the current function of the USB
port:

left Activate USB access to the SD card

middle | Don’t use the USB port

right Activate MIDI via USB

Beware: in the left position the master will not work as
usual and does not run your patch. See below for details.

88

9.4 USB access to your SD card

The MASTER18 can give you direct access to its micro SD
card via USB. This is useful for fast patch upload, access
to the DROIDERR. TXT and STATES1. TXT files and more.

For this you need to bring the MASTER18 into “USB-stick
mode”. This mode is entered if three conditions are met:

1. The MASTER18 is connected to your Mac or PC.
2. The switchis at its left position.
3. The SD card is present in its slot.

During USB-stick mode the LED of the MASTER18's but-
ton flashes twice a second. During disk operation it is lit,
in addition.

Moving back the switch to the middle is like ejecting the
USB stick. So you probably want to eject the card on your
Mac / PC first in order to avoid data loss.

After you move the switch back to the middle position,
your Droid patch droid. ini on the card is automatically
reloaded.

Notes:

+ If your patch has an error (the button blinks five
timesinarow), put the switch back to the left, wait
for the SD card window to popup and look for the
file DROIDERR.TXT. Open it and you will see the ex-
act reason for the error.

+ If you need to re-format the card for some reason,
better do this in the micro SD card reader that was
shipped with your master. It's much faster that
way.

- If you are working with Mac and experience that

Table of contents at page 2

the access is slow, check out disabling Spotlight on
the card. A script for that can be found on page
103.

9.5 MIDI

MIDI features overview

The MASTER18 has integrated MIDI connectivity. It can
do six independend streams of MIDI data:

USB MIDI input
USB MIDI output
MIDI 1 input
MIDI 1 output
MIDI 2 input
MIDI 2 output

OV hAcWN =

If that is not enough for your application, you can even
add an X7 expander to get another USB port and another
MIDI in/out connection.

Here are some of the key features:

- You can create powerful MIDI — CV converters.

+ Unlimited polyphony (number of simultaneous
notes) except that you run out of jacks.

- Flexible “MIDI through” routing while splicing in
and out events

- Comprehensive support and access to the vast ma-
jority of MIDI features such as CCs, clocks, the run-
ning state, pitch bend, all types of pedals and much
more.

- Fast DROID patch upload via USB-MIDI Sysex.

And of course you benefit from DROID’s own flexibility

when it comes to quantization, LFOs, chord generators,
switches and all that stuff.

DROID manual for blue-6

For examples of how to use MIDI, have a look at the
chapter about the X7 (see page 77) and also at the cir-
cuits midiin (see page 260), midiout (see page 268) and
midithrough (see page 277).

MIDI over TRS/DIN

The TRS output ports (TRS stands for 3.5 mm tip / ring /
sleeve connector) are of type B (there is no switch like in
the X7, sorry). Theinputs do autosensing so you can used
either type A or type B. The MIDI <+ TRS adapters shipped
with your MASTER18 are of type B.

MIDI over USB

The MASTER18 supports MIDI over USB. Hereby it acts
as a USB device. This does not mean any limitation of be-
ing an input or output device. It can be both. Even at
the same time. But the actual limitation is that the MAS-
TER18 cannot provide power to your MIDI devices and
cannot be a USB host.

This means that MIDI devices that are USB devices them-
selves cannot be connected to the X7 via USB, even if you
have a matching cable. Connect your MIDI keyboards and
controllers with the TRS jack if USB doesn’t work for you
here. Another way is to buy a MIDI/USB adapter.

The MIDI implementation of the MASTER18 is “class
compliant”. This means that you do not need any driver
software. Simply connect it with the shipped (or any
other) USB cable to your PC and set the switch to the
right. You should now see a new MIDI device, which can
be selected asaninput orasan output depending on what
you are going to do.

Notes:

89

1. The USB-MIDI standard has a concept of up to 16
virtual MIDI “cables”. The MASTER18 receives data
on all cables and always sends on cable 0. Future
software updates might make this more flexible, if
there is demand.

2. You will see the MASTER18 USB device named as
“DROID X7” on your Mac/PC. Don’t be confused by
that. That's right. Itis because it's does exactly the
same as the X7 and is compatible with that.

3. Turning on or off the USB connection with the
switch or plugging or unplugging the cable can
cause a short freeze of the master. This lasts less
than a second but it may lead to audible effects in
your music.

9.6 Sinfonion link

The ACL Sinfonion has a feature called Harmonic Sync.
If you are as lucky as to own a Sinfonion, you can attach
any number of MASTER18 as receiver of harmonic sync.
Thus they share the current harmonic situation such as
the root note, the scale and much more.

All you need is a normal patch cable from your Sinfo-
nion to the I1 input of our MASTER18. See that circuit
sinfonionlink (see page 353) for details and examples.

9.7 VCO tuner

The MASTER18 has a buitin very precise frequency probe.
This can measure the frequency of basic waveforms like
square wave, triangle, sine, sawtooth and so on. This
does not only give you access to the exact frequency but
you can build your own tuner for exactly tuning your VCO
to a reference note or just the nearest semitone.

Table of contents at page 2

To do this, connect a basic waveform output of your VCO
to the input I1 and use the circuit vcotuner (see page
374) to access all information about the current tuning.
You find all details and examples there.

Note: Since both the Sinfonion link and the tuner use I1,
you cannot use both in the same Droid patch currently.
Future firmware versions might change this.

9.8 Gate inputs and outputs

The jacks labelled I1 and I2 are not full featured CV in-
puts, but gate inputs. They can just be used for clocks,
gates, triggers and similar signals.

The jacks labelled 61 through G4 are gate outputs. They
either output O V or 5V - nothing in between.

9.9 Diagnostic LEDs

The MASTER18 has four LEDs on its back that give you
some feedback of what’s going on - just in case you are
lost. Of course you need to unmount the module in order
to see them, but it’s better than nothing and on the front

DROID manual for blue-6

side there simply was not enough space left.

blinkenlights

LD1 LD2 LD3 LD4

Here is an overview over all the different blinking pat-
terns that these can show:

Firmware version: When you power up the module, the
LEDs show you which firmware you are currently running.
LD4 blinks a number of times in a certain color. If it blinks
four times in blue color, you have BLUE-4. If the version
number is greater than nine, LD3 shows the tens. So for
MAGENTA-24, LD3 blinks two times in magenta and LD4
blinks four times - both starting at the same time.

Patch reload: If you load a new patch, LD1 through LD4
flash shortly one after another in the colors blue, gree,
yellow and red.

Global patch error: If LD1 blinks six times in a row after
a patch reload, your patch has some global problem, like
you exceeded the maximum amount of RAM. The color
indicates the cause of the error. You find a list of all col-

90

ors on page 50.

Patch errorin some line: If LD2 blinks six timesin a row
after a patch reload, your patch has an error in a specific
line. The number of the lineis notindicated here. You find
it in the file DROIDERR. TXT on the SD card. But the color
indicates the cause of the error. You find a list of all colors
on page 50.

Factoryreset: When you hold the buttoninordertodoa
factory reset, LD1through LD4 light up one after another
in blue - like a progress bar.

Controller update: While the MASTER18 is waiting for
the update to start (is ready to be contacted by the con-
troller), one white LED moves along LD1, LD2, LD3, LD4
and over again to LD1 and so on. During the firmware
upgrade of a controller or the X7, the four LEDs show a
progress bar from LD1to LD4 in a color depending on the
controller you update.

Firmware upgrade: During the firmware upgrade of the
MASTER18, the four LEDs show a progress bar in cyan
color. If the firmware file is invalid, all LEDs flash ma-
genta a couple of times. If the upgrade failed, the LEDs
flash red. And if it's successfully completed, the LEDs
flash cyan.

Table of contents at page 2

10 The R2M/R2C controller bridge

10.1 Introduction

The R2ZM/R2C is a pair of two 2 HP modules that allow you
to connect a chain of controllers to your master through
a standard 3.5 mm stereo cable (sometimes also called
aux-cable). The usual idea is that you put all your Droid
controllers into a skiff case and mount your master, X7
and G8into another case, together with all your fancy Eu-
rorack sound modules.

While you could do this with the typical 6-pin ribbon con-
nector (e.g. the 80 cm version that we offer), using the
R2M/R2C combination has some serious advantages:

The connection cable can be almost arbitrary long (20 m
have been tested and works perfectly). Since the connec-
tion is done on the front of the modules, you can quickly
disconnect your skiff for the purpose of travelling to a
gig. You can use a standard 3.5 mm stereo TRS cable for
the connection. These modules are not just passive con-
nectors but contain special driver ICs that transform the
electronic voltage levels, which runin the 6-pinribbon, to
something more stable and reliable that is fit for longer
distances in a more hostile environment.

The controllers do not receive their power from the mas-
ter but from the R2C module, which has a power connec-
tor and a voltage regulator for that purpose. Each chain
of the R2C module provides the same power to its con-
troller chain as the master does (it contains the identical
voltage regulator). That means that you can connect up
to 32 controllers () to one R2C.

Another nice thing: The R2ZM/R2C combination allows
for two of these master / controller connections in par-
allel. That means that you can have two masters being

DROID manual for blue-6

attached to their individual controller chains. That does
not mean, that each of the masters can access each of
the controllers at the same time, however. Both master /
controller connections work completely separately.

10.2 Setup with one master

First let’s assume that your have just one master. On the
back of the R2ZM (M stands for “master”) you will find two
6-pin shrouded connectors. These are labelled 1 and 2.
Connect connector number 1 with the 6-pin ribbon cable
to that output of the master that is usually used for the
Droid controllers.

Mount the R2M next to your master. Mount the R2C (C
stands for”controller”) into your skiff and use the shipped
10-pin power cable for powering it with Eurorack power
(red stripe down). Otherwise the controllers won’t work.
The R2C has two 6-pin connectors on the back, as well.
Connect the first controller of your chain to the connec-
tor labelled 1.

Now plug one of the shipped 3.5 mm stereo aux cables to
jack 1 of the R2M to jack 1 of the R2C. Or use your own
3.5 mm stereo cable for that purpose.

You don’t need any changes in your Droid patch.

91

O DROID O

HMASTER

max 20m

o [l o [

10.3 X7 connected to the master

If you have an X7, connect the R2M to the X7, so that the
order is master/ X7 /R2M. Mount the X7 next to the mas-
ter. Connect the R2M to the controller output of the X7.

=/
)

G
-\
=/

=
</
=/
9

\®
@)
.
/“\

J
)

>

G
</
@)

4

1
e
e

I
\&

N

17

\

77)
o &

A

YO OO

>

o @

G
7\
° Q

1

Table of contents at page 2

10.4 X7 in the skiff

You can move the X7 to the “other side” of the connection
by connecting the R2M directly to the master and using
the X7 as the first module after the R2C. If you do this,
the maximum distance that you can bridge is smaller, but
2 m should always be possible. This should be sufficient
for almost any case.

oIEoo

10.5 Controllers before the R2M/C bridge

You can put the R2ZM/C bridge at any position in your con-
troller chain that you like. So it’s possible to have some
controllers directly connected to the master. Simply wire

DROID manual for blue-6

the last of these to the R2M.

O DROID O O P2B8 Q P2B8 P2B8 (O P2B8

M STER DROID DROID DROID DROID

o p
5 »®

oc \,,/)m,. ® . .
m« 500 ® . . .
250000 @ @

o [l o [

10.6 More than one bridge

If you have lots of controllers and put them in two skiffs,
you can even use two R2M/C bridges and put a second
bridge somewhere later in the chain of controllers.

92

10.7 Setup with two masters

As states above, the R2C/M is dual channel. You can cre-
ate a second master / controller bridge with the same pair
of R2 modules. Connect the second master to connector
2 of the R2M and its conntrollers to connector 2 of the
R2C. Note: both master / controller chains are separated
and cannot interact with each other.

Table of contents at page 2

11 Droid under the hood

11.1 How the module’s state is saved

If you ask people what’s the number one annoyance when
using a module, most will answer this: When a module
is losing its state when you power cycle your modular.
That’s also the number one reason for people running
their system the whole night through.

Therefore the DROID - of course - will save it’s state al-
ways automatically. But what do | mean with “state” in
the first place? It's very simple: If you have defined a
button, DROID remembers wether it is currently on or
off. If itis on now, so will it be after a power cycle of your
system or a restart of the module (the same holds for off,
of course).

Other ciruits have states as well, for example the
algoquencer (state of the step buttons, the accents, the
patternlength), the matrixmixer (state of all matrix but-
tons), the calibrator (state of the calibration adaption)
and so on.

Only the result of manual interaction is saved, not for ex-
ample the contents of the cvlooper or the current phase
of an 1fo.

All these states are saved to the micro SD card into a file
with the name DROIDSTA.BIN. This file is created with a
fixed size of 128 KB when your DROID starts. All man-
ual changes to your circuits are saved there after a short
delay of about 1.5 seconds. Also when you press the but-
ton for loading a new patch, the states are saved imme-
diately, even if the last change was less than 1.5 seconds
ago.

This has the following implications:

DROID manual for blue-6

- When no memory card is in the DROID, no states
will be saved. But you can always put one there
even if the module is already running for some
time. It will be detected automatically and all
states will be saved after a second or two.

- When you move the SD card from one DROID
to another, the current circuit states will also be
moved.

+ If you want to erase all your settings, you can do
this by starting the DROID without and SD card
and inserting it later. The settings file will only be
loaded right at the beginning. If it's not present, all
circuits start with their default settings.

The format of the file is binary and looks chaotic. You
cannot open or edit it with any software. But the format
is very efficient, so the ongoing saving of states doesn’t
have any impact on the precise timing or performance of
the DROID.

Note: If you forget to have the SD card inserted when
you power up your DROID, it will run with default states.
Inserting the SD card afterwards will not load the saved
settings but the other way round! It will save the cur-
rent states on the card. This way you lose your original
settings. So if you have forgotten to start with the card,
power off the module, then insert the card, then power
it on again. That way you won't lose your settings.

You might ask what happens if you change a patch? The
state of the circuits of the previous patch was saved to
the SD card. How can that saved state be loaded into a
new patch that might have a different structure?

93

The rule is this: Droid numbers all circuits of the same
type, starting from 1 - according to their appearance in
the patch. So there is button 1, button 2, etc. And there
is buttongroup 1, buttongroup 2 and so on. When you
press a button, DROID writes to the SD card something
like “This is the new state of button 2.”.

When that state is loaded laterinto a new patch, the map-
ping of the loaded states to the circuits uses that same
numbering. So the saved state of button 2 is loaded as
start state for the second button in the new patch.

From this follows that:

+ If your new patch has less buttons than your pre-
vious one, some of the saved states are ignored,
since the matching buttons don’t exist anymore.

« If your new patch has more buttons than your pre-
vious one, the exceeding buttons start in the de-
fault state.

- If you change the order of the circuits in your patch,
circuits will get the “wrong” states when you first
startit.

Note: There is only one state file on the SD card. If you
swap patches back and forth, you will always mix up your
state if the patches have different structures. You might
want to get a separate SD card for every patch, if swap-
ping and not losing your state is crucial.

Sometimes you don’t want a circuit to save its state. You
want a fresh start every time you start your DROID. Or
you missused a circuit that’s ment for manual operation
(e.g. nudge (see page 320)) for some automatic changes

Table of contents at page 2

that happen very frequent and you don’t want to flood
your SD card with new useless states.

11.2 The order of the circuits

You might ask yourself what role the order of the circuits
plays in your patch file. Well - in most cases it doesn’t
matter at all, in some cases, however, it might cause very
subtle timing differences in the range of a couple of hun-
dred ps. In order to understand this, we need to have a
closer look at how the DROID works:

The basic working process of your DROID is a simple loop
that is repeating over and over again - at a speed of ap-
proximately 180 us per cycle, which means that it is run-
ning at approximately 5.5 kHz! In each cycle of the loop
the following things happen:

- The current values of all inputs, gates, buttons and
pots are read in and stored in the I, G, Band P reg-
isters.

- Eachcircuit creates a new value for each of its out-
puts. That might include writing new values into 0,
G, L or Rregisters.

+ The contents of the 0 and G registers are converted

11.3 Displaying the value of aregister

In the section about finding errors in your patches we al-
ready talked about the status dump file (see page 96).
That shows you the exact value of every single input, out-
put, potentiomenter and other register.

DROID manual for blue-6

All circuits that save states have an input dontsave. Set
this to 1 to prevent the state from being saved (and
loaded):

into voltages for their respective output jacks. The
contents of the Land Rregisters are translated into
brightness and color of the according LEDs.

Now let’s look at two circuits that are internally wired:

[bernoulli]
input = Gl
distribution = P1.1
outputl = _TRIGGER
[contour]
trigger = _TRIGGER
output = 01

Here an external trigger at 61 (on the G8 expander) is be-
ing used to trigger an envelope randomly, which is then
sent to 01. Here - because of the order of the circuits -
the envelope will start in the same loop cycle in which the
trigger is seen at G1.

Onthe MASTER thereisanother way of showing a current
value from within your patch, and that live. This can be
useful, for example, if you want to spare a potentiome-
ters and use a fixed value instead but first need to find
out which value fits best. Maybe you need a simple en-

94

[nudge]
dontsave = 1 # prevent loading/saving

Now let’s change the order:

[contour]
trigger = _TRIGGER
output = 01
[bernoulli]
input = Gl
distribution = P1.1
outputl = TRIGGER

Now it is different. In the cycle in that the trigger is de-
tected at G1, the envelope has already been processed. It
getsits trigger through the internal wire _TRIGGER not be-
fore the next cycle. This introduces a short delay of up to
160 us. Thisis not very long, but it can easily be avoided.

Note: However, when your patch contains quite a lot of
circuits, the loop time gets longer. Even then, it is likely
to stay below 500 ys.

velope with a fixed non-zero attack value. You could try
out different values by changing your patch over and over
again. But that’s quite annoying.

Here the experimental X1 register helps. It's an output

Table of contents at page 2

register. When you send a value there, all the LEDs of the
front panel will show that value in a way similar to the
line-error-encoding of the patch parser. Here is an exam-
ple:

[p2b8]

[contour]
attack = P1.1
release = P1.2
trigger = Bl.1
output = 01

[copyl
input = P1.1
output = X1

Now turn the knob P1.1 for setting some nice attack
value. As soon as you remove that from its zero-position,
all LEDs will move around in red and white and show the
current value of P1.1 with three digits. Input LEDs are lit
white and red. White digits account for 0.1 and red digits
for 0.01. The red digits at the outputs account for 0.001.
Here is how the value 0.148 looks like:

FEEIC!
clelala

NEEIRN
ERAEL

The digit 9 will be displayed as 8 + 1. So here is 0.951:

DROID manual for blue-6

FEIM
CiFAN

CIFIEIM
EHREE

A zero digit means of course that no LED is lit in the ac-
cording section. Here is 0.950:

F1EIM
Blrl1

NEEIR
EHRAEE

But what if digits in the input section collided? E.g. 0.550
would need the LED of input 5 to be red and white at the
same time. Well, then it will blink between white and red:

95

NEIEIM
Mk

NEEIR
ERAEE

The upper scheme just works for numbers intherange 0.0
... 1.0. But there are different color schemes for the non-
white LED that enable showing other ranges:

+ Numbers in the range -1.0 ... 0.0 (excluding zero)
are shown with blue LEDs.

+ Integer numbers in the range 2 ... 1000 are shown
in orange color, with factor of 1000 applied.

. Integer numbersintherange-1000... -2 are shown
in cyan color, with factor of -1000 applied.

Example: this is the pattern for the number 148:

FIE]
clrlala

Once you have found a nice value, simply replace P1.1
with that fixed value and your pot is free for something
else!

Table of contents at page 2

11.4 Displaying current values

There is an easy method for getting the current value of all registers! Simply double press DROID status

the master’s button - just similar to a mouse double click. If you do this, all LEDs will

flash white once. And on the SD card a file with the name STATES1. TXT is being created. Firmware version: blue-6
This file will not only show you the current value of all registers but also the values of all Running since: 10.385 sec

Average loop cycle: 0.043 ms
Unique constants: 15 (60 bytes)
When you do this again, a STATES2.TXT and so on is created. When STATES99.TXT is :ntquetcablei: gza(tobb}clte”
reached, it starts over again from STATES1. TXT. When you create the first dump file af- arameter vatues: ytes

internal patch cable (see page 56).

; . . Free RAM: 107247 bytes (94.908%)
ter the DROID has started, all old files from the previous run are automatically deleted. Size of patch: 163 bytes (0.254%)
Here is what such a file looks like:
Inputs:

I1: 0.3201 I2: 0.8210 I3: 0.0000 I4: 0.0000
I5: 0.0000 I6: 0.0000 I7: 0.0000 I8: 0.0000

Normalizations:
N1: 0.0000 N2: 0.0000 N3: .0000 N4: 0.0000
N5: 0.0000 N6: 0.0000 N7: 0.0000 N8: 0.0000

(=]

Outputs:
01: 1.0000 02: 0.2000 03: .3333 04: 0.0000
05: 0.0000 06: 0.0000 07: 0.0000 08: 0.0000

(=]

RGB-LEDs:
R1: 0.000 R2: 0.000 R3: 0.000 R4: 0.000
R5: 0.000 R6: 0.000 R7: 0.000 R8: 0.000
R9: 0.000 R10: 0.000 R11l: 0.000 R12: 0.000
R13: 0.000 R14: 0.000 R15: 0.000 R16: 0.000

Controller 1 [p2b8]:
Bl.1: 0 B1.2 0 B1.3: 0 Bl1.4: 0
B1.5: 0 Bl1.6: 0 Bl1.7: 0 B1.8: 1
L1.1: 0.000 L1.2: 0.000 L1.3: 0.000 L1.4: 0.000
L1.5: 0.000 L1.6 0.000 L1.7: 0.000 L1.8: 0.000
P1.1: 0.77631 P1.2: 1.00000

Internal patch cables:

_CLOCK: 1.00000
_PITCH: 0.23430
_RELEASE: 0.30000

DROID manual for blue-6 96 Table of contents at page 2

11.5 Controller latency

As stated above, you can attach up to 16 controllers to
one DROID master. These controllers are connected via a
ribbon cable with six wires. Four of these wires comprise
a power supply for the controllers with 5V (except for the
M4 - Motor Fader Unit, which has its own power supply).
The remaining two wires form a digital serial connection
between the modules. The master sends data to the first
controller, the first controller to the second and so on un-
til the last controller sends all collected data back to the

DROID manual for blue-6

master.

This serial line sends approximately 7200 bytes per sec-
ond. Every controller needs a different number of bytes
per update and for the P2B8 it’s 11 bytes. So if you have
just one P2B8, you get % = 654 updates per second.
That’s roughly one update per 1.5 ms - which is pretty
fast. That means that a button press is registered by the
master after 1.5 ms plus some internal computation time.

97

If you have the maximum of 16 controllers (which would
be 80 HP of controllers), things slow down a bit, of
course, since now every controller get’s just %6 of the
data in the serial connection. In that case a button press
would need about 25 ms to be registered. This is still way
fast enough for the typical switching tasks that you typ-
ically do with the DROID. However, playing live drums
with the buttons would not be very tight (I wouldn’t sug-
gest that anyway).

Table of contents at page 2

12 Firmware upgrade

12.1 Why upgrading the firmware?

DROIDisan active project, new features are being added,
bugs are being fixed. Also new controller modules require
changes in the software of the master module. All these
things are reasons why, from time to time, we release a
new firmware (software) version for the DROID master.

If youwant to use the new features or have the bugs fixed,
you can update your firmware. You find the newest re-
lease always on our download page and also in our Dis-
cord community .

Unless most other software, DROID uses a combination
of a color and a number in order to name a software ver-
sion. For example the version this manual is written for
is called blue-6.

Note: Some of the expanders and controllers also have
firmwares that you can update. Please see page 85 for
the X7, page 74 for the M4 and 70 for the E4.

12.2 Checking your version on the MASTER

When your MASTER starts, you can see your current ver-
sion in a short LED animation. Look at the first two rows
of LEDs (which normally show the inputs) and their num-
bers from 1 to 8. One or more of them will light up in a
color. Read these as a number and add the color and you
have the firmware version. The other two lines show a
rainbow animation and are not important.

This is how the version green-8 is being shown:

DROID manual for blue-6

EHRAR
™ hod

If two numbers light up, don’t add them but read them as
a number, for example this is blue-13 (not 4!):

12.3 Checking your version on the MASTER18

The MASTER18 das not have LEDs on the front panel, but
it has four diagnostic LEDs on the back:

blinkenlights

LD1 LD2 LD3 LD4

When you power up the module, the LEDs show you
which firmware you are currently running. LD4 blinks a
number of times in a certain color. If it blinks four times
in blue color, you have BLUE-4. If the version number is
greater than nine, LD3 shows the tens. So for MAGENTA-
24, LD3 blinks two times in magenta and LD4 blinks four

98

times - both starting at the same time.

12.4 Normal update procedure

Here is how you upgrade the firmware of your DROID:

1. Download the most current firmware pack-
age from the DROID’s homepage at
https://shop.dermannmitdermaschine.de/droid.

2. Unzip that file and go to the folder firmwares.
There you find all firmware files for the masters, X7
and controllers.

3. Copy the firmware file for your type of master to
your micro SD card:

- For a MASTER the file is called like
droid-blue-4.fw. Renameittodroid. fw.

- For a MASTER18 the file is called like
masterl8-blue-4. fw. Rename it to
masterl8. fw.

4. Insert the micro SD card into your master and press
the button, or power your master on while the SD
card is inserted.

When the master starts, it checks for a firmware file on
the SD card and automatically updates itself - if that
firmware is different from the one it’s currently running.

When the update is running, the 16 LEDs on the front of
you MASTER, or the 4 LEDs on the back of your MAS-
TER18 show a “progess bar” in dark cyan color. If every-
thing goes well then at the end all LEDs flash a couple of
times and the master starts into normal mode.

Here are some things that could possibly go wrong:

Table of contents at page 2

https://shop.dermannmitdermaschine.de/pages/downloads
https://discord.com/invite/9TUcRmH
https://discord.com/invite/9TUcRmH
https://shop.dermannmitdermaschine.de/droid

Missing firmware file

If you have not copied the file droid. fw or missspelled it
orit cannot be found for some other reason like a defunct
SD card then simply nothing happens. The master starts
like usual.

Invalid firmware file

A magenta blink code means that your firmware file
droid.fw is somehow not valid. It has the wrong size.
This usually has one of two reasons:

- You copied to wrong file to droid.fw or
masterl8. fw.

-+ You try to update to a blue version on a MASTER
that currently has a green version. If you want to
switch to blue, you need one extra step. Please see
on the next page in the section Upgrade from green
to blue for details.

Fail to program

If there is some error when programming the file into your
masters’s memory, all LEDs blink dark red. Retry down-
loading and upgrading the firmware again!

Firmware already up-to-date

If the firmware in the file droid. fw or master18. fw al-
ready has been flashed successfully in a previous update,
nothing happens. The master automatically detects this
and skips the update. So it is save to leave the SD card
with droid. fwin the SD card slot.

DROID manual for blue-6

12.5 Upgrade a MASTER from green to blue

After the firmware version green-8 there is a bigger
change. So the next version is not green-9 but blue-
1. The main difference is that blue firmwares are larger
and allow for more cool circuits and other stuff in your
DROID.

In order to make that possible we needed to change the
firmware format. For that reason - if your DROID has a
green firmware installed - you need to update your boot-
loader first. The bootloader is that part of the software
that does the actual firmware upgrade. If your master
came already shipped with a blue firmware, everything
is fine and you can stop reading here.

With the bootloader from the green firmware you will get
all LEDs flashing magenta if you want to update to blue-2
(or any other blue firmware). So in this case you need to
do the following steps:

1. Update to green-8. This is important since only
this firmware has a menu entry for updating the
bootloader.

2. Use the maintenance menu to update the boot-
loader. After which you are on green-8.

3. Update toblue-2 orany other blue firmware just as
described on the pages before.

Here is how step 2 works in detail. Do the following steps
for this:

First make sure that you have the firmware file of green-
8 on your SD card. This is probably the case anyway if
you just updated to green-8. Now press the button long
in order to enter the maintenance menu (see page 100 for
details).

If everything goes well, LED 7 must show a new blue

99

menu entry:

If the blue menu entry does not appear, it’s for one of the
following reasons:

+ The file droid.fw does not match the firmware
that is currently running (update your firmware
first)

- Your bootloader is already uptodate (identical with
the oneindroid. fw).

+ The file droid. fw is missing on the card.

+ The file droid. fwis damaged.

. Thefiledroid. fwcannot be read from the card (try
reformatting the card with a FAT filesystem in that
case).

+ The SD card is not readable.

- No SD card is present.

Now use short button presses in order to move the blink-
ing cursorto LED 7. There press the button long. This will
start the update. A blue LED will run one cycle around,
the DROID will restart and your are done. This whole
thing should last just a few seconds.

IMPORTANT: Do not switch off your DROID until the
procedure is finished!!! Doing so will make it completely
unusable. It has the be reprogrammed in our labs if that
happens.

Table of contents at page 2

13 Calibration, factory reset and other maintainance stuff

13.1 The maintenance mode of the MASTER

The MASTER has a special mode for various maintenance
tasks. This mode is a bit “hidden” so that you do not en-
ter it accidentally. You enter the maintenance mode by
holding the button on the master for a couple of seconds.
After 1.5 seconds of holding the button, an animation of
light blue LEDs going from O8 over to |1 starts:

When the blue LEDs reach 11, continue holding the but-
ton. DROID restarts. Still hold the button. Now the ani-
mation of the blue LEDs starts in the opposite direction:

DROID manual for blue-6

When the end is reached - this time at O8 - and you now
release the button, the DROID enters the maintenance
mode. If you let go the button before this you go back
into normal operation.

In maintenance mode you will see a white “cursor” blink-
ing at the LED for I1. Cell I3 is red, Cell 14 is magenta:

The four positions I1... |14 represent four different menu
options:

1. WHITE (I1): leave the maintenance mode and
restart the DROID.

2. black: currently unused.

3. RED (I13): reset the DROID to factory mode (but
keep calibration).

4. MAGENTA (l4): start the procedure of calibrating
the voltage of the eight outputs.

A short press of the button moves the cursor to the next
cell. Pressing three times brings you to cell 4:

100

A long press of the button selects the item the cursor is
currently at. It starts an animation on the LEDs of O1 ...
08 in the same color as the selected item (in this case cal-
ibration mode):

When the animation reaches O8, the item is being se-
lected.

Table of contents at page 2

13.2 Factory reset on the MASTER

The factory reset can help in situations where - due to
some software problem, maybe in a beta or testing ver-
sion - the DROID is stuck and does not want to run
again. The problem might be triggered by the current
saved states of the circuits or by the currently loaded
patch.

You do a factory reset in the maintenance menu by select-
ing position I3 (red).

13.3 Factoryreset on the MASTER18

The MASTER18 does not have LEDs and no maintenance
menu. But you can do a factory reset as well:

Press and hold the button for at least four seconds. It
starts blinking fast. Now release it. This triggers the fac-
tory reset. The MASTER18 resets after that and comes to

13.4 Calibration of the outputs of the MASTER

The MASTER comes with 8 high precision DA converters
(DACs) that produce highly accurate voltages for the out-
put jacks. These need to be calibrated in order to match
their designed precision. Calibration of the DACs is done
in our labs before we ship the units to you.

There is a super tiny chance that your calibration get’s
lost: When you switch of your rack just in that fraction of
a second when you load a new patch by pressing the but-

DROID manual for blue-6

All circuit states are erased. Also the current patch is
erased from the internal flash memory of the master.

Note: If the patch is still on the SD card, it will immedi-
ately be reloaded after the reset, so if you want to avoid

live without any patch loaded. Press the button to load
the patch on the SD card.

NOTE: If due to some unexpected bug or other strange
behaviour your MASTER18 does not respond to the
button anymore, switch off your rack and hold the but-

ton and at the same time deleting the calibration backup
file on your SD card! However unlikely: if your DROID
does not start with its usual rainbow animation but with
a white LED animation, your DACs are not calibrated an
not very precise anymore. In that case do as described
here.

Otherwise you probably never will need to calibrate your
outputs. If you want to do so anyway, please make sure

101

this, put either a different patch on the card or remove
the card while doing the factory reset.

The calibration of the voltages of the outputs is not lost,
when you make a factory reset!

NOTE: If due to some unexpected bug or other strange
behaviour your MASTER does not respond to the but-
ton anymore, switch off your rack and hold the button
while switching it on again. Now holdituntil all 16 LEDs
are violet and release it. This brings you directly to the
maintenance mode even before your patch has started.

tonwhile switchiton. Now hold it for four seconds until
it begins flashing fast. Release it. This procedure does a
factory reset mode even before your patch has started.
Make sure that the SD card is either removed or con-
tains the new patch that you want to try, since it will
be loaded immediately after the factory reset.

that your DROID has warmed up before you start. That
gives the best precision. Calibration is easy and you just
need a patch cable. As a preparation unplug all jacks be-
fore you start.

Now enter maintenance mode and select cell number 4
(magenta):

Table of contents at page 2

After entering the calibration mode, the top 8 LEDs are
black and the bottom 8 LEDs are cyan - with the excep-
tion of input 1 blinking magenta and output 1 blinking

:F1EIM
clelaln

:

13.5 Calibration of the outputs of the MASTER18

Just as the MASTER, the MASTER18 has eight precision
CV outputs that need to be calibrated. The calibration is
done in our labs with a professional voltmeter from Ro-
hde & Schwarz.

If for any reason you believe that you need to recal-
ibrate your outputs, you can do this with the special
circuit outputcalibrator (see page 326). There is an
example patch in the firmware package with the name
ml8calibration. ini. ItusesanE4 controller for the cal-
ibration.

DROID manual for blue-6

Now use a patch cable and connect input 1 to output 1.
DROID now tries out different output voltages and mea-
sures them by means of the precision ADC of input 1. This
information is being used for the exact calibration. The
result of the calibration is saved to the DROID’s internal
flash memory.

As soon as channel 1is calibrated the LED O1 changes to
green. The cursor moves to the next channel:

The procedure is like this:

1. Select the output you which to calibrate with en-
coder 1.

2. Select the target voltage to calibrate with encoder
2. Turn left for 0 V and right for 5 V.

3. Check the actual voltage on the output with your
voltmeter.

4. Turnencoder 3 left or right to adapt the voltage un-
til it matches exactly O Vor 5 V.

5. Repeat this step for all relevant outputs and target

102

Now proceed to the second pair of jacks and connect in-
put 2 to output 2. Do this until all eight channels are
green. DROID will then automatically end calibration
and start normal operation.

If one of the channels will not go green in spite of having
a proper connection between the relevant input and out-
put you might have a hardware problem. Please contact
us.

Hint: If you like you can use eight patch cables and patch
all eight connections at once. Then you just have to wait
for a couple of seconds until everything is calibrated.

By the way: If you are looking onto your SD card, you will
find a file with the name DROIDCAL.BIN. This is a backup
of your DAC calibration. Don’t touch it. Just leave it
there. If you delete it, it will automatically reappear any-
way. If your DROID looses it’s calibration for some rea-
son (currently there is none | can think of...), starting the
DROID with acard with this file will automatically restore
the DAC calibration.

voltages
6. Press the push button in encoder 4 to save the cal-
ibration.

Beware: the calibration cannot be undone. It is very
likely that you never need to calibrate your MASTER18.
Before you do the calibration first check if your outputs
are really unprecise.

Especially, the output calibration is a bad idea for com-
pensating badly tracking VCOs. For that rather use the
circuit calibrator (see page 150).

Table of contents at page 2

13.6 Using your own SD card

Formatting a micro SD card

DROID comes shipped with a micro SD card ready to use,
but you can use your own card if you like. Usually when
you buy a card it should work out of the box. If not, you
might need to reformatit. The following filesystem types

Speed up cards on Mac

The Apple Mac automatically creates several files and di-
rectories on every storage device it finds, in order to sup-
port spotlight search and a trash bin. Both of which is not
needed for your DROID and substantially slows down the
card access when you use it with the X7.

The card that comes with your master has been prepared
by us in a way that avoids these special Mac features - if
your master came shipped with at least version blue-1. If
you create your own card, or if yours came shipped with

DROID manual for blue-6

are supported:

- FAT 12
- FAT 16

an older firmware version, you can prepare it yourself.

This can be done by the following commands that you
need to enter on the terminal while the card is inserted
into your Mac. Hereby we assume that the name of you
card is Untitled. If not, please adapt the commands to
your name:

mdutil -1 off /Volumes/Untitled
cd /Volumes/Untitled

103

+ FAT 32

Exfat is not supported. Also the cluster size (sector size)
needs to be 512 Bytes.

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Please double check what you are typing. Especially the
rm command is very dangerous if you are not in the right
directory or have mistyped one of the dots or curly brack-
ets!

Table of contents at page 2

14 Hardware

Notes

The power consumption has been measured under the as-
sumption that there is no short circuit. If you set 10V to
an output of a master module and patch the to a different
output at 0 V (or even -10 V), or you touch ground with
the tip of the patch cable, the power consumption goes
up by 10-20 mA (per output).

The consumption is the maximum under normal condi-
tions. If you don’t use all features of the module (like
LEDs at full brightness, MIDI outputs, CV outputs, etc.)
the power draw is less.

For the controllers that do not have their own power con-
nection but are powered by the master, also for the G8
and X7, the power consumption displayed here is mea-
sured as the raise of the power consumption of the mas-
ter module.

DROID manual for blue-6

MASTER
Doepfer A-100 compatible “Eurorack” module with 8 HP

+ STM32F446 Micro controller running at 180 MHz

- 8 CVinput jacks with a voltage range from -10 V to
+10V, driven by highly accurate low jitter 16 bit AD
converters

+ 8 CV output jacks with a voltage range from -10 V
to +10V, driven by highly accurate low jitter 16 bit
DA converters

+ 16 full color LEDs

+ MicroSD card reader

+ Button for reloading the MicroSD card

- Expansion port for up to four G8 expanders

+ Expansion port for up to 16 controllers

Power consumption:

+12 Vrail: 154 mA
-12 Vrail: 15 mA

MASTER18
Doepfer A-100 compatible “Eurorack” module with 6 HP

+ STM32F446 Micro controller running at 180 MHz

+ 8 CV output jacks with a voltage range from -10 V
to +10V, driven by highly accurate low jitter 16 bit
DA converters

+ 2 gate inputs switching at 0.1 V, with option for
VCO tuning and Sinfonion link

+ 4 gate ouputs switching between 0V and 5V

+ MicroSD card reader

+ Button for reloading the MicroSD card

+ Expansion port for up to four G8 expanders

- Expansion port for up to 16 controllers

104

Power consumption:

+12 Vrail: 73 mA
-12 Vrail: 7mA

G8 Expander

Eurorack compatible expander for the DROID master,
with 4 HP

- 8 tristate gate/trigger-jacks that can each be used
either as an input or an output
. 8 full color LEDs

Power consumption:

+12 Vrail: 41T mA
-12 Vrail: 0 mA

X7 Expander

Expander with USB, MIDI TRS in/out, four gates, with
4 HP

+ STM32F446 Micro controller running at 180 MHz

+ USB-C connector supporting USB 2.0 device mode

+ Four gate outputs withOVor5V

+ Switch for USB mode with with three positions: SD
/ off / MIDI

- 8 full color LEDs

- Port for connection to the master

. Expansion port for connection to the controllers

Power consumption:
+12 Vrail: 94 mA
-12 Vrail: 0 mA

Table of contents at page 2

P2B8 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

+ STM32F030 Micro controller running at 48 MHz
+ 2 potentiometers
+ 8 buttons with LEDs

Power consumption:

+12 Vrail: 12 mA
-12 Vrail: 0 mA

P10 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

+ STM32F030 Micro controller running at 48 MHz
- 2 large potentiometers
+ 8 small potentiometers

Power consumption:

+12 Vrail: 10 mA
-12 Vrail: 0 mA

P4B2 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

+ STM32F030 Micro controller running at 48 MHz
+ 4 potentiometers
- 2 buttons with LEDs

Power consumption:

+12 Vrail: 11 mA
-12Vrail: 0 mA

S10 Controller

Eurorack compatible expander for the DROID master,
with 5 HP

+ STM32F030 Micro controller running at 48 MHz
+ 2 switches with 8 positions each
- 8 small switches with 3 positions each

Power consumption:

+12 Vrail: 10 mA
-12 Vrail: 0 mA

M4 Controller

Eurorack compatible expander for the DROID master,
with 14 HP

- STM32F030 Micro controller running at 48 MHz

+ 4 Alps motorized faders with a fader way of 60 mm
+ 4 RGB multicolor LEDs

- 4 touch sensitive plates

Power consumption:

+12 V rail: 350 mA - 600 mA (configurable)
-12 Vrail: 0 mA

B32 Controller

Eurorack compatible expander for the DROID master,
with 10 HP

+ STM32F030 Micro controller running at 48 MHz
+ 32 buttons with LEDs

Power consumption:
+12 Vrail: 24 mA
-12 Vrail: 0 mA

DROID manual for blue-6

P8S8 Controller

Eurorack compatible expander for the DROID master,
with 8 HP

+ STM32F030 Micro controller running at 48 MHz
- 8sliders with amber LEDs, moving range 20 mm
- 8 toggle switches with 3 positions each

Power consumption:

+12 Vrail: 20 mA
-12 Vrail: 0 mA

105

E4 Controller

Eurorack compatible expander for the DROID master,
with 6 HP

+ STM32F030 Micro controller running at 48 MHz
+ 4 Bourns encoders with 96 steps per rotation

+ 4integrated push buttons

+ 128 RGB multicolor LEDs

Power consumption:

+12 V rail: 220 mA (all LEDs white)
+12 V rail: 53 mA (LEDs used as encoder display)
-12 Vrail: 0 mA

Table of contents at page 2

R2M Controller bridge, part 1

This module creates - together with R2C - a remote
bridge to Droid controllers in another skiff, using a stan-
dard 3.5 mm stereo patch cable. Itis attached to the con-
troller ports of up to two master modules.

- 2 serial line drivers for realiable data transmission
Power consumption:

+12 Vrail: 3mA
-12 Vrail: 0 mA

DROID manual for blue-6

R2C Controller bridge, part 2

This module is put into a skiff and wired with a standard
3.5 mm stereo patch cable to the R2ZM. Two chains of con-
trollers can be attached.

+ 2 serial line drivers for realiable data transmission
-+ 2 power regulators with 5V, 1000 mA

Power consumption (without controllers):

+12 Vrail: 2 mA
-12 Vrail: 0 mA

106

Table of contents at page 2

15 Musical scales

Here your find all possible 108 values that you can use in the degree input of various circuits like minifonion (see page 279) or chord (see page 154). This table might indeed look
strange. The reason is that it reflects the internal scale structure of the Sinfonion. Every 12 scales refer to one mode of the Sinfonion. This is also the reason why some scale appear
twice. All scales are noted in the assumption that root is set to 0, which is a C.

Nr | Scale | Il W v |V VvE VI AfillT | fill2 | fill3 | fill4 | fill5 Nr | Scale | I v Vo VE VI AfillT | fill2 | fill3 | fill4 | fill5
0 | Clydian C E|FH| G B | Ct | Dt F Gi | At 24 | Slashchord Dbf11/C C |Dt|CH| G| F |At|GE| D E Fi A B
1 | Clonian C E|F|G B | Ci| Dt | Ft | Gf | At 25 | Slashchord D/C C|E|D|G|F|B|A]|Ct|Di| F | Gi| Af
2 | CMixolydian C E|F|G At | C4 | D | Ft | Gt | B 26 | Slashchord Eb/C cC|D|Dt|F Gt |As | ct | E | FE | A| B
3 | CMixolydian sus4 @ F E| G At | Ci Dt Fi G B 27 | Slashchord Eb§11/C C| D |Df|F At | Ct E Ft Gt B
4 | CAltered C|ct| E |DE|GY|Fe|At| D F | G B 28 | Slashchord E/C C|D|E|F|at B | Ci | Di | Ft | G | At
5 | CSpanish C|Ct| E F| G |Gi|Af| D Dt F B 29 | Slashchord G/C C/|F|G|A|B|E|D]|C Df Fi Gt At
6 | CDorian C|pD|pDt|F|G|A|Af|CH| E | F |G| B 30 | Slashchord Bb/C C|A|Af|E|D|G C4 | DH | Ft | GE | B
7 C Aeolian C| D |Dg| F G | G| At | Ct E Fg A B 31 | Slashchord D minor/C @ E D| G F A | A Ct Dt Fg Gt B
8 | CHarmonic major C|D|Dt| F |G |Gf| B Ct E Fi A At 32 | Slashchord Eb minor/C | C | Cf | D | F | Ff | Gt | Af | D E G A B
9 | CPhrygian clci|pt| F|G|Gt|At| D| E | Ft | A | B 33 | Slashchord E minor/C | C E|F|G|A Ct | Dt | Ft | Gt | Af
10 | C Diminished C| D |Df| F |Fi|GE| A B Ct E G At 34 | Slashchord G minor/C | C A |At| E | D | Ct | D Ft Gt B
11 | C Augmented C|D | E |Ft |G| Ct| Af| Df F G A B 35 | Slashchord Bb aug/C @ At | E Ft | Ct Dt F Gt B
12 | CMixolydianwith$11 | C | D | E | F4 | G At | C4 | DE| F | Gt | B 36 | CMajor C E|F A Ct | Dy | Ft | Gt | Af
13 | C Mixolydianwith411 | C | D | E | F4 | G At | ct | DE| F | Gt | B 37 | Ct Major ct|Dt| F|G|Gt|At|C| D|E | F | A | B
14 | CMixolydianwithb13 | C | D | E | F | G | Gi | At | Ct | Dt | F¢ B 38 | D Dorian minor D|E|F|G|A|B|C|Di|Ft | Gi| At | ct
15 | CMixolydianwithp13 | C | D | E | F | G | Gf | At | C4 | Dt Ft B 39 | Eb Mixolydian Di| F | G |Gf|Af| C | CE| E Ft A B D
16 | C Mixo sus 4b9 c|ct| F E| G Af | D Dt Ftf G B 40 | EPhrygian minor E F|G|A]|B|C|D Fi Gt At Ct Dt
17 | CMixo sus 4b9 c|Ci| F E G At D Dt Fg Gt B 41 | FLydian major F G A B C D E F Gt Aff Ct Dt
18 | C Mixolydianwithb9 | C |Ci| E |DE| G |Fi |Af| A | D | F | Gt | B 42 | Ff Altered FE| G|At|A|D|C|E| G| B | Ct|Df| F
19 | CMixolydianwithb9 | C | Ct| E |DE| G |Ft |At| A | D | F | Gt | B 43 | G Mixolydian G|A|B|C|D|E|F |Gt | At | cCt | Dt | Ft
20 | CMelodic minor C|D|Dt| F |G B | Cf E Ft | Gf | Af 44 | Gt Altered G| A|C|B|E|DJ|Ft| At | C4 | Dt F G
21 | CMelodic minor C|D|Dt| F |G B Ct E Ftf Gt At 45 | A Aeolian minor A|B | C|D|E F At Ct Dt Ftf Gt
22 | CMajor 7¢5 411 C|D|E|F|cy B | Ct | Di| F At 46 | Bb Major AM|C|D|E|F|G B | ct | DY | F¢ | G
23 | CLocrian C|Ci|Dg| F |FE|GE|At| D E G A B 47 | BLocrian B|C|D|E|]F|G Ct Dt Ft Gt At

DROID manual for blue-6 107 Table of contents at page 2

Nr | Scale | 1l Np v | Vo VE VI Ailll] fillz | fill3 | fill4 | fill5 Nr | Scale I Il WPV Vv Ve VI fillT] fillz | fill3 | fill4 | fill5
48 | CMinor froml C| D |Df| F Gi | At | Ci E Fi A B 72 | CHarmonic minor from | C| D |Di|F Gi | B Ct E Fi A At
49 | Cf Minor from | Ci | D | F Gt | At D E Ft A B 73 | Ct Altered Ct| D | F A| G| B Dt Ft Gt At @
50 | CMinorfromll D | Df| F Gt | Af E Fi B Ct 74 | CHarmonic minor from Il D |Df| F | G |Gt E F At Ct
51 | CMinor fromll DtE| F | G |Gt |Af| C E Ftf B Ct 75 | CHarmonic minorfromlll | Df | F | G |G| B | C | D E Ft At Ct
52 | Emajor E | Ft | Gi | Af Ct|Di| F c | D 76 | Emajor E|Fi |Gt |At| B |Ct|Di| F c | D
53 | CMinor from IV F |G |Gi|Af| C | D |Dt| Ft Ct 77 | CHarmonic minor fromIV | F G| B | C | D |Dt| Ft At Ct E
54 | Ff Altered Fi Ai| A | D E | Gi Ct | Dy | F 78 | F4 Altered Ft AM|lA|D|C|E]| ct Ct | bt | F
55 | CMinor fromV G |CGf| B D |Di| F A At Ct E Ft 79 | CHarmonic minor from V G |Gf| B C D |Df| F Aff Ct E Ft
56 | CMinor from VI Gf | Af | C Dt | F | G A Ct E F 80 | CHarmonic minorfromVl | Gf | B | C | D | D§ | F Af Ct E Ft
57 | AAltered A | At|ce F|Ipi| G| B | D| E | Ft | Gt 81 | AAltered AlAi|lct| c| F|Dg D | E | Ff | Gt
58 | CMinor from VII Af | C Di | F G | Gt B Ct E Ff A 82 | CMinor from VI Ag | C D |Df| F Gf B Ct E Fg A
59 | Bdiminished B | Ct E F| G |G| C Dt Ft A At 83 | CHarmonic minor from VII D | D Gt | Ct E Ftf At
60 | C Melodic minor from | @ DE| F | G| A B Ct E Fg Gt At 84 | CHarmonic major from | c | D E G |Gi| B Ct Dt Ft At
61 | CtAltered ct FIE|A|G|B|Df| Ft |Gt | A | C 85 | C4Major Ct |Dt| F|G|Gi|Af| C| D | E | Ft B
62 | C Melodic minor from Il D | DfE|F | G|A]|B E Ftf Gt | At Ct 86 | CHarmonic major from Il D | E F|G|Gt| B | C Dt Ft At Ct
63 | C Melodic minorfromlill | D | F | G| A | B | C | D E Fi Gt At Ct 87 | CHarmonic minorfromlll | Dt | F | G |Gf | B | C | D E Fg At Ct
64 | Emajor E | Ft |G| At | B | Ci | Dt F G A @ D 88 | CHarmonic major from llI E F| G|Gi| B | C|D Ftf Aff Ct D#
65 | C Melodic minor from IV F G A B C D | Di | F Gt Af Ct 89 | CHarmonic major from IV F G |CGf| B C D E Fi At Ct Df
66 | F Altered Fi Ai | A | D E|Gi | B | Ct|Dy| F 90 | Ff Altered FE| G |At|A|D|C|E]| Gt Ct | bt | F
67 | C Melodic minor from V G|A|B|C|D|Di|F Gt | At Ct E F 91 | CHarmonic major fromV G|Gf|B|C|D]|E F A At Ct Dt Ftf
68 | CMinor from VI Gt |Af| C | D |Dg| F |G A B Ct E Fi 92 | CHarmonic majorfromVI | Gf | B | C | D | E F | G| At Ct Dy Fi A
69 | C Melodic minorfromVl | A | B | C | D | Df| F At Ct E Ftf Gt 93 | A Aeolian minor A|B | C|D]|E F | G| Af Ct Dt F Gt
70 | C Minor from VII Af D|Di|F|G|Gi| B | Ct| E | F4 | A 94 | Bb Major AMlC|D|E|F|G|A]| B | Ci|Di| Ft | Gt
71 | CMelodic minor from VIl | B D |DfE|F |G| A | Ct E F Gt At 95 | CHarmonic majorfromVIl | B | C | D | E F | G |CGf| C Dt Ftf A At
DROID manual for blue-6 108 Table of contents at page 2

Nr Scale | I |V | V| VI VI Al fill2 | fill3 | fill4 | fill5
96 | CDouble harmonic major from| C |Cf| E F Gt | B D Dt Ft A Af
97 | CDouble harmonic major from Il Ct | E F | G|Gf|B|C D Dt Ft A At
98 Ct Double harmonic major from Il D | E F|l G |G| B|C Dt Fg At Ct
99 B Double harmonic major from IlI Dt| F | G |Gf| B Ct E F At D
100 | CDouble harmonic major from Il E F| G |G| B Ct | Ft At Dg
101 | CDouble harmonic major from IV F | G |Gt cC|C| E Ft At Dt
102 | B Double harmonic major from V Ff |G| B | C |Ct| E F Aff D Dt
103 | CDouble harmonic major from V G|Gf| B |C] |Ct]|E F Aff Dt Ft
104 | CDouble harmonic majorfromVl | Gf | B | C [Ci | E | F | G At Dt Ftf
105 | Ct Double harmonic majorfromVl | A | B | C | Ci | E F| G At Dt Fg Gt
106 | B Double harmonic major fromVIl | Af | C | Cf | E F | G| Gt Dt F A
107 | CDouble harmonic majorfromVIl | B | C | Cf | E F | G|Gi| D Dt Ft A Aff
DROID manual for blue-6 109

Table of contents at page 2

16 Reference of all circuits

Thisis a reference of all circuits that are supported by firmware version blue-6of DROID. The description of each circuit is made of two parts: a general introduction with some examples
and a table of all input and output jacks that the circuit offers.

Just like real synth modules the input and output jacks of DROID's circuits have different characteristics, which are denoted by one of seven symbols in the reference:

Jacks with the symbol A/ work with continous CVs in the full voltage range from -10 V to +10 V.

i) (‘% This symbol denotes jacks that work on a precise “one volt per octave” base. Such outputs can be patched to the V/Oct inputs of VCOs. Inputs with this symbol expect pitch
information e.g. from sequencers or musical quantizers.

oL)1 | Thisjack hasarange from 0.0 to 1.0. Input values greater than 1.0 are truncated to 1.0, values below zero are set to 0. 0. This input can be seen as a fraction or percentage.
When you use fixed values you can write percentages, for example 55% instead of 0.55. Since potentiometers yield values in exactly that range you can directly assign one
to such a CV. If you control that CV with an external voltage, the range is 0V ... 10 V.

o(a')1 | Thisjackis very similar to that of type oL)1, butits neutral value is in the middle position - at 0.5 or 50% or 5 V. An example is the jack distribution of the algoquencer
circuit: At the middle position beats are distributed evenly in the bar. Left or right of the center the beats are more oriented to the first or second half of the bar, respectively.
If you assign a pot, the center position of the pot is the neutral position.Values out of the range 0.0 ... 1.0 are truncated into that range. Hint: The input notch of the pot
circuit at page 329 helps you exactly centering a pot at 0.5. The range for external voltagesisOV... 10 V.

10203 | Thisjack operates withinteger numbers suchas 1, 2, 3and so on. Anexample is the length input of the euklid circuit. For some jacks 0 can be allowed as well. One example

is the inputoffset jack of the switch circuit. Any non-integer number will be rounded to the nearest integer. So a value of 0.6 will be interpreted as 1. Wiring an external
input directly to such a jack does not make much sense, since the range 0 V... 10V just mapsto 0 ... 1. For a 2 you would need 20 V. So you need to add some scaling, for
example somejack = I1 * 10, which converts an external 2 V to the number 2.

This denotes a stepped voltage. This is one that only appears in discrete steps. An example of a stepped output CV is the pitch output of the sequencer circuit.

Jacks with this symbol just know 0 and 1 or on and off. These are things like a gate from an envelope, where the length of the input counts. Some circuits also have switch
inputs or settings of that type that enable features like “looping on”. Also all inputs that are meant to be wired to buttons like B1.1 are of that type, since buttons output
exactly such gate signals. Output jacks of that type always either send 0.0 (0 V) or1.0 (10 V). Using G1 ... G8 for these is also fine, but they output 5V instead of 10 V. When
you you wire an external input to such a jack, it will see a 1 at a voltage of at least 1V and and 0 otherwise.

These jacks are trigger inputs or outputs. A trigger input just is interested about points in time where the voltage changes from 0 to some positive value above roughly 1V.
The duration of the time where the voltage is not zero is not interesting here. A typical use are clock or reset inputs. When the DROID outputs a trigger, is it sends a signal
of 10 V for a duration of 10 ms. Using G1 ... G8 from the G8 expander for these is just fine, but the output voltage will be 5V in that case. For external input voltages use any
regular clock/trigger/gate signal from your system.

The column Default shows the value a parameter has if you don’t patch anything into it. Here the special symbol =¥ denotes a certain “intelligent” behaviour when this jack is not
used. Please read the description for details.

DROID manual for blue-6 110 Table of contents at page 2

Memory consumption

Nothing in the world is for free. And also using circuits has a price: memory. Every circuit you use need its share of RAM. Your DROID has about 110.000 bytes of RAM free to be used

by circuits. Every circuit needs a certain amount of RAM - plus some extra bytes for every used parameter.

The following table shows the RAM usage of each of the circuits:

adc 56 faderbank
algoquencer 880 fadermatrix
arpeggio 144 firefacecontrol
bernoulli 32 flipflop

burst 40 fold

button 96 fourstatebutton
buttongroup 440 gatetool
calibrator 224 ifequal

case 88 1fo

chord 136 logic
clocktool 96 math

compare 32 matrixmixer
contour 112 midifileplayer
copy 24 midiin
crossfader 40 midiout
cvlooper 17336 midithrough
dac 56 minifonion
delay 1672 mixer

detune 56 motoquencer
droid 72 motorfader
encoder 184 multicompare
encoderbank 736 noop
encoquencer 1336 notchedpot
euklid 48 notebuttons
explin 32 nudge

In addition each used input or output parameter need some memory, depending on its type:

+ Normal inputs need 12 bytes.
- Trigger inputs need 16 bytes.
- Tap tempo inputs need 30 bytes.

DROID manual for blue-6 111

616
640
1088
40
32
40
56
32
216
56
64
176
6384
560
664
240
112
48
1168
112
56
16
40
128
144

octave

once
outputcalibrator
polytool

pot
quantizer
queue

random
recorder
sample
select
sequencer
sinfonionlink
slew

spring
superjust
switch
switchedpot
timing
togglebutton
transient
triggerdelay
unusedfaders

32
24
40
240
120
48
312
32
1712
40
24
168
56
48
56
64
104
88
56
48
56
248
32

Table of contents at page 2

- Normal outputs need 4 bytes.
- Trigger outputs need 8 bytes.

In addition each internal patch cable and each unique constant (like 1.5 or -12) needs 8 bytes. Note: If you are using the Droid Forge for creating your patches, you don’t need to do
any computations yourself. The Forge will always show you the exact memory consumption of your patch.

DROID manual for blue-6 112 Table of contents at page 2

16.1 adc - AD Converter with 12 bits

This circuit converts an input value into
a binary representation of up to 12 bits.
Consider the following example:

[adc]
input = I1
bitl = 01
bit2 = 02
bit3 = 03

In this example three bits are being used.

Three bits can represent a number from 0

to 7. These are mapped to the input range from 0 to 1 (or
0V to 10V) in the following way:

input bitl | bit2 | bit3 | bitvalue
—c0... 0.125 0 0 0 0
0.125... 0.250 0 0 1 1
0.250... 0.375 0 1 0 2
0.375... 0.500 0 1 1 3
0.500... 0.625 1 0 0 4
0.625...0.750 1 0 1 5
0.750... 0.875 1 1 0 6
0.875... 1 1 1 7

Values lower than O are treated as 0. Values higher than
1 are treated as one.

In other words: this circuit will convert an analog input
value into three different gate outputs.

The expected range of the input value is from 0 to 1 per
default, but you can change that with the parameters
minimum and maximum. For example you could have just
the range of 0.1 to 0.5 mapped to the three bits:

DROID manual for blue-6

[adc]
input = I1
minimum = 0.1 # 1V
maximum = 0.5 # 4V
bitl = 01
bit2 = 02
bit3 = 03

Now the table looks like this:

input bitl | bit2 | bit3 | bitvalue

—c0... 0.15 0 0 0 0
0.15...0.20 0 0 1 1
0.20...0.25 0 1 0 2
0.25...0.30 0 1 1 3
0.30...0.35 1 0 0 4
0.35... 0.40 1 0 1 5
0.40... 0.45 1 1 0 6
0.45... 1 1 1 7

If you use more of the bit-outputs you get more resolu-
tion. Forexample if youuse bitl... bit8, the total range
will be divided into 256 equal pieces. Since bit 1 is the
most significant bit, adding more and more bits will not
change the way bit 1is behaving.

The applications of this circuit are various and often sur-
prising. For example using different LFO wave forms as
inputs (other than square) and you will get slower and
faster gate patterns.

Please also have a look at the dac (see page 177), which
does the exact opposite!

113

Table of contents at page 2

Input Type Default Description

input (1) /\/\/\ 0.0 Input signal to convert to binary representation.

minimum (m) AAN 0.0 The lowest assumed input value. This value and all lower values will be converted to the bit sequence 000000000000.
maximum (x) AL\ 1.0 The highest assumed input value. This value and all higher values will be converted to the bit sequence 111111111111.

Output

Type

Description

bitl ... bitl2 (b)

The 12 bit outputs. bitlis the MSB - the most significant bit. The LSB (least significant bit) is the highest output that
you actually patch. If you do not need the full resolution of 12 bits, simply just use the first couple of outputs.

DROID manual for blue-6

114 Table of contents at page 2

16.2 algoquencer - Algorithmic sequencer

The Algoquenceris a versatile performance
sequencer, that implements a completely
new approach: It combines a classical trig-
ger sequencer with a turing machine and
other algorithms in order to create a very
hands on pattern generator for live improvisation. It's
main tasks are:

- trigger sequencer for drum voices

+ pitch sequencer

- melody generator

- generator of repeating random CVs

It can also be used as a simple random number generator
- may it be totally chaotic random numbers or self simi-
lar patterns like those generated by the so called “Turing
Machine”.

There are lots of interesting high-level parameters that
you can easily map to pots on your controllers - such as
Activity, Variation, Déja-vu and many more. With a turn
of a knob you can instantly increase or decrease the den-
sity or complexity or your patterns in various ways.

Here are some of the features:

- Up to 16 step buttons

- change the pattern length on the fly

- manually editable accents for each step
+ ratchets and drumrolls

- fills

- deterministic and chaotic randomization
+ simple muting

- fractal sequencing

If you use the Algoquencer for drumming, each
algoquencer circuit plays just one voice - e.g. a share
drum. For orchestrating a whole drum kit simply use

DROID manual for blue-6

more Algoquencers with possibly different parameters.
It totally makes sense to use some of the pots and but-
tons with all drum instruments - e.g. a pot for Déja-vu -
and others on a per-instrument base, like Activity.

Here are some examples of how to use the Algoquencer
circuit.

Pseudo random voltages / Turing machine

Without any inputs other than clock the algorithmic se-
quencer creates a sequence of random numbers that re-
peat over and over every 16 steps. This is much like the
“Turing Machine”. The voltage range of the pitch output
defaultstoOV... 3V:

[algoquencer]
clock = G1
pitch =01

You can change the length to any other value up to 64 by
using the length parameter:

[algoquencer]
clock = G1
pitch = 01
length = 12

If you do not like the default output voltage range you can
adjust that with the inputs pitchlow and pitchhigh:

[algoquencer]
clock = Gl
pitchlow = 1V

115

4V
01

pitchhigh
pitch

dejavu controls the randomness - or to be more precise
how random values are picked. It has a default of 1.0.
This means that once a random decision has been made
foracertain step of the patternit will be that way for ever.
The same random pattern will repeat again and again.
Making dejavu smaller will convert some of the decisions
to be random while others still repeat unchanged over
and over again.

You want to change the entire pattern? You can choose
another one by setting pattern to an arbitrary integer
number:

[algoquencer]
clock = G1
pitch =01
length = 12
pattern = 5

Another way to change the pattern is to send a trigger to
nextpattern, for example with a button:

[algoquencer]
clock = Gl
pitch = 01
length = 12
dejavu =1
nextpattern = B1.1

Do you like slowly evolving patterns (which is a feature
from the “Turing Machine”)? The morphs parameter -
which is usually 0.0 - will introduce random changes to
the repeating pattern in a very controlled way:

Table of contents at page 2

+ Changes (aka morphs) are introduced each time
the pattern starts (again) - never in-between

+ The exact number of changes is controlled with the
morphs parameter and is not random.

- The steps where these changes happen and the
changes itself are random.

morphs takes a number between 0.0 and 1.0. At 0.0 no
morphs happen. At1.0every step will be morphed - thus
completely changing the pattern every time it would re-
peat. Here is a table of how exactly the parameter affects
the number of morphs per 64 steps. It is done in a way
that is very suitable for mapping it directly to a pot and
gives a very fine resolution at the left half of the pot:

morphs | morphs per 100 steps
0.0 no morphs
0.1 1
0.2 4
0.3 9
0.4 16
0.5 25
0.6 36
0.7 49
0.8 64
0.9 81
1.0 100

Asyou can see the smallest number of morphs - if you set
morphs just a little above O - is one per 64 steps.

Note: If you are curious whether morphs are happening
you can wire the output morphled to some LED. It will

DROID manual for blue-6

flash whenever morphs happen.

Dejavu or morphs?

Did you get the difference between dejavu and morphs?
Here once again:

- dejavu controls, whether to use just complete
random values (dejavu = 0) or repeating pseudo-
random sequences (dejavu = 1).

+ morphs comes into play, when dejavu is > 0 and
modifies the pseudo-random sequences from time
to time a bit so they won'’t get boring.

True random voltages

If you do not want the random pitches to repeat you
can set the dejavu parameter to 0. This transforms the
algoquencer into a simple random number generator:

[algoquencer]
clock = G1
pitch = 01

dejavu = 0

It can be very interesting to map dejavu to one of the pots
of your controllers. That way you can change on-the-fly
between structured melodies and complete randomness
- or anything between!

Using the Algoquencer as drum sequencer

This is how you setup the Algoquencer for use as a drum
sequencer. Like in the previous examples you need a
clock signal. Also using a reset input helps you to sync

116

your drums with some external stuff. A trigger here re-
sets the pattern to the first step:

[algoquencer]
clock = G1
reset = G2

A triggerinto clock will move to the next step of the pat-
tern. One into reset resets back to the first step.

Algoquencer supportsup to 16 buttons (aka step buttons)
for manually setting up a trigger pattern. If you assign
less than 16 buttons then your patterns will be shorter.
You probably want to assign these to buttons of your con-
trollers, e.g.

buttonl = Bl.1
button2 = B1.2
button3 = B1.3
buttond4 = Bl.4

In order for the LEDs in these buttons to work you also
need to assign the led. .. outputs:

ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4

Please make sure that there is no “hole” in your defi-
nitions. You cannot use button8 if you not also use
buttonl through button7.

Note: You can use Algoquencer even without step but-
tons. This is like having an empty pattern, but activity
will still work and create artifical beats if it is not zero.

Last but not least wire the output trigger to the trigger
input of some drum voice.

Table of contents at page 2

trigger = 01

|II

For a simple “normal” trigger sequencer this is enough.
I'd suggest you setup this small example first and once it
is up and running you investigate further features of Al-
goquencer. Here is the example once again complete for
usage while we assume that you have an P2B8 controller:

[p2b8]

[algoquencer]
clock =1I1
reset = I2
buttonl = Bl.1
button2 = B1.2
button3 = B1.3
buttond = Bl.4
ledl = L1.1
led2 = L1.2
led3 = L1.3
led4 = L1.4
trigger = 01

Accents

Algoquencer supports setting or not setting an accent for
each of the steps. For this there is a “second page” of
the buttons where you can edit these accents. In order
to access that accent page you need to wire the input
accentbutton to one of your buttons (e.g. B1.5). Also
wire the output accent to some external output jack and
patch that to the accent input of your drum voice:

accentbutton Bl1.5
accent = 03

DROID manual for blue-6

Now while you hold the accent button the step buttons
will switch over to showing the accents intead of the nor-
mal beats. And you can set and remove accents now.

Note: if you do not want to be forced to hold the button
while editing accents you can convert it into toggle but-
ton using the [button] circuit:

[button]
button = B1.5
led = L1.5
output = _ACCENTS
[algoquencer]
... the other stuff
accentbutton = _ACCENTS
accent = 03

Alternate steps

The Algoquencer just supports 16 steps, but there is a
great way to extend your patternto 32 or more steps. The
concept for this is a bit unusual, but all the more musical
and hands on. It goes like this:

There is an alternate page of another 16 buttons. These
are like a third layer of buttons (if you account the accents
for the second layer). Just like with the accents you de-
fine a button for bringing up that layer, for example:

alternatebutton = B1.7

While you hold that button you edit the alternate page
instead of the normal steps.

Now: every active step in the alternate page will flip the
according step in the normal page for every second bar.

117

That way you can have a variation of the pattern every
second bar but you just edit the differences to the normal
pattern. So adding or removing one beat every second
bar can be done by activating exactly one step in the al-
ternate page.

You are not limited to a pattern of two bars. By setting
alternatebars to another value you can change the fre-
quency of the alternate bar:

alternatebutton B1.7

alternatebars = 4

Now bars 1- 3 are played normally and every forth bar the
alternate page is applied. That basically forms a pattern
of 64 steps.

Pattern length and bars

As you have at most 16 buttons one pattern can have a
length of at most 16 steps. The length of the pattern can
be set in various ways:

+ If you wire at least one buttonl then the length de-
faults to the number of wired buttons.

+ This can be overridden by setting length to any
value (e.g. length = 7).

- If you use the lengthbutton then you can interac-
tively change the pattern length during your per-
formance. This will always override the length in-
put.

Add the button for changing the length is easy:
lengthbutton = B1.6

One bar usually has the same number of steps as your
pattern. But if you set repeats = 2, one bar will consist

Table of contents at page 2

of two times the pattern (and thus lasts twice as long).
Bars are useful when you use fills or branches.

Playing fills

Fills are additional beats the Algoquencer adds at the end
of certain bars in order to play a musically interesting fill.
In order to use this first wire fills to some CV or most
likely to a pot:

fills = P1.1

Now if you crank up that pot clockwise then more and
more beats will be added - with a tendency to the end
of the bar. In music - however - playing a fill each bar is
not very interesting. By setting fillorderto1, 2 or 3 (or
even a higher number) will make the fills assume a cycle
of 2, 4 or 8 or move bars. Please see below for details.

Activity and random

Four inputs are key features of Algoquencer, since they
extend it from a plain old trigger sequencer to an algorith-
mic drummer. These are variation, activity, dejavu
and morphs. The latter two already have been discussed
when using Algoquencer as random generator. They have
the same effect here.

The default value of variationis 0.0. That means that
Algoquencer will exactly play the pattern as you have di-
alled it in with your step buttons. If you increase that
value (a pot is handy for doing this, of course) then ran-
domly some of the beats will move to other steps. Setting
various to 1.0 will completely alter your pattern. The
number of beats will stay the same!

DROID manual for blue-6

activity will change exactly that: the number of trig-
gered beats in one bar. The default value is 0.5 - which
is the center position if assigned to a pot. Here the num-
ber of played beats is exactly the same as you have setin
your pattern. Turn it left to remove (randomly) some of
the beats. Turn it right to add some. At 0.0 no beats are
triggered, at 1.0 there is a beat for every clock cycle.

The activity also has an effect when you create ran-
dom voltages. Here the voltage only changes when a
“beat” happens at that step, even if you are not using the
trigger output.

Further nifty parameters

There are some more interesting parameters like rolls,
offbeats, distribution and branches. Please look at
the table of inputs for more details.

Presets

The algoquencer supports up to 16 presets. Each preset
comprises all settings that can be interactively changed,
i.e. the activated steps, accents, alternate steps, the
manually changed length, the state of the mute button
and also the current random seed (which was modified
by nextpattern, prevpatternor reroll).

There are three ways of switching between presets. The
first way is easy to implement. Simply send the number
of the current preset to the input preset. It has to be a
number from 0 to 15. You can for example use a pot if
you multiply it with 15:

[algoquencer]
preset = P1.1 * 15

118

Now any change you make will immediately be saved to
that current preset. If you change the preset number
by turning the pot, another preset will immediately be
loaded and activated.

The second - more sophisticated - way is to use triggers
for loading and saving. These could be buttons, e.g.:

[algoquencer]
preset = P1.1 * 15
loadpreset = Bl1.1

savepreset = Bl1.2

Now turning the knob does not load or save any preset.
The input preset is just evaluated when you press B1.1
orBl.2:

+ A trigger to savepreset will save the current set-
tings into the preset that is selected with the
preset input.

- A trigger to loadpreset will copy the contents of
the preset selected by preset into the current set-
tings.

Note: In the second mode you effectively have 17 pre-
sets, since the “current settings” could also be considered
to be a preset. The advantage of this mode is that play-
ing around with the settings of the algoquencer does not
immediately effect any of the presets.

Hint: In order to avoid saving or loading presets by mis-
take, have a look at the button (see page 141) circuit and
the longpress output. It sends a trigger when a buttonis
pressed and hold for a certain time.

The third way is a combination of the first two ways.
Here you work with triggers, as well. But these triggers
at the same time hold the number of the preset to load or
to save. This makes situations easier where you have one

Table of contents at page 2

button per preset

[mixer]

inputl = B1.1 * 1

input2 = B1.2 * 2

input2 = B1.3 * 3

output = _LOAD_PRESET
[mixer]

inputl = Bl1.4 * 1

input2 = B1.5 * 2

input2 = B1.6 * 3

output = _SAVE_PRESET
[algoquencer]

loadpreset = _LOAD_PRESET

savepreset = _SAVE_PRESET

This means that if the trigger CV has the value 2 when it
is non-zero, it load preset number 2. This mode is auto-
matically active, if you don’t patch the preset input.

There is one drawback of this method: you cannot eas-
ily access preset number 0 that way, since the CV 0 is not
sufficient for triggering the input. The trick is sending a
value larger than 0.1 (which is the threshold for boolean
“true” values) and less than 0.5 (which would be rounded
to 1). So for example send a trigger with the value 0.3 to
load or save preset number 0.

Sharing buttons between multiple algoquencers

The buttons on your controllers are a valuable ressources
and not to be wasted lightheartedly. And especially the
algoquencer uses quite a lot of buttons. But the good
news is: you can share most of these buttons with other
instances of algoquencer, to create a multi-track se-
quencer with just one set of buttons. You can even share
the buttons with completely other circuits.

DROID manual for blue-6

The key to this is the select input. If you patch it, all
buttons and LEDs will just be used by this instance of
algoquencer as long as select gets a high gate signal.
Here is an example (which is just a sketch and not com-
plete):

[algoquencer]
select = _SELECT_1
buttonl = B1.1
button2 = B1.2
ledl = L1.1
led2 = L1.2
[algoquencer]
select = _SELECT_2
buttonl = B1.1
button2 = B1.2
ledl = L1.1
led2 = L1.2

Now you need to make sure that at any given time ei-
ther _SELECT_1 or _SELECT_2 is active. The easiest way
is with a buttongroup, because here you can add more
and more tracks if you like. Let’s assume that for switch-
ing between tracks you use the buttonsB2.7 (track 1) and
B2.8 (track 2). This would look like this:

[buttongroup]
buttonl = B2.7 # select track 1
button2 = B2.8 # select track 2
ledl = L2.7
led2 = L2.8
[algoquencer]
select = L2.7 # becomes 1 if B2.7 is selecte
buttonl = Bl.1
button2 = Bl1.2

119

2d

ledl = L1.1
led2 = L1.2
[algoquencer]
select = L2.8 # becomes 1 if B2.8 is selected
buttonl = Bl.1
button2 = Bl1.2
ledl = L1.1
led2 = L1.2

Please note: the buttons mutebutton and unmutebutton
and their according LEDs are not handled by the select
jack. Theideais that they always get their own dedicated
buttons. This allows you to quickly mute or unmute sev-
eral tracks at once.

How the LEDs work at a reset

The LEDs in the buttons do not only show the enabled
steps, but also - with 50 % brightness - the current po-
sition of the step counter. The be precise, the LED al-
ways shows the step that has been played most recently.
If the counter highlights the first step, that step has al-
ready been played and the next clock tick will trigger step
number two.

This is quite natural and seems easy to understand. Un-
less you think of what happens after a reset. If you send a
trigger to the reset input, the sequence is reset toits first
step. But of course you expect the next step to be played
to be the first step.

This means that the first step cannot be the one indicated
by the step counter LED - because that always shows a
step that has been played already. For that reason, af-
ter a reset, the step LED is turned off until the next clock
cycle.

Table of contents at page 2

Input Type Default Description

clock (c) i Clock input. This is mandatory. For each clock pulse the sequencer is advanced by one step.

reset (r) I Reset input. A trigger here switches back to step 1.

buttonl ... buttonl6 (b) _'— 15t . 16th step button. Assign these buttons to buttons on your controllers.

length (1) 10203 = Sets the length of the pattern. Note: if you use lengthbutton, this input is ignored as soon as the length button
has been used for the first time. If you have assigned at least one button, the default value of length is the number
of buttons you have assigned. Otherwise it defaults to 16. The maximum length is 64. Any larger number will be
truncated to 64.

pattern (pt) 10203 0 Selects a pattern of pseudo random values. If you set dejavu to 1, all “random” decision are deterministic and repeat
again and again. If you do not like these choices, you can choose a different pattern, just by setting this input to any
integer number you like. The default patternis 0. If you patch a pot here, simply multiply it by the number of different
patterns you want to select, e.g. pattern = P1.1 * 10. This will allow you to select one of the pattern0, 1, ... 10.
You can use patternin combination with nextpattern, prevpatternand reroll. These three inputs create an offset
to the chosen pattern. E.g. if you set pattern = 5 and send one trigger to nextpattern, the actually used pattern is
6.

nextpattern (np) _f_ Switches forward to the next pseudo random pattern.

prevpattern (pp) i Switches back to the previous pseudo random pattern.

reroll (rr) _f_ Select one of the pseudo random patterns completely by random.

clearpage (cp) _f_ A trigger here unselects all step buttons in the currently active page (normal, alternate, accent).

pitchlow (pl) ’\/\/‘ 0.0 This set a lower voltage boundary for the pitch output for notes that are randomized.

pitchhigh (ph) AAN 0.3 This set an upper voltage boundary for the pitch output for notes that are randomized.

pitchresolution (pre) 10203 0 If this is non-zero, it make the pitch output adopt that number of possible discrete values. E.g. if you set it to 2, only
the values set by pitchlow and pitchhigh are possible. A value of 3 will allow an additional value in the middle, and
soon.

gatelength (gl) /\/\/\ 0.1 The gate length in input clock cycles. A value of 0.5 (5 V) thus means half a clock cycle. A steady input clock is needed

DROID manual for blue-6

for this to work. Please note that if the gate length is >= 1.0, two succeeding notes will get a steady gate, which
essentially means legato.

When playing rolls, i.e. more than one beat per step, the gate length is divided by the number of rolls. That way the
gates get shorter and even at a gatelength close to 1.0 the gates are still audible and do not merge together.

120 Table of contents at page 2

Input Type Default Description

lengthbutton (1b) i Map this to a button like B1.1. While you press and hold this button the sequencer switches to change length mode.
While in this mode a press of one of the step buttons will change the length of the pattern. Also while in this mode the
LEDs of the step buttons will show the current length. If you do not like to hold the button but switch it on and off,
you can create a toggle button with [button] and send its output here.

repeats (rp) 10203 1 Usually one bar has the length of one pattern. Setting this to 2 will consider one bar as a run of two times through
the pattern. So if you have 8 buttons and bars = 2, one bar will be 16 steps, where the 15t and 9th step are set by
buttonl, 2"d and 10t by button2 and so on.

Why should that be useful? Well - the difference shows up when you use fills, or branches or work with the alternate
pattern. These three algorithms work based on bars. And repeats = 2 makes one bar have 16 steps, even if you just
have eight buttons.

alternaterepeats (arp) 10203 = If you are use using repeats and alternatebars / alternatebutton at the same time, with this input you can specify
a different value for repeats when it comes to selecting the alternate button page.

Assume you have eight buttons and repeats = 2 and alternatebars = 2. Then Algoquencer will play two times
your 8-step pattern normally and two times alternated (since two times the 8 steps form one bar). This results in a
formof AABB.

If you want your form rather to be A B A B, set alternaterepeats = 1. This way, when it comes to alteration, the
length of one bar is just normal length (8 steps here).

branches (bs) 10203 0 Enables the branching feature (sometimes also called fractal sequencing. When branches = 1, then every second bar
will be using other random values - giving a sequence of the bars .

With branches = 2 you get a sequence of the form .
A value of 3 creates an even longer sequence that repeats itself after eight bars: @

Note: this only takes effect when you set dejavu > 0. The largest effect is when it is set to 1. And the you need to use
either variation or set activity to a value greater than 0.5. Because otherwise Algoquencer will strictly play the
gates that you’ve set with your buttons and then every bar will be the same, of course.

mutebutton (mb) _f_ Wire this to a button like B1.2. When you press the button once, all triggers are muted. Pressing again unmutes them.
So this behaves like a toggle [button] in itself. You probably want to wire muteled to the LED in that button, e.g.
L1.2. It show the mute state. The mute button works together with the unmute button (see below). Note: even if you
use the select jack in order to overlay your buttons with several algoquencers, the mutebutton will always be active.
The idea is to always have direct access to this button.

DROID manual for blue-6 121 Table of contents at page 2

Input Type Default Description

unmutebutton (ub) I A trigger to this jack resets the mute button exactly at the beginning of the next bar. While waiting for that to happen,
the output unmuteled will blink. Wire this to the LED in the button. Note: even if you use the select jack in order
to overlay your buttons with several algoquencers, the mutebutton will always be active. The idea is to always have
direct access to this button.

accentbutton (ab) — While this input is high you are in accent editing mode. This is very similar to the mode where you set the length. But
now for each step you edit whether this step is outputting an accent when triggered. You might want to use a toggle
button for this function, so you can operate without holding down the button all the time.

alternatebutton (alb) o If thisinput is high, you are in alternate editing mode. Every Algoquencer has an alternate set of steps. Each step that is
currenty activated toggles the state of the normal step, but only for each even bar. This allows to introduce variations
of the pattern that occur every second bar.

alternatebars (aba) 10203 2 With this input you can change the influence of the alternatebutton. Per default the pattern alternation is done every
second bar. You can change this to any number you like with this input. Values less than 1 will be considered as one -
which means that every bar is alternated.

accentlow (al) AL~ 0.0 This value is output at accent when a note without an accent is being triggered or when no note is triggered at all.

accenthigh (ah) AL 1.0 This value is output at accent while a note with an accent is triggered. The value will be kept for the full time of the
clock cycle.

activity (a) e = This is the most important parameter and you will probably wire it to a pot like P1. 1. The activity controls, how “busy”

the sequencer is playing, or in other words how often a step gets an active gate (und thus a changing output pitch).

Let’s first assume that variation is set to 0.0 (which is the default). Then at a value of 0.5 (or pot at 12’clock) Algo-
quencer will exactly play that pattern that you have set with the step buttons. Turning the knob CCW will remove more
and more beats from the pattern until it is completely silent at a value of 0.0 (or pot fully CCW). But if you turn up the
knob above the middle position then more and more additional beats will be placed into you pattern in a random way
until - at 1.0 - a trigger will happen at every beat.

Note: If you do not use step buttons, this parameter behaves slightly different: A value of 0.5 then means an activity
of 50%, which means that exactly the half of the steps will get an event. This is different from a situation where you
have defined buttons but all are deselected. In that case 0.5 means that exactly the number of beats of your pattern
are being played, which is zero in that case.

DROID manual for blue-6 122 Table of contents at page 2

Input Type Default Description

variation (v) ol s 0.0 The variation controls how strictly Algoquencer will stick to the pattern that you have set with your step buttons. You
probably want to wire this to a knob. A value of 0.0 (or the knob fully CCW) will allow no variations. Your pattern
will be played exactly as it is. If the activity goes beyond 0.5, additional beats will be placed, of course. And these are
random.

If you increase the variation, more and more beats of your pattern are being replaced with other beats - while keeping
the total number of beats the same. If you set variation to 1.0 (or the pot fully CW) then your pattern is completely
ignored except for the actual number of beats it contains.

dejavu (d) AT 1.0 The dejavu parameter controls what random should mean. If dejavu = 0.0, thenall random decisions are completely
chaotic - and every time a decision is taken the dice are being rolled again.

At dejavu = 1.0 on the other hand - once a random decision has been taken for a certain step in a certain bar, it
will stay always the same from now on. This will lead to repeating exactly the pattern bars over and over again. We
sometimes call this random to be “deterministic”.

Any position in between will choose some of the steps as chaotic random and some of the steps as deterministic.

morphs (m) ol D4 0.0 This parameter will introduce changes in formerly taken random decisions from time to time. If you set it above zero,
at every start of a bar some of the deterministic random decisions will be remade. Setting morphs = 1 will essentially
disable dejavu, since all decisions are redone every bar anyway then.

If you know the Turing Machine: In principle that has the same idea, but Algoquencer has a few improvements:

- The number of random changes is exactly controlled by the setting. At each specific setting of morphs the same
number of changes will be done at each bar.

- Changes only appear at the beginning of each bar. If you use branches, they will appear whenever you sequence
is over.

- Small settings will introduce just one morph each g4th

step.

offbeats (ob) olo)1 0.5 Whenever random beats are being placed then this setting controlls whether downbeats or offbeats should be pre-
ferred. At at setting of 0.5 there will be no difference. If you increase the value then more and more offbeats will
appear. Offbeats are steps with an even number, like 2, 4, 6 and so on. Value smaller than 0.5 will prefer downbeats.

Offbeats sound more “complex” and downbeats more simple or “down to earth”.

distribution (di) NOAY 0.5 This is very similar to offbeats, but this time you decide whether beats should be placed rather in the first half of the
bar or in the second half.

DROID manual for blue-6 123 Table of contents at page 2

Input

Type

Default

Description

fills (f)

fillorder (fo)

rolls (rl)

rollcount (rc)

rollsteps (rs)

rollstartvelo (rsv)

pitchl ... pitchl6 (p)

select (s)

DROID manual for blue-6

Om1

o203

Om1

Te203

T1e203

5

3

o203

0.0

0.0

When this parameter is set above 0.0, additional beats will be placed in order to make the beat more “active”. This
happens at musically useful times controlled by fillorder (see below). The additional beats within the bar are placed
in a way that prefers the end of the bar. If there are already too many beats in the bar then the fill will remove or change
some instead.

This integer number controls how fills are being placed:

0 | every bar

1 | every second bar

2 | smallfill in bar 2, big fill in bar 4

3 | tinyfillin bar 2 and 6, medium fill in bar 4, big fill in bar 8

This parameter controls if drum rolls (or ratchets as you might call it) are being created. At 0.0 no rolls are being
created. At 1.0 every beat will be converted into a roll. Rolls always happen before the actual beat, they lead to it. If
you using this feature for snare rolls you might want to use the output rollvelocity for controlling the snare volume.

Number of additional beats for playing the roll. Setting rollcount = 0 would disable rolls. All these beats are dis-
tributed in the clock tick before the beat the roll is leading to. The first beat of the roll is exactly one tick before that
beat - or more if you increase rollsteps.

Length of the roll in clock ticks (steps). The total number of additional beats is thus rollcount X rollsteps

Rolls can be played with an increasing velocity. This first beat starts with the velocity set with this parameter. Then
every beat gets a bit louder until the last beat is played with velocity 1.0. The velocity for rolls is output at the jack
rollvelocity.

You can use these inputs, if you want the pitches of the pitch output play a certain melody. That way the Algoquencer
behaves like a normal melody sequencer - but all the algorithmic parameters will be applied. For example variation
will also be applied to these notes. Note: If Length is larger than 16, these pitch inputs will be cycled through, so step
17 uses pitchl, step 18 uses pitch2 and so on.

The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

124 Table of contents at page 2

Input Type Default Description

selectat (sa) 10203 = This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 10203 = This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (1lp) I A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) _f_ A trigger here saves a preset.

clear (cl) _r_ A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) I A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) T 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD card when the Droid

starts.

Output

Type

Description

trigger (t)

gate (g)

pitch (p)

accent (ac)

ledl ... ledl6 (1)
barledl ... barled4 (bl)
rollvelocity (rv)
startofbar (sb)

muteled (ml)

unmuteled (ul)

DROID manual for blue-6

Here comes the trigger output. Patch this to the trigger input of your drum or synth voice.

The gate output is alternative to the trigger and has a variable length. Itis useful when Algoquencer is used for creating
melodies. Patch the gate input of an envelope or something similar here.

Outputs the (pseudo-)random voltage (unquantized) at each step with an active gate. This honors all the settings that
control the randomness and variation, like dejavu, variation, fills and branches.

Whenever a beat with an accent is being played, the value set by accenthigh is sent here, otherwise accentlow. If
you are wiring this to one of the jacks of the G8 expander then that will output just OV and 5V of course.

15t ... 16t LEDs of the step buttons. Assign these to the LEDs in the step buttons.

Patch these output to some LEDs in order to show you the current bar in the sequence.

If you enable rolls, then the velocity of the roll beats will be output here. For normal beats this will always be 1. 0.
At the beginning of every bar a trigger is output here.

Wire this to the LED in your mute button. It will then be lit while the voice is muted.

Wire this to the LED in your unmute button (if used). It will blink while the unmute is waiting for the start of the next
bar.

125 Table of contents at page 2

Output Type Description

morphled (mol) —8 This output will get a trigger every time a morph happens. It is intended to be wired to an LED.

fillsled (f1l) i This output will get a trigger every time a fill beat is being played. Wire this to some LED if you like.

branch (br) 10203 This output will output the current branch number, e.g. 1, 2, 3 and so on. If you do not use branches then it is always
1.

lengthoutput (lo) 10203 Outputs the currently selected length. This is useful if you are using the lengthbutton for interactively changing the

length of the pattern and want to share that setting with other circuits.

DROID manual for blue-6 126 Table of contents at page 2

16.3 arpeggio - Arpeggiator - pattern based melody generator

This circuit creates melodic patterns based
on simple rules and many interesting con-
figuration settings, which can lead to very
simple but also most complex patterns.

Introduction

In order to better understand, how the arpeggiator
works, let’s compare four different ways for constructing
melodies:

Sequencer manually composed melodies

Random generator | completely chaotic sequences

Turing machine,
Algoquencer

pseudo-random melodies,
which repeat themselves

melodies constructed from

rules

Arpeggiator

The rules for the arpeggiator can be as simple as on each
clock tick play the next note in the C minor scale. Addi-
tional parametes are for example the pitch range, i.e. the
start and the end note.

The arpeggiator shares root, scale and interval selection
with chord (see page 154) and minifonion (see page
279). If you own a Sinfonion: the arpeggiator in the
DROID is working a bit differently and is more about gen-
eral principles than about preprogrammed patterns. That
makes it more flexible and powerful.

The simplest possible example

As always, we start with the simplest possible example.
And it is simple, indeed, since each of the many parame-

DROID manual for blue-6

ters has a useful default value. The only input the arpeg-
giator always needs is a clock input. The word “clock”
is probably a bit misleading since it doesn’t need to be a
steady clock signal. It can be any rhythmic pattern you
like. Each clock tick advances the melody to the next note
and a new pitch CV will be presented at output, which is,
of course, in the typical 1V/oct scheme.

[arpeggio]
clock = I1
output = 01

Patch I1toanexternalclockand 01 tothe 1V/oct of some
synth voice. The easiest way is to use the same clock also
for triggering the voice’s envelope.

Now you will hear a C major scale (lydian) being played
step by step in a range from 0 V to 2 V. This makes 15
notes, since the scale consists of the seven notes C, D, E,
F, G, A and B and is repeated over two octaves, but the
Cis here three times: at the beginning, in the middle and
at the end:

When it reaches the end it immediately starts over again.
So the second “bar” is really just 7 eights here!

1(:’
N=1)

N

I_

Root, scale and interval selection

You probably don’t like lydian C major. Changing that is
easy with theinputs root and degree. Please have a look

127

at the minifonion circuit (see page 279) for an explana-
tion of these parameters. You find the complete table of
all 108 scales on page 107.

Let’s go for a D minor (natural) scale as an example:

[arpeggio]
clock = I
output
root =
degree

1
01

n NI

7

Now we get:

Stop! At this point you probably will complain about the
fact that the arpeggio still begins with C and not with D!
But this is really the intended behaviour!

The understanding to this lies in the parameters pitch
and range. These parameters set the pitch range within
which the arpeggio travels. The default is to startat 0 V
(pitch = 0) and go two octaves up (range = 2V). But
0V corresponds to a C!

In other words: specifyinga D (root = 2) as the root just
selects the collection of notes to use - not where to start.

You still want to start at D? No problem, just start the
pitch range at D. This is done by using the pitch of D as
the lowest pitch. A D is two semitones above C, so we
need 2 x 1>V, which is 2/120 in DROID language. Let’s
also set the range to one octave (1V):

Table of contents at page 2

[arpeggiol]
clock = I
output
root =
degree
pitch =
range =

1

= 01
2

=7
2/120
v

And voila: here you get the D minor scale arpeggiated:

Patterns

This “go through the scale” mode is just one of sev-
eral possible patterns. The pattern is selected with the
pattern input. And the default value of 0 produces the
result we just have seen. Let’s look at pattern 1. This goes
two steps forward and one step backward in the scale:

[arpeggio]

clock = I1
output = 01
root = 2
degree = 7
pitch = 2/120
range = 1V
pattern = 1

Since pattern 1repeatsits structure every three notes it’s
best to display it in a metric that is divisible by three:

pattern 1

DROID manual for blue-6

Pattern 2 is similar, but makes one double step forward
instead of two single steps:

pattern 2

Pattern 3 goes a double step forward, a double step back-
ward and a single step forward:

A pattern 3

[r—
Y 1 T eI T T T 1 .
.
% .
*

Pattern 4 is even more sophisticated. It goes a double
step forward, a single step forward, a double step back-
ward and again a single step forward:

pattern 4

" A P | AT I |
£\

i

Pattern 5 is a bit different since for each note it flips a coin
for deciding whether to go one step up or down.

And Pattern 6 simply randomly chooses one of the possi-
ble notes. So strictly spoken this has nothing to do with
“arpeggiation”, but it’s fun, so what?

Note: it's not entirely impossible that future versions of
the arpeggiator introduce new patterns. So better do not
yet rely on these numbers to be fixed forever.

The range

Perdefault the patternis played inarange of two octaves.
But that can be set easily with two parameters. pitchde-
fines the lowest possible pitch of a note. The arpeggiator

128

will chose the start note such thatitisinthe scale and just
at or above this pitch.

And range defines the voltage range the pattern is being
played upwards until it starts again. So if range is 2V,
you get a range of two octaves. A range of 0 will deform
the pattern into one single note.

Forinteractive playing, mapping pitch and range to pots
is fun:

[p2b8]
[arpeggio]
clock = I1
output = 01
pitch = P1.1
range = P1.2

Changing the playing direction

Sofarall pattern where going more or less upwards. From
lower notes to higher notes. This can be changed by set-
ting direction to 1. Now the arpeggiator starts with the
highest allowed note and reverses the pattern for going
downwards. Why not map this setting to a nice toggle
button?

[p2b8]

[button]
button = Bl1.1
led = L1.1

output = _DIRECTION

[arpeggio]
clock = I1
output = 01

Table of contents at page 2

pitch = P1.1
range = P1.2
direction = _DIRECTION

Another setting that influences the direction is the
pingpong parameter. This is a binary (gate) input, too.
If it is set to 1 the direction of the pattern changes into
the opposite once the end of the range has been reached.
Check this example...

[arpeggio]
clock = Il
output = 01
pingpong = 1
pitch = 0

range = 7/120

... will create the following melody:

Why is that? Well - 2 is the same as 7 x -5V, whichiis
7 semitones, which is in turn one fifth. Since no root and
degree are defined we are back at C major lydian. The pat-
tern is O (default) - hence the simple note-by-note scale.
And pingpong = 1 makes the pattern going down again

after having reached the upper limit.

Octaves up and down

The nice thing about all these parameter is that you can
combine them all. They interact with each other and
most combinations do useful things (well, when using the
“random” pattern, the direction and pingpong are with-
out effect, of course). And there is one more fun setting:
octaves. This can be 0 (default) or 1 or 2.

DROID manual for blue-6

When octaves is 1, each note is directly followed by the
same note one octave above. That octave note is ignor-
ing the range-parameter. It is always in addition to the
selected range. Here is an example:

[arpeggio]
clock = I1
output = 01
range = 1V

octaves =1

And here is the pattern this creates:

octaves = 1 -
0] Lo | i |
A\ — 1 i ud e |'= [a.
¢ - L;L 1’ =

Set octaves = 2 and you get the same but the octaves
go down instead:

A octaves = 2 ; ’
)’ 4 | 1 |
R e==sEEITEET S EE ===
ANV 4 | d = 1L | 1 |
[J) o — — [(B —] —1 > &
0O I >~ v *
> &
Dropping

The drop input lets you select different schemes of leav-
ing out notes from the original line of scale notes. For ex-
ampledrop = 1willleave out every second note. Hereis
an example:

[arpeggio]
clock = I
output
drop =

1
= 01
1

129

This will create the following melody:
[4) e o2
S —— o

A

If you have a closer look, you will see that in the upper
octave other notes are being played than in the lower oc-
tave. This can sound very interesting!

Dropping can, of course, be combined with other patterns
as well. Let’s see the line for pattern 1:

[arpeggio]
clock = I1
output = 01
drop = 1
pattern =1

\

.

[
sEEL

3

I >y >y
[@] | & o |l |
(@] g' | el | |

> =

L 18
TT®

i)
e

| 108

S&

There are more dropping-schemes. Please have a look
into the table of input parameters down below.

Note selection

The most important thing comes last. For didactical rea-
sons! What really makes this arpeggiator so musically
versatile is its interval selection. This is the same as for
the minifonion (see page 279) and the chord generator
(page 154).

The point is that you are not restricted to the seven
notes of a scale. For this there are seven inputs selectl,
select3, ... selectl3 that select the notes of the
current scale and another five inputs selectfilll ...
selectfill5 that select the notes not in the current

Table of contents at page 2

scale. These 12 inputs are binary inputs that expect ei-
ther 0 or one 1. Each of them selects one of the seven
intervals of the scale for being part of the chord. Here is
atable of all these inputs and the notes they would select
in a C major or C minor scale:

Input interval step | Cmas | Cmin
selectl root I C @
select3 | 3rd III E Eb
select5 sth v G G
select7 | 7th ViII | B B>
select9 | oth-2nd II D
select1l | 11th-4th | 1y F F
select13 | 13th-gth | y1 A Ab

Let’s make a simple example: The arpeggio of a C major
triad over two octaves going up and down again

[arpeggio]
clock = I1
output = 0
selectl
select3
select5 =

pingpong = 1

1
1
1
1

And here is the result:

One typical way to select these notes is with seven tog-
gle buttons. Much like the Sinfonion. Assign the output
of each of the seven buttons to one of these functions:

[p2b8]

DROID manual for blue-6

[button]

button = B1.1

led = L1.1
[button]

button = B1.2

led = L1.2
[button]

button = B1.3

led = L1.3
[button]

button = B1.4

led = L1.4
[button]

button = B1.5

led = L1.5
[button]

button = B1.6

led = L1.6
[button]

button = B1.7

led = L1.7
[arpeggio]

clock = I1

selectl = L1.1

select3 = L1.2

select5 = L1.3

select7 = L1.4

select9 = L1.5

selectll = L1.6

selectl3 = L1.7

output = 01

Now you can switch on and off scale notes for being part
of the patterns. Have fun!

130

Table of contents at page 2

Input Type Default Description

pitch (p) iy é%/t oV Sets the base pitch of the arpeggio. The first note of the pattern will be the nearest selected note just above that pitch.
range (ra) » 2 2V Selects the range between the lowest and highest note of the arpeggio. A range of 0 means that there is just one single
note possible and the arpeggio will stick to that note. A value of 1V (or 0.1) means that the arpeggio will run over one
octave. The maximum allowed range is 0.8 (8 octaves). Higher values will be capped to that.
clock (c) I Thisinput s vital: each trigger here make the arpeggio move forward by one step and adapt the pitch output. Without
a clock the arpeggio will do nothing but stick to the same note all the time.
reset (r) _f_ Resets the arpeggio to the first step of the current pattern.
pattern (pt) 10203 0 Selects one of a list of arpeggio pattern. The following patterns are available:
0 | step forward through the allowed notes —
1 | two steps forward, one step backward — >
2 | double step forward, one step backward =
3 | double step forward, double step backward, single step forward =& —
4 | double step forward, single step forward, double step backward, single step forward | = — < —
5 | random single step forward or backward ~
6 | random jump to any allowed (other) note iy
direction (d) _— 0 Sets the general direction in which the pattern moves. 0 means upwards and 1 means downwards.
pingpong (pp) _ i 0 If set to 1, the pattern will reverse its direction once it has reached the end of the range. Otherwise it restarts from the
beginning. So enabling pingpong is a bit like a triangle wave, whereas otherwise it's more like a sawtooth.
butterfly (by) _— 0 If set to 1, every second note in the range of selected notes will be mirrored. So for example you have selected the
notes 1- 10, the new order willbe 1, 10, 2,9, 3,8,4,7,5,6
drop (dr) 10203 0 Selects a scheme of skipping some of the allowed scale notes. Four different values are allowed:
0 | Do not skip any notes 00600060
1 | Skip every second selected note 000®0®
2 | Skip every third selected note 080006006
3 | Skip the 2" and 379 note of each group of three | @ @@ ® ® ®

DROID manual for blue-6 131 Table of contents at page 2

Input Type Default Description
octaves (oc) _ 0 When thisis set to 1 or 2, each note will be followed by the same note one octave up (for 1) or down (for 2) respectively.
These additional octave notes are in addition to the selected range.
0 | Don’t play octaves
1 | Each noteis followed by the same note one octave up
2 | Each note is followed by the same note one octave down
startnote (sn) 10203 0 When startnote is set to non-zero, it will force the pattern to begin with a certain scale note regardless of the current
note selection. 1 will select the first note of the scale (root), 2 the second and so on until 7, which selects the 7th as
start note.
Using startnote effectively reduces the range of notes. Instead of the the full range of pitch .. pitch + range a
reduced range is played, since some of the lower notes are skipped, if the direction is upwards, and some of the upper
notes, if the direction is downwards.
The start note is used in all situations where the pattern is reset to its beginning. This is after an external reset or if the
pattern has reached the end of the range. Note: If you have set pingpong = 1, the pattern is never reset by itself, so
startnote is just used after an external reset, here.
Don’t mess up the start note with the lowest note in the arpeggio. If want to control the lowest note, used pitch
instead of startnote. Sometimes this has a similar effect, but not always.
autoreset (ar) 10203 0 When autoreset a non-zero number, the arpeggio melody will be reset to the start after that number of clock ticks.

DROID manual for blue-6

For example if you set autoreset = 5, and the pattern would play 7 notes until it loops back to its start, after the sth
step a restart is forced. That's also true if the pattern is shorter. If autoreset = 5 and the melody already loops after
3 steps, it is played once in full (3 steps) and once just the first 2 steps, since then the auto reset happens.

A trigger to reset makes autoreset set it’s internal counter to 0.

Autoreset gives you direct control over the rhythmic feel that your arpeggio melodies have.

132 Table of contents at page 2

Input

Type

Default

Description

root (ro)

DROID manual for blue-6

10203

0

Set the root note here. @ means C, 1 means C'f, 2 means D and so on. If you multiply the value of an input like I1 with
120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then

you are compatible with the ROOT CV input of the Sinfonion.

0o | C
1 | ¢
2 | D
3 | Di
4 E
5 | F
6 | Ft
7 |G
8 | Gt
9 A
10 | Af
11 | B
12| C

133

Table of contents at page 2

Input

Type

Default

Description

degree (dg)

selectl (sl)

select3 (s3)
select5 (s5)
select7 (s7)
select9 (s9)
selectll (sll)
selectl3 (sl13)

DROID manual for blue-6

o203

0

Set the musical scale. This is a number from 0 to 107. Below are the first 12 and most important scales. You find a list

of all 108 scales on page 107.

0 lyd - Lydian major scale (it has a f4)

1 maj - Normal major scale (ionian)

2 X7 - Mixolydian (dominant seven chords)

3rd/4th

3 sus - mixolydian with swapped

4 alt - Altered scale

5 hm® - Harmonic minor scale from the Sth

6 | dor - Dorian minor (minor with §13)

7 min - Natural minor (aeolian)

8 | hm - Harmonic minor (b6 but #7)

9 | phr- Phrygian minor scale (with b9)

10 | dim - Diminished scale (whole/half tone)

11 | aug - Augmented scale (just whole tones)

Note: Alltogether there are 108 scales. Please see page 107 for a complete list

Gate input for selecting the root note as being an allowed interval. When you want to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. selectl...

select13 will be set to one.
Gate input for selecting the 3rd,

Cate input for selecting the sth,
Cate input for selecting the 7th,

Gate input for selecting the gth (which is the same as the 2nd),
Gate input for selecting the 11th (which is the same as the 4th).

Cate input for selecting the 13th (which is the same as the 6t).

134

Table of contents at page 2

Input Type Default Description

selectfilll (sfl) _ off Selects the alternative 9tN (i.e. the 9t that is not in the scale.
selectfill2 (sf2) i of f Selects the alternative 39 (i.e. the 39 that is not in the scale).
selectfill3 (sf3) i of f Selects the alternative 4t or 5t In most cases this is the diminished 5t
selectfill4 (sf4) _ of f Selects the alternative 13th (i.e. the 13th thatis not in the scale).
selectfill5 (sf5) Pl off Selects the alternative 7t (i.e. the 7th that is not in the scale).

DROID manual for blue-6

135

Table of contents at page 2

Input Type Default Description

harmonicshift (has) 10203 0 This input can reduce harmonic complexity by disabling some of the scale or non-scale notes. It is an idea first found
in the Sinfonion and also provided by the circuit sinfonionlink (see page 353).

harmonicshift is staged after the select. .. inputs and further filters out (disables) notes based on their relation to
the current scale. This means that first the 12 select. .. inputs select a subset of the 12 possible notes. After that
harmonicshift can reduce this set further (it will never add notes).

If harmonicshift is not zero, depending on its value some or more of the scale notes are disabled, even if they would
be allowed by select. ... Orin other words: the harmonic material is reduced.

You also can use negative values. These create rather strange sounds by removing the simple chord functions instead
of the complex ones first.

Here are the possible values:

0 off - all selected notes are allowed

1 disable all fill notes (non-scale notes)

2 | disable fills and 11th

3 | disable fills, 11thand 13th

4 | disable fills, 11th, 13thang oth

5 | disable fills, 11t 13th oth 5pq 7th

6 | disablefills, 11t 13th gth 7th 554 3rd

7 | disable fills, 11th, 13t oth 7th 3rd 53p4 5th

-1 | disable the root note

-2 | disable the root note and the Sth

-3 | disable root, 374, 5th

-4 | disable root, 37d sth 7th

-5 | disable root, 374, sth 7th gth

-6 | disable root, 374, sth 7th gth 554 q3th

-7 | disable all scale notes (fill notes untouched)

DROID manual for blue-6 136 Table of contents at page 2

Input Type Default Description

noteshift (nos) 10203 0 Shifts the resulting output note(s) by this number of scale notes up or down (if negative). So the output note still is
part of the scale but may be a note that is none of the selected ones. The maximum shift range is limited to -24 ... +24.

selectnoteshift (sns) 10203 0 Shifts the output note by this number of selected scale notes up or down (if negative). If you use noteshift at the
same time, first selectnoteshift is applied, then noteshift. The maximum shift range is limited to -24 ... +24.

tuningmode (tm) i off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch (tp)) (1)‘(; oV This pitch CV will be output while the tuning mode is active.

transpose (tr) i) % oV This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

Output Type Description

output (o) » L This is what it’s all about: here comes the pitch CV for the current arpeggio note.

DROID manual for blue-6

137 Table of contents at page 2

16.4 bernoulli- Random gate distributor

This circuit implements a “bernoulli Example: Note: each time a positive trigger edge is seen at input
gate”. For each gate or trigger received P a new random decision is made for which output to use.
at input there is made a random deci- (& K> [bernoulli] From now on that chosen output gets an exact copy of
sion of whether to forward that gate to input = 61 the input signal - even if it is not a simple trigger signal
outputl or output2. The probability for distribution = P1.1 but something more complex like an envelope. The other
each of the outputs can be shifted with the parameter outputl = G2 output will send 0 V.
distribution. It determines the probability of a gate output2 = G4
signal to go to outputl.

Input Type Default Description

input (1) _— 0 Send gate or trigger signals here.

distribution (di) 0(0:5)1 0.5 This controls the probability of a gate to be forwarded to outputl. A value of 0.5 means 50%.

Output Type Description

outputl (ol) -

output2 (o02) _

Gates from input are forwarded here if the random decision was in favour of output 1.

Cates from input are forwarded here if the random decision was in favour of output 2.

DROID manual for blue-6

138

Table of contents at page 2

16.5 burst - Generate burst of pulses

This circuit produces - when triggered - a
number of pulses. It can be used for solving
various musical or technical tasks. Look at
this example:

[burst]
trigger = 1I1
hz = 10
count =5
output =01

When a trigger arrives at I1, the output 01

will send five triggers in a row, with a distance of 0.1 sec-
onds (thus 10 Hz). The gate length is fixed to half of the
cycle (thus here 0.05 seconds). This means that the pulse
widthis 50% - or in other words - the faster the burst the
shorter the outgoing triggers.

Note: When a new trigger arrives while the current burst
is still ongoing, it will not be finished but restarted from
the beginning immediately.

If you want the bursts to be synchronized to a musical
clock, you can use the taptempo input (here I2):

[burst]
taptempo = I2
count =4
trigger = 1I1
output = 01

Similar to the circuit 1fo (see page 239), thereisathirdin-
put for selecting the speed: rate. This worksona 1V/Oct
base, so here is an example for outputting the bursts at
half of the clock speed (-1 V pitches down one octave,
which is the same as half of the speed):

DROID manual for blue-6

[burst]
taptempo = I2
rate = -1V
count =4
trigger = I1
output =01

burst can also be used for very fast switching through
things like presets in external gear. Here you might want
fast updates. Simply set a very high frequency. Burst
makes sure that the actual output rate is limited to the
maximum the DROID hardware can do, so not one single
burst can get lost. Also you might want to use the skip
input, which skips a certain number of ticks before start-
ing. This can be used to send out areset signal to somein-
put and after that sending a couple of skip forward trig-
gers to some other input:

[burst]
hz = 5000
skip = 5
count = 3
trigger
output

I1
01

Another very simple yet useful application of burst is
converting a gate signal into a short trigger. That way you
can for example convert a running state from MIDI into a
reset trigger. Since count defaults to 1, you don’t need
any parameters except the input and output:

[burst]
trigger = _MIDI_RUNNING
output = _RESET

In this example the trigger is emitted when the running
state goes fromOto 1.

139

Simple clocked trigger delay

Another application of burst is a clocked trigger delay.
Consider the following patch:

[burst]
taptempo = I1
trigger = I2
skip = 7
output = 01

A trigger at I2 will be delayed by 7 clock cycles.

Note: This simple trigger delay has no memory of more
than one trigger. Any ongoing trigger currently being de-
layed is overridden and forgotten as soon as the next trig-
ger arrives. If thatis what you want, fine. If you are look-
ing for a more complex trigger delay, you find one in the
circuit triggerdelay (see page 371) circuit.

Table of contents at page 2

Input Type Default Description

rate (ra) VAT 0.0 Frequency control: The default frequency of the burst rate is 1 Hz (one trigger per second or 60 BPM if you like). Each
volt doubles the frequency. So an input of 1V (a number of 0.1) speeds up to two triggers per second (120 BPM), 2 V
(0.2) creates triggers at 4 Hz (240 BPM) and so on. On the other hand negative voltages reduce the speed, so -1V
(-0.1) will give 0.5 Hz (30 BPM) and so on.

taptempo (tt) I Feed a reference clock here and the burst will run at the speed of that clock - albeit optionally modified by rate. Please
see page 23 for details on using taptempo inputs.

hz () AL 1.0 Set the frequency in Hz directly by setting a number here. This is exclusive to taptempo, but will work in combination
with rate.

trigger (t) I Send a trigger here in order to start the bursts

reset (r) I Send a trigger here to immediately stop any ongoing burst.

count (c) 10203 1 Number of triggers to send in one burst.

skip (s) 10203 0 Number of time slots to wait before starting with the burst.

Output Type Description

output (o) _f_ The triggers are output here.

DROID manual for blue-6

140 Table of contents at page 2

16.6 button - Does all sorts of useful things with buttons

This is a utility circuit for efficiently work-
ing with the buttons of your controllers.
It can implement toggle buttons (that do

on/off) or even have three or four states.

It can detect long presses and double clicks

and also helps you to overload one button with several
switchable functions. Note: If you just need a plain mo-
mentary button without any of these or other nifty fea-
tures, you can use the register B1.1, B1.2, etc. directly
and do not need this circuit.

Note: don’t forget to declare your controllers at the top
of your patch with lines like [p2b8] or [b32]. In the be-
low examples I've omitted these declarations for sake of
simplicity.

This circuit is designed to build user interfaces. It is exe-
cuted at a lower speed. Don’t use it for other purposes.

Toggle buttons

The most common use of buttonis toimplement a toggle
button. That’s a button that changes from on to off and
back at each press of the button. The current state of the
button will persist on your SD card so you don’t lose your
state if you switch off your rack.

Typically you will wire the button input to one of your
controller’s buttons like B1.1 and led to the LED in that
button (L1.1). LED will then always visualise the current
state of the button. As a side effect the LED register L1.1
will store the button state as a value 0 or 1 and hence can
be used by some other circuit as an input.

Here is a typical example. The button is being used for
enabling the loop in a CV looper:

DROID manual for blue-6

[button]
button = Bl.4
led = L1.4
[cvlooper]
loop = L1l.4

If you do not want the state of the button to be persisted
on the SD card, use dontsave = 1. This make sense for
the CV looper since the loop is apparently empty anyway
when your DROID starts.

[button]
button = Bl1.4
led = L1.4
dontsave =1
[cvlooper]
loop = L1.4

Usually the button switches between the two values 0
and 1. Sometimes, however, you need different values.
For this purpose there are the two inputs offvalue and
onvalue. They set two alternative values for the "off” and
"on” states. And the output output outputs the selected
value (led still goes to 0 and 1). Here is an example for
a toggle button that switches a clock divider between 2
and 4:

[button]
button = Bl.4
led = L1.4
offvalue =2
onvalue =4
output = _CLOCK_DIV
141

[clocktool]
input = Gl # external clock
output = G2
divide = _CLOCK_DIV

Of course offvalue and onvalue are CV controllable.
How can this make sense? Well - as they can take vari-
able inputs you can use a button for directly switching be-
tween two different input CV signals. The following ex-
ample will use a button to switch between two different
wave forms of an LFO (see page 239). The button B3.1
switches between sawtooth and sine and sends the result
to 01.

[1fo]
hz =2
sawtooth = _SAWTOOTH
sine = _SINE
[button]
button = B3.1
led = L3.1
offvalue = _SAWTOOTH
onvalue = _SINE
output =01

Buttons with three or four states

Sometime you might want more than just two values.
button supports switching between up to four values.
Use the states input and set it to 3 or 4. In the following
examples output will go through the values 0, 1, 2 and 3:

[button]
button = Bl1.1

Table of contents at page 2

led = L1.1
states = 4
output = _SOMETHING

If you don't like the default values, use the inputs valuel
through value4 for setting the four values. In fact
offvalue is the same as valuel and onvalue as value2.
If you specify value3 or value3, states is automatically
set accordingly and you can simply omit it .The following
example switches between four different wave forms of
an LFO:

[1fol]
hz =2
sawtooth = _SAWTOOTH
sine = _SINE
square = _SQUARE
triangle = _TRIANGLE
[button]
button = B3.1
led = L3.1
valuel = _SAWTOOTH
value2 = _SINE
value3 = _SQUARE
value4 = _TRIANGLE
output = 01

If you have three or four states, the LED will use different
brightness levels for indicating the current state.

Momentary buttons

If you just need a momentary button (one that just lights
up while you hold it down), strictly spoken you don’t need
a button circuit. You can directly use the B register, like
in this example:

DROID manual for blue-6

[algoquencer]
nextpattern = B1.1

Sometimes, however, you may want to make use of some
of the features of the button circuit without creating a
toggle button. This is easily done by setting states = 1.

[button]
states = 1
button = B1.1
led = L1.1

[algoquencer]
nextpattern = L1.1

Now you are ready for adding some fun stuff like over-
laying one button with multiple functions (see below) or
using the longpress output.

Long and short presses

When creating patches, you will constantly run out of
buttons. One way to increase the effective number of
buttons is to map two different actions on a button de-
pending on wether it is pressed long or short. For this
purpose there is the longpress output. Consider the fol-
lowing example:

[button]
button = Bl.1
led =L1.1
output = _SOME_STATE
longpress = _LONG

A button press with a duration below 1.5 secs will toggle
the LED L1.1 as usual. If you hold the button longer than

142

1.5 seconds, the output Longpress will get high until you
release the button. And the state of L1.1 does not tog-

gle.

If you don’t want the button to toggle any state, but just
distinguish between long and short presses, you can use
the shortpress output:

[button]
button = Bl.1
longpress = _LONG
shortpress = _SHORT

Note: The output led is not used here since we are justin-
terested in the presses and you cannot really see the LED
anyway while you finger is on the button. If you want the
LED anyway, set states = 1soitwon't toggle:

[button]
button = Bl.1
led =L1.1
states =1
longpress = _LONG
shortpress = _SHORT

Using output does not do the same as shortpress: it al-
ways is high as long as your finger is on the button (and
the button is selected).

Sharing buttons

You can never have too many buttons! It's more likely
that you have too few. So you want to overlay one or
more buttons with multiple functions.

They key to this is the select input of the button circuit.
If you patch this, the circuit will only interact with the ac-
tual button and LED if select is active (e.g. set to 1).

Table of contents at page 2

Otherwise it will continue to output its current value to
output and leave the control of the button and the LED
to some other circuit.

The following example uses the button B1.1, (which is
not overloaded!) for switching between two “layers” or
“banks” of buttons. And in each bank the button has a
different meaning. Note how | use the negated output of
the button. That is 0 if the normal output is 1 and vice
versa.

In order to keep things short, the bank just consists of the
single button B1.2. Of course in practice this wouldn’t
make sense since you wouldn’t actually save a button,
but you get the idea...

[button]
button = Bl.1
led = L1.1

output = _BANK1
negated = _BANK2

[button]
select = _BANK1
button = B3.1
led = L3.1
output = _VIRTUAL_BUTTON_1

[button]
select = _BANK2
button = B3.1
led = L3.1

output = _VIRTUAL_BUTTON 2

Note: If you need more than two banks, consider switch-
ing with a buttongroup (see page 146).

DROID manual for blue-6

Buttons as logic gates

Here is an important caveat for all you hardcore hackers
out there: The button circuitis designed to interface with
real buttons that real users press. You can misuse a but-
ton as a kind of logic gate, for example for inverting a sig-
nal or even build a super fast oscillator.

Don’t do this. Have a look at flipflop (see page 231)
instead.

Why? In order to optimize the execution speed of your
patch, several user interface circuits are executed at just
12.5% of the normal speed. This saves valuable time for
the execution of more time critical circuits. So instead of
checking buttons at sub-millisecond intervals, your mas-
ter rather spends its time in executing your sequencers
with a timing as precise as possible.

This means, that button, buttongroup, pot and similar
circuits are executed just every gth loop cycle.

If you experience any trouble with this “Ul slowdown”,
you can disable it by using a droid (see page 183) circuit:

[droid]
uislowdown = 0

143

Table of contents at page 2

Input Type Default Description

button (b) The actual push button. Usually you want to wire this to B1.1, B1.2 and so on: to one of the push buttons of your

controllers. Each time that input goes from low to high, the state of the push button will toggle.

onvalue (ov) AAN 1.0 Value sent to output when the push button is on. You can also use a dynamic signal here. This is an alternative name
for the input valuel.

offvalue (fv) /\/\/\ 0.0 Value sent to output when the push button is off. This is an alternative name for the input value2.

valuel ... valued (v) AAN The up to four values to output at output when the button is on the according state. valuel is the same as offvalue
and value2 is the same as onvalue. The default values of these fourinputs are 0, 1, 2 and 3, so in many cases you don’t
need to specify them.

doubleclickmode (dm) _ off This input can enable a double click mode when set to 1. In that mode the button only toggles it's constant state if you

double press it in a short time. Otherwise it behaves like a momentary button, that inverts the persisted state (which
you toggle with the double click). Note: The double clock mode is only makes sense if the number of states is 2.

longpresstime (1lt) The number of seconds after which a button press is considered as a long press.

_n h
° 4
~)
o v
w |

=

w

states (st) 2 Number of states this button can have. The default value is 2, which creates a toggle button which changes between
on and off at each press. A value of 1 creates a momentary button. Note: If you just need a plain momentary button,
you candirectly useB1.1, B1.2 and soon. You don’t need an extra circuit. But if you want things like overloading (with
select) or the longpress output, this does make sense. The maximum number of states is 4. When the button has 3

or 4 states, every press will switch to the next state and then back to the first state again.

startvalue (sv) 10203 0 State of the push button when you switch on your system or on a trigger to clear. If you have three states, the start
value needs to be 0, 1 or 2. With four states, it can also be 3.

select (s) 10203 =0 The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 10203 = This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 10203 = This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (1p) _f_ A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) _f_ A trigger here saves a preset.

DROID manual for blue-6 144 Table of contents at page 2

Input Type Default Description

clear (cl) I A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) _f_ A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) P 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD card when the Droid

starts.

Output Type Description

led (1) AL~ When the button state is on, a value of 1.0 will be sent to that output - regardless of the values in onvalue and
offvalue. If the number of states is 3 or 4 the output get’s intermediate values so the attached LED will be dimmed
into different brightness levels. Usually you wire that output to a LED register, e.g. toL1.1, L1.2 and so on.

output (o) AAN This output will output the current button states. Thisisusually 0 foroffand 1 foron. If statesis 3 or4, thevalues2or3

inverted (iv)

negated (n)

longpress (lop)

shortpress (shp)

are output for the additional states. You can modify all four values with the inputs of fvalue/valuel, onvalue/value2,
value3 andvalued4. Note: if you haven’t changed any of these inputs and states isunchanged or 1 or 2, the led output
will output the same values.

The same as output, but sends onvalue when the button is off and of fvalue when the button is on. If states is 3 or
4, the order of the four output values will be mirrored (probably a feature that is rarely of any use).

Similar to inverted, but always sends 1 when the button is off and @ when the button is on - independent of the values
of onvalue and offvalue. When states is 3 or 4, this output will be 1 if the buttonis off and 0 in the other three states.

Goes from 0 to 1, when the button is pressed and hold for at least 1.5 seconds. If this output is used, the effect of tog-
gling the button’s state is delayed until the button is released. When it’s released after 1.5 secs, no toggling happens.
This will avoid double actions for long presses.

Emits a trigger, when the button is pressed, regardless of the settings of states. If at the same time longpress is used
(which is the whole point in this output), the trigger is delayed until the button is released and only sent, if it was not
along press.

DROID manual for blue-6

145 Table of contents at page 2

16.7 buttongroup - Connected buttons

This utility circuit combines a number of
push buttons into a group that behave as
a unit. One classic operation is to form a

Q0
OO0

group of “radio buttons”. This means that
at any time just one of these buttons is on
and all others are off.

This circuit is designed to build user interfaces. Itis exe-
cuted at a lower speed. Don’t use it for other purposes.

The following example uses four buttons for selecting
one of the voltages 0 V, 1V, 2V and -1V. This voltage is
then being sent to the output jack. This could be used
as an octave switch or the like. The four buttons B2.1
... B2.4 are grouped in a way that just one button is on
and the others are off. The four selectable voltages are
assigned to one button each. The value of the currently
active button is being sent to the output. The outputs
outputl ... output4 will be set to 1 if their correspond-
ing button is active and are used for controlling the LEDs
within the buttons.

[buttongroup]
buttonl = B2.1
button2 = B2.2
button3 = B2.3
buttond = B2.4
ledl = L2.1 # LED in button 2.1
led2 = L2.2
led3 = 12.3
led4 = L2.4
valuel = 0V
value2 = 1V
value3 = 2V
valued = -1V
output = 01

If you set maxactive to a number greater than one, more

DROID manual for blue-6

than one button can be active at the same time. If this
is the case then the sum of the values of all active but-
tons will be sent to the output. Here is an example, where
three buttons are being used for selecting a number be-
tween 0 and 7 by selecting any combination of the but-
tons “1”, “2”, and “4”.

[buttongroup]
buttonl = B2.1
button2 = B2.2
button3 = B2.3
ledl = L2.1 # LED in button 2.1
led2 =12.2
led3 = L2.3
valuel =1
value2 =2
value3 =4
minactive = 0 # allow all buttons to be off
maxactive = 3 # allow all buttons to be on
output =01

Overlaying buttons

When you make more complex DROID patches, it’s likely
that you might run out of buttons. In such a situation you
canoverlay buttons with multiple functions and use other
buttons to switch between these layers.

Consider the following example: We have one P2B8 con-
troller. The buttons 1 and 2 should switch between the
layers root note and scale. We do this with a simple but-
ton group (you could also use a button circuit and save
one button, but for simplicity we allow us two here):

146

[p2b8]

[buttongroup]
buttonl = Bl1.1
button2 = B1.2
ledl =11.1
led2 =11.2

The remaining six buttons select either one of six possible
root notes or one of six possible scales (adhering to the
scheme of the minifonion circuit, see page 279). Please
note how we have added a select input at each of both
circuits to make sure that at any given time exactly one
of the two groups is selected:

[buttongroupl]
select = L1.1 # be active only when L1.1 is active
buttonl = B1.3
button2 = B1.4
button3 = B1.5
buttond4 = B1.6
button5 = B1.7
button6 = B1.8
ledl = L1.3
led2 = L1.4
led3 = L1.5
led4 = L1.6
led5 = L1.7
led6 = L1.8
valuel = 0 # C
value2 =2 #D
value3 =5 #F
value4d =7 # G
value5 =9 # A
value6 = 10 # Bb

output = _ROOT

Table of contents at page 2

[buttongroup] led4 = L1.6 Here you can patch _ROOT and _SCALE to some
select = L1.2 # be active only when L1.2 is active led5 = L1.7 minifonion, arpeggio or other circuit that works with
buttonl = B1.3 led6 = L1.8 scales.
button2 = Bl1.4 valuel = 1 # major
button3 = B1.5 value2 = 6 # dorian minor Now, with the top buttons you can switch between root
button4 = B1.6 value3 = 7 # natural minor and scale selection and with the remaining six buttons se-
button5 = Bl1.7 value4 = 9 # phrygian minor lect either the root or the scale.
button6 = B1.8 value5 = 10 # diminished scale
ledl = L1.3 value6 = 2 # mixolydian
led2 = L1.4 output = _DEGREE
led3 = L1.5

Input Type Default Description

minactive (ma) 10203 1 Minimum number of active buttons. If you set this to 2, then it is guaranteed that at least 2 buttons are active. If you
set this to 0, then it is possible to switch off all buttons. The output will be set to 0.0 in that case.

maxactive (xa) To0203 1 Maximum number of active buttons. It is an error to set this to 0, since this would make this circuit useless.

longpresstime (1lt) /\/\/\ 1.5 The number of seconds after which a button press is considered as a long press.

buttonl ... button32 (b) I 15t ... 32" button of the group. Any positive trigger seen here will toggle this button. And another button might go

on or off in order to make sure that the number of active buttons is withing the allowed range.

valuel ... value32 (v) AP = Value that will be sent to the output if the 15t ... 329 button is active. These inputs default to 0 for valuel, 1 for
value2 and so on and 31 for value32.

startbutton (sb) 10203 1 If you set this parameter to the number of a button, that button will be selected (and all other deselected) at the start
when no state is loaded or at a trigger to clear. This allows you to set useful default values for your button groups.
Note: this only makes sense if maxactive is not 0.

ifminactive = 0, you also can set startbutton = 0. Then a clear will clear all buttons.

If you set startbutton = -1, the maximum number of allowed buttons will be set. This is useful in situations where
maxactive is greater than 1. If maxactive is less than the number of buttons, the selected buttons are filled from the
start.

select (s) 10203 = The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

DROID manual for blue-6 147 Table of contents at page 2

Input Type Default Description

selectat (sa) 10203 = This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 10203 = This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 16 presets, so this number ranges from 0 to 15.

loadpreset (1lp) I A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) _f_ A trigger here saves a preset.

clear (cl) _r_ A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) I A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) P 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD card when the Droid

starts.

Output Type Description

ledl ... led32 (1) _— This output will be on/ 1.0, whenever the 15t 32nd button is active and off / 0.0 otherwise. Wire this to the LED in
the button. If you have wired select, these LED outputs will do nothing (not even send 0) unless this circuit is selected.

buttonoutputl ... AL These are individual outputs for every button in the group. They output button’s value when it is active, otherwise 0.

buttonoutput32 (bo)

output (o)
buttonpress (bp)
longpress (lop)

selectionchanged (sc)

DROID manual for blue-6

If valueX is not defined for buttonX, the value 1 is output (not the button’s number!).
Note: in contrast to the led output, these outputs are not affected by select but always functional.

One application of these outputs is to use a buttongroup with maxactive = Xandminactive = 0asacheap bunch
of X toggle buttons in one single circuit and still use select.

The sum of the values of all active buttons will be sent here. if no button is active, 0.0 is being output.
Emits a trigger if any button is being pressed

Emits a trigger, when any button is pressed for at least 1.5 seconds. If this jack is used, buttonpress will emit a signal if
the buttonin question is released before the 1.5 seconds, not immediately. This way you trigger either at buttonpress
or at Longpress, not at both.

Emits a trigger when the selection of the buttons has changed. This is not quite the same as buttonpress, since a but-
ton press might not lead to a change. Also in multi button situations (e.g. maxactive = 4 where you have 7 buttons)
the change is delayed up to 25 ms due to detection of bursts of quasi simultanous presses.

148 Table of contents at page 2

Output Type Description

extrapress (ep) I Emits a trigger, when one of the buttons was pressed but the selection has not changed. This can be used to build
clever interfaces like in the Motor Fader Performance Sequencer, where a press on the already selected track toggles
the current page.

DROID manual for blue-6 149 Table of contents at page 2

16.8 calibrator - VCO Calibrator

This circuit allows you to precisely com-
pensate for decalibrated or otherwise im-
perfectly tracking VCOs - which is proba- G
bly a property of all existing analog VCOs
to some degree. It does this by applying
one specific adaptation value per individual octave. This
way you can make even those VCO track well over 10 oc-
taves, that would normally only do 2 or 3.

The calibration of the error compensation is done man-
ually - by you. At first this may seem like a disadvan-
tage. In practice, however, this is much easier and more
accurate than the way some “autotune” modules do it.
Those modules have an additional input for “listening” to
a waveform output of the oscillator and measure and ad-
just the tracking at a button press.

The advantages of manual tuning are:

- You don't need an extra waveform output of your
VCO.

+ You can calibrate sound sources with complex
wave forms, whose pitch is are hard to grab by au-
totune devices.

+ You can change the correction at any time during a
live performance without your audience noticing.

+ It's possible to make one VCO follow the (imper-
fect) tracking of a second one, in order to create
perfect FM sounds while just one VCO needs to be
adapted.

- It’s also possible to fix the tracking of unprecise
pitch CV generators, such as sequencers, quantiz-
ers or MIDl interfaces.

The calibrator circuit happily profits from the DROID’s
highly precise, linear and low-jitter ADCs and DACs. And
using eight such circuits one DROID could fix the tuning

DROID manual for blue-6

of up to eight VCOs.

How to use

Here is a typical patch for the use of the calibrator:

[calibrator]
input = Il
output = 01
nudgeup = Bl.1
nudgedown = B1.3
ledup = L1.1
leddown = L1.3

The original pitch information from the sequencer, quan-
tizer, MIDI converter or whatever comes into I1. The
adapted pitch goes to 01 and from there to the V/Oct in-
put of your VCO. Of course the pitch information could
also come from some internal circuit like the minifonion
(page 279). In that case inputis connected to an internal
patch cable coming from that circuit.

Now with the two buttons B1.1 and B1.3 you can adjust
the tuning up and down at any time while playing. Each
button press just very slightly shifts the pitch up or down.
The adjustment is only done for the octave that’s cur-
rently playing. calibrator saves one calibration value
for each octave from 0 to 8 and also one for the pitches
below 0 V and those above 8 V. Your tuning profile is au-
tomatically saved to the memory card.

Pressing both buttons at the same time resets the calibra-
tion of the current octave.

For a good result | suggest either using a precise tuner or
playing the voice at the same time as a reference voice

150

and try to minimize the audible beatings.

As second way of using the VCO calibrator is specify-
ing a tuning adjustment for each octave by a fixed num-
ber (or a potentiometer if you can afford). This is done
with the inputs tune0 ... tune8 and tunelowtail and
tunehightail.A value of 1.0 means an upwards tuning
of one semitone (100 cents) per octave, and -1.0 likewise
downwards.

Persistence

As always, the internal state of the calibrator circuit
is automatically saved to your SD card and loaded when
your DROID starts.

But what if you are using several calibrators, each for
a different (and differently tracking) VCO? How do you
know which of the saved calibration states is applied to
which VCO?

The answer to this is: all calibrators in your patch are
enumerated starting from 1. For each of them there is
one configuration saved to the SD card, based on that
number. So when you modify the calibration of the third
calibrator circuit in your patch, the modified configu-
ration will be saved as belonging to calibrator number 3.

So if you make sure that each VCO is always handled by
the same calibrator circuit you will always get the right
configuration.

If you for example remove the first calibrator from your
patch, the second one will become the new first one and
load its calibration state when you load the new patch. If
you don’t want that to happen, simply keep the calibra-

Table of contents at page 2

tor in the patch, even if you don’t need it anymore. It is
sufficient to keep just the line [calibrator] without any
further jack specifications.

Using an encoder instead of buttons

If you own an E4 controller, you can use one of its en-
coders for the tuning correction, instead of buttons. This
is not only faster and easier to operate but also gives you
visual feedback about the current correction in the LED
ring of the E4.

trick is to use the encoder’s movedup and moveddown trig-
gers and feed them into the nudgeup and nudgedown in-
puts. The calibrator’s correction output informs you
about the current correction and can be used as an input
for the override parameter of the encoder. If you use
just tiny corrections, you can amplify the display (zoom
in) by multiplying the value say be 2.

The following example shows you how to setup this.
Here in addition the encoder’s buttonis used for resetting
the correction of the current pitch (not the total one):

nudgeup = _UP

nudgedown = _DOWN
correction = _CORRECTION
clearhere = _CLEARHERE
nudgeamount = 0.01

[encoder]
encoder = 4
movedup = _UP
moveddown = _DOWN
override = _CORRECTION * 2
button = _CLEARHERE

mode = 2 # make it bipolar

[calibrator] color = 0.4 # green
To do that add an encoder (see page 189) circuit. The input = I1 negativecolor = 0.8 # red
output = 04

Input Type Default Description

input (i) » L ov Patch your V/Oct pitch input here.

nudgeup (nu) I A trigger here (most likely a button press) will modify the tuning of the currently played note (as read by input) up-
wards by one cent (or by nudgeamount if that is used.

nudgedown (nd) _r_ A trigger here will modify the tuning of the currently played note down.

clearhere (ch) I A trigger here sets the correction of the currently played note to zero. This might affect a range of up to two octaves.

nudgeamount (na) AAN 0.01 Changes the amount each button press detunes. A value of one would mean one semitone, so the default value of
0.01 corresponds to one cent (ﬁ) of a semitone.

tune0 ... tune8 (t) ALAP 0.0 Explicit tuning of the octaves 0 through 8 - if you do not want to nudge manually. tune@ sets the tuning for the input
pitch of 0V, tunel for 1V and so on. A value of 1 means a tune adjustment of one semitone - which is 100 cent. The
maximum detuning is + 1 Octave (at a value of +12).

tunelowtail (tl) AL 0.0 Tuning adaption for the negative voltage range. A value of 1 means an upwards tuning of one semitone per octave, -1
likewise downwards.

tunehightail (th) AL~ 0.0 Tuning adaption for voltages > 8 V. A value of 1T means an upwards tuning of one semitone per octave, -1 likewise

DROID manual for blue-6

downwards.

151 Table of contents at page 2

Input Type Default Description

select (s) 10203 = The select input allows you to overlay buttons and LEDs with multiple functions. If you use this input, the circuit will
process the buttons and LEDs just as if select has a positive gate signal (usually you will select this to 1). Otherwise
it won't touch them so they can be used by another circuit. Note: even if the circuit is currently not selected, it will
nevertheless work and process all its other inputs and its outputs (those that do not deal with buttons or LEDs) in a
normal way.

selectat (sa) 10203 = This input makes the select input more flexible. Here you specify at which value select should select this circuit.
E.g. if selectat is 0, the circuit will be active if select is exactly 0 instead of a positive gate signal. In some cases this
is more conventient.

preset (pr) 10203 = This is the preset number to save or to load. Note: the first preset has the number 0, not 1! For the whole story on
presets please refer to page 21. This circuit has 4 presets, so this number ranges from 0 to 3.

loadpreset (1p) I A trigger here loads a preset. As a speciality you can use the trigger for selecting a preset at the same time.

savepreset (sp) _f_ A trigger here saves a preset.

clear (cl) _r_ A trigger here loads the default start state into the circuit. The presets are not affected, unless you use direct preset
switching with the preset input and without triggers. And that case the current preset is also cleared.

clearall (ca) I A trigger here loads the default start state into the circuit and into all of its presets.

dontsave (dos) P 0 If you set this to 1, the state of the circuit will not saved to the SD card and not loaded from the SD card when the Droid

starts.

Output Type Description

output (o) > (17‘; The calibrated pitch goes out here.

ledup (lu) ol D4 When nudgeup is mapped to a button (which is most likely), map this output to the according LED and it will indicate
whenever it’s currently adjusting the output pitch upwards.

leddown (1d) o N¢ This is the LED for nudgedown, which indicates downwards adjustment.

correction (c)

This output gives you information about the current amout of pitch correction. It is positive if the pitch is corrected
upwards, else negative. It is scaled in semitones, so a value of 0.2 means a 20% of a semitone, which is the same is 20
cents.

DROID manual for blue-6

152 Table of contents at page 2

16.9 case - Switch choosing from inputs via conditions

This circuit selects one of several inputs
and routes its signal to the output based
on which of several conditions is true. For

is an internal cable that is 1 if that clock is present, and 0
otherwise:

The order of the values is important here, since it
defines the precedence of the individual inputs. If
_INTERNAL_CLOCK_PRESENT is non-zero, inputl is

each signal there is one related case input. [case] copied to output, regardless of what happens at the
The first signal whose case input is non- casel = _INTERNAL_CLOCK_PRESENT other inputs.
zero, is selected. valuel = _INTERNAL_CLOCK
case2 = EXTERNAL CLOCK PRESENT If none of the switch inputs is non-zero, 0 is output, but
One example application is selecting one out of several value2 = _EXTERNAL_CLOCK you can set a different fallback value with the input else.
clock sources, depending on which clock is present. In case3 = MIDI CLOCK PRESENT
this example we assume that for each clock source there value3 = _MIDI_CLOCK
output = _CLOCK
Input Type Default Description
casel ... casel6 (c) AAN 15t .. 16th case input. The first one that is non-zero defines which input value to use.
valuel ... valuel6 (v) AAN 15t ... 16th value input. One of these is copied to the output, depending on which of the case inputs is none-zero.
else (e) I 0 In case none of the case inputs is non-zero, this value is copied to the output.
Output Type Description
output (o) AL~ To this output the select value input is copied.

DROID manual for blue-6

153

Table of contents at page 2

16.10 chord - Chord generator

This circuit creates the pitch information
for up to four voices of a musical chord.
This means that you can attach the Volts
per octave inputs of up to four synth voices
and they will play a nice musical chord.
Hereby you have the flexibility of building your chord out
of any of the seven notes of a selected scale. So you are
not limited to root, 3rd, Sth and 7th. The algorithm is
similar to that in the Sinfonion but has an adapted mode
for three voiced chords in addition.

Minimal example

Here is the most simple (and probably useless) example:
it will play a C major 7 chord, i.e. output the respective
pitch CVs for the notes C, E, G and B at the outputs 01,
02, 03 and 04:

[chord]
outputl = 01
output2 = 02
output3 = 03
outputd4 = 04

Output 01 willbeat 0V, representinga C. Or course, if you
just have three voices, don’t use output4 and you will get
a C major triad.

Selecting root and scale

Most likely you do not want to play in C major all the time
(or even never!), so you can select the root note and the
scale with the inputs root and degree. Setting root to 2
and degree to 7, for example, will select D natural minor:

DROID manual for blue-6

[chord]
outputl = 01
output2 = 02
output3 = 03
outputd4 = 04
root =2
degree =7

root ranges from 0 to 11 and and degree from 0 to 107.
You find the complete table of all 108 scales on page 107.

But why the heck is that input named degree?? Well, it’s
ajargon from the Sinfonion and does make sense there in
some contexts. Please have a look into the manual of the
Sinfonion if you are interested!

Selecting the pitch of the notes

Per default all outputs are in the first octave, i.e. in the
range 0V ... 1V. Per convention this is very low and prob-
ably sounds ugly. With the pitch input you can set the
minimum pitch of the lowest output chord note. In the
next example this is read from I1. So you could, for ex-
ample, patch a sequencer here and have the chord out-
puts play a kind of four voiced melody:

[chord]
pitch = I1
outputl = 01
output2 = 02
output3 = 03
outputd4 = 04
root =2
degree =7

154

The spread parameter controls the maximum pitch of the
highest output chord note. It is always relative to the
pitch of the lowest note plus one octave. So if spread is
1.5V (or 0.15), for example, the maximum allowed dis-
tance between the lowest and the highest chord note is
2.5 octaves. As lowest note the chord generator places
the chord note that is nearest above the pitch input. As
highest note it places the one nearest to upper bound
of the allowed range and the remaining notes are dis-
tributed in between with the most equal spacing possi-
ble.

Selecting the chord notes

What makes the Sinfonion and also the harmonic circuits
in the DROID stand apart from other modules is the flex-
ibility of note selection. So e.g. in C major, you are
not limited to playing the chord C/E/G/B. In fact you can
choose any subset from the currently selected scale.

For this there are seven inputs selectl, select3, ...
selectl13 that select the notes of the current scale and
another five inputs selectfilll ... selectfill5 that
select the notes not in the current scale. These 12 inputs
are binary inputs that expect either 0 or one 1. Each of
them selects one of the seven intervals of the scale for
being part of the chord. Here is a table of all these inputs
and the notes they would select in a C major or C minor
scale:

Table of contents at page 2

Input interval step | Cmas | Cmin
selectl root I C C
select3 | 3rd III E Eb
select5 sth v G G
select7 | 7th viI | B Bb
selects | 9th-pnd II D
selectll | 11th - 4th | 1y F F
select13 | 13th-gth | yI1 A Ab

One typical way to select these notes is with seven tog-
gle buttons, which is then much like the Sinfonion does
it. Assign the output of each of the seven buttons to one
of these functions:

[p2b8]
[button]
button = B1.1
led = L1.1
[button]
button = Bl1.2
led = L1.2
[button]
button = B1.3
led = L1.3
[button]
button = Bl1.4
led = L1.4
[button]
button = Bl1.5
led = L1.5
[button]
button = B1.6
led = L1.6

DROID manual for blue-6

[button]
button = B1.7
led = L1.7

[chord]
selectl
select3
select5
select?
select9
selectll =
selectl3 =
outputl
output2
output3
output4

]
rerrrr
u b WNKE

1
1
1
1.
1
L1.6
L1.7
01

02

03
04

Now you can use the buttons to change the chord notes
on the fly. Of course, however, you also can use other sig-
nals for the selection. Maybe random gates, slowly run-
ning LFOs, a sequencer, whatever you like!

But what happens, if you do not select exactly four
notes?

+ If you don’t select any note (or do not patch the
select-inputs at all), all scale notes are selected.

- If you select just one note, all four outputs will play
that same note.

- If you select two notes, outputl and output3 will
play the first note and output2 and output4 the
second one.

- If you select three notes, output4 will play the
same as outputl.

- If you select five, six or seven notes, just the first
four notes will be used.

If some of the notes are doubled and you use a large
enough spread, they will be placed at different octaves.

By the way: It’s of course no problem to just use three or

155

even just two of the outputs, if you don’t need or have a
total of four voices.

Chord inversion

The chord generator lets you nail down the chord struc-
ture to a certain inversion. If you set inversion to 1, the
root note (or, to be more precise, the first selected note)
will be placed as the lowest note. Similarly the inversions
2, 3 and 4 will make the respective other selected notes
the lowest note.

Setting inversion to 0 (which is the default) will allow
any note to be the lowest. This allows the chord to be
closest to the pitchinput.

Triggered mode

The trigger input is essentially a sample & hold for the
outputs. So as soon as you patch that input, all outputs
are frozen until the next trigger.

Chords with three voices

The chord generation circuit can also create chords
with just three output voices. Simply omit the output
output4d. When it is not connected, the “three voice
mode” is activated:

[chord]
outputl = 01
output2 = 02
output3 = 03
root =2
degree =17

Table of contents at page 2

All parameters work as expected but there are some im-
portant adaptions. This is not the same as using the four
voiced mode and just look at the first three outputs. For
example:

+ The spreading uses a simplified algorithm with just
a bottom, middle and top note.

- If just three intervals are selected, you don’t get
a duplication of the first note on output2, as you
would otherwise.

Chords with two voices

Evenif just two outputs are connected, you can still make
use of this circuit. Now just the first two select... in-
puts are taken into account. But things like inversion and
spreading works nevertheless.

DROID manual for blue-6

156

Table of contents at page 2

Input Type Default Description

pitch (p) D é%/t oV This sets the minimum pitch of the lowest note of the chord.

spread (s) » L ov Selects the range between the lowest and highest note of the chord measured in 1V/oct, while a spread of 0 means
that all chord notes are within one octave, a spread of 1V means that the notes are spread out over two octaves and
soon.

inversion (1iv) 10203 0 Selects the inversion of the chord. 1 means that the root note should be the lowest note, 2 will make the second
selected note the lowest note, 3 the 3rd and 4 the 4th. The default, however, is 0 and doesn’t fix the inversion. Rather
that inversion is chosen that creates the chord closest to the input pitch.

trigger (t) _f_ This jack is optional. If you patch it, the Chord generator just reads a new input pitch when it receives a trigger.

root (ro) To203 0 Set the root note here. @ means C, 1 means C'f, 2 means D and so on. If you multiply the value of an input like I1 with

DROID manual for blue-6

120, then you can use a 1V/Oct input for selecting the root note via a sequencer, MIDI keyboard or the like. Also then
you are compatible with the ROOT CV input of the Sinfonion.

0o |C
1| cy
2 |D
3 | Dy
4 |E
5 |F
6 | Ft
7 |G
8 | G
9 | A
10 | At
11 | B
12| C

157 Table of contents at page 2

Input

Type

Default

Description

degree (dg)

selectl (sl)

select3 (s3)
select5 (s5)
select7 (s7)
select9 (s9)
selectll (sll)
selectl3 (sl13)

DROID manual for blue-6

o203

0

Set the musical scale. This is a number from 0 to 107. Below are the first 12 and most important scales. You find a list

of all 108 scales on page 107.

0 lyd - Lydian major scale (it has a f4)

1 maj - Normal major scale (ionian)

2 X7 - Mixolydian (dominant seven chords)

3rd/4th

3 sus - mixolydian with swapped

4 alt - Altered scale

5 hm® - Harmonic minor scale from the Sth

6 | dor - Dorian minor (minor with §13)

7 min - Natural minor (aeolian)

8 | hm - Harmonic minor (b6 but #7)

9 | phr- Phrygian minor scale (with b9)

10 | dim - Diminished scale (whole/half tone)

11 | aug - Augmented scale (just whole tones)

Note: Alltogether there are 108 scales. Please see page 107 for a complete list

Gate input for selecting the root note as being an allowed interval. When you want to create a playing interface for live
operation you can patch the output of a toggle button (made with the circuit [button]) here.

Note: When all select and selectfill inputs are 0, automatically all seven scale notes are selected, i.e. selectl...

select13 will be set to one.
Gate input for selecting the 3rd,

Cate input for selecting the sth,
Cate input for selecting the 7th,

Gate input for selecting the gth (which is the same as the 2nd),
Gate input for selecting the 11th (which is the same as the 4th).

Cate input for selecting the 13th (which is the same as the 6t).

158

Table of contents at page 2

Input Type Default Description

selectfilll (sfl) _ off Selects the alternative 9tN (i.e. the 9t that is not in the scale.
selectfill2 (sf2) i of f Selects the alternative 39 (i.e. the 39 that is not in the scale).
selectfill3 (sf3) i of f Selects the alternative 4t or 5t In most cases this is the diminished 5t
selectfill4 (sf4) _ of f Selects the alternative 13th (i.e. the 13th thatis not in the scale).
selectfill5 (sf5) Pl off Selects the alternative 7t (i.e. the 7th that is not in the scale).

DROID manual for blue-6

159

Table of contents at page 2

Input Type Default Description

harmonicshift (has) 10203 0 This input can reduce harmonic complexity by disabling some of the scale or non-scale notes. It is an idea first found
in the Sinfonion and also provided by the circuit sinfonionlink (see page 353).

harmonicshift is staged after the select. .. inputs and further filters out (disables) notes based on their relation to
the current scale. This means that first the 12 select. .. inputs select a subset of the 12 possible notes. After that
harmonicshift can reduce this set further (it will never add notes).

If harmonicshift is not zero, depending on its value some or more of the scale notes are disabled, even if they would
be allowed by select. ... Orin other words: the harmonic material is reduced.

You also can use negative values. These create rather strange sounds by removing the simple chord functions instead
of the complex ones first.

Here are the possible values:

0 off - all selected notes are allowed

1 disable all fill notes (non-scale notes)

2 | disable fills and 11th

3 | disable fills, 11thand 13th

4 | disable fills, 11th, 13thang oth

5 | disable fills, 11t 13th oth 5pq 7th

6 | disablefills, 11t 13th gth 7th 554 3rd

7 | disable fills, 11th, 13t oth 7th 3rd 53p4 5th

-1 | disable the root note

-2 | disable the root note and the Sth

-3 | disable root, 374, 5th

-4 | disable root, 37d sth 7th

-5 | disable root, 374, sth 7th gth

-6 | disable root, 374, sth 7th gth 554 q3th

-7 | disable all scale notes (fill notes untouched)

DROID manual for blue-6 160 Table of contents at page 2

Input Type Default Description

noteshift (nos) 10203 0 Shifts the resulting output note(s) by this number of scale notes up or down (if negative). So the output note still is
part of the scale but may be a note that is none of the selected ones. The maximum shift range is limited to -24 ... +24.

selectnoteshift (sns) 10203 0 Shifts the output note by this number of selected scale notes up or down (if negative). If you use noteshift at the
same time, first selectnoteshift is applied, then noteshift. The maximum shift range is limited to -24 ... +24.

tuningmode (tm) i off While this is 1, the circuit will output the value set by tuningpitch instead of the actual pitch. This is ment to be a
help for tuning your VCOs.

tuningpitch (tp)) (1)‘(; oV This pitch CV will be output while the tuning mode is active.

transpose (tr) i) % oV This value is being added to the output pitch when not in tuning mode. It can be used for musical transposition or
adding a vibrato.

Output Type Description

outputl ... output4 (o) » L 15t .. 4th pitch output

DROID manual for blue-6

161 Table of contents at page 2

16.11 clocktool - Clock divider / multiplier / shifter

This circuit implements various clock mod-
ifications, such as a clock divider, a clock Q O
multiplier, a tool for changing the length OGO
of anincoming gate signal and a clock time
shift.

Multiply and divide

Here is an example of a simple clock divider that divides
the incoming clock by 7 (i.e. for 7 incoming clocks one
outgoing clock is being produced).

[clocktool]
clock = I1 # patch a clock here
output = 01
divide =7

This example doubles the speed of the clock by inserting
one additional clock tick right in the middle between two
incoming ones: right in the middle between

[clocktool]
clock = I1 # patch a clock here
output = 01
multiply = 2

By using multiplication and division at the same time you
can create rhythms like “two over three”:

[clocktool]
clock = I1 # patch a clock here
output = 01
divide =3
multiply = 2

DROID manual for blue-6

Per default the outgoing clock has a duty cycle of 50%,
which means that it is 50% of the time high and 50% of
the time low - basically a symmetrical square wave. You
can change this with the dutycycle input, e.g. to 20%:

[clocktool]
clock = I1 # patch a clock here
output =01
dutycycle = 20% # same as 0.2

Time shifting the clock

The input delay can be used to delay the clock signal. It
needs a steady input clock to work. The possible range
of delay is -1.0..1.0. A value of 1.0 is equivalent of de-
laying each clock by exactly one cycle - which is pretty
useless, since it results in the same output clock. But for
example a value of 0.1 will delay the clock by 10%. Here
is an example:

[clocktool]
clock = I1 # patch a clock here
output =01
delay = 0.1 # same as 10%

Using a negative number will result in a clock that is al-
ways slightly before the original clock. This example
shifts the output clock 10% ahead of the input clock:

[clocktool]
clock = I1 # patch a clock here
output =01
delay = -0.1

162

Please note that thisis not a trigger delay, since it requires
a steady input clock. Otherwise funny and strange things
can happen. Also it should be obvious, that shifting a
clock ahead needs knowledge when exactly the next in-
put clock tick will happen.

Feeding a trigger sequencer like the algoquencer (see
page 115) with a shifted clock allows you to fine tune the
exact timing of that voice. You can easily map the shift
amount to a pot for tuning that live by ear:

[clocktool]

clock = I1 # patch a clock here

output = _SHIFTED_CLOCK

delay =Pl.1 * 0.2 - 0.1 # limit to +/- 10%
[algoquencer]

clock = SHIFTED_CLOCK

Please also have a look at timing (see page 365). That
can do a similar thing but is also able to shift the timing
differently for each beat in a sequence of several beats.

If you combine delay with divide ormultiply, the delay
is applied first. This means that the amount of delay is in
relation to one input clock cycle. The delayed input clock
is then run through the divider and multiplier. If you like
it vice versa, split things up into two clocktool circuit,
where the first one does the divide/multiply, feed that
output into the second one and do the delaying there.

Table of contents at page 2

Gate length

Per default the length of the output gate is 10 ms - inde-
pendently of the length of the input gate. You can change
the gate length either with the jack gatelength and spec-
ify a fixed number of seconds, or by using dutycycle,
which is a percentage of the output clock rate. Please
note: if your gate length exceeds the time until the next
output gate, both will be ”joined” and thus no new gate
will be emitted.

Please note if you use dutycycle: right at the start of
the clock signal or after a greater speed change of the
clock, clocktool needs a short time to learn the new
clock speed and correctly adapt the new gate length. This
might lead to two merging gates, which in turn causes a
missing gate output.

DROID manual for blue-6

163

Table of contents at page 2

Input Type Default Description

clock (c) I Patch a steady clock here for this circuit to be of any use

reset (r) I A trigger here resets the internal counters. This is useful if you use the clock divider and want to restart the internal
counting from 0, in order to align the clock divider with some external sequencers or the like

divide (d) 10203 1 Number to divide the clock through. This will be rounded to the nearest integer number. Note: if you want to use an
external CV then you need to multiply that with some useful number, since otherwise you will get a number between
0 and 1 which is not useful at all. Remember: 10 V translates to a number of 1.

multiply (m) 10203 1 Number to multiply the clock with. Same considerations hold as for divide.

dutycycle (dc) 0(0:5)1 = Output duty cycle of the clock - which is essentially a square wave - in a range from 0.0 to 1.0 or 0% to 100%. If you
don’t patch anything here, the length of the trigger output pulses will be 10 ms (DROID’s standard trigger duration).

gatelength (gl) AAN = This jack is alternative to dutycycle and will override it if it is used. It sets the length of each output pulse to a fixed
value that is independent of the incoming clock. A value of 0.5 (a CV of 5 volts) translates into a gate length of 0.5
seconds.

delay (dl) AL~ 0.0 This CV allows you to shift the input clock beat around in time. A value of 0.1 will delay each beat by 10% of a clock
cycle. A value of -0.1 is also allowed and shifts the beat 10% ahead.
For an unmodulated delay -0.1 and 0.9 is just the same, because the output clock will have the same relation to the
input clock. But if you modify the delay from 0.0 to 0.9, the next tick will be delayed by 90% of one cycle, where is a
modification from 0.0 to -0.1 will play the next tick by 10% earlier.

Output Type Description

output (o) Here comes the modified clock

inputpitch (ip)

outputpitch (op)

$h

Experimental output that outputs a representation of the input clock’s pitch on a 1V/octave base, based on the refer-
ence of 60 BPM (1 Hz). This means that an input clock of 120 BPM will output 1V (a value of 0.1), since 120 BPM it is
one octave higher than 60 BPM. If you feed that value to the rate input of an LFO you get that running at exactly the
same speed (not in the same phase, however).

Same for the modified output clock

DROID manual for blue-6

164 Table of contents at page 2

16.12 compare - Compare two values

This simple utility circuit allows you to
make a decision by comparing an input
value (at input) against a reference value
(at compare) and output one of three val-
ues depending on whether the input is less
than, greater than or equal to the reference.

Do

The following simple example checks if the pot P1.1 is
left of the center (a value less than 0.5). If that is so, it
outputs 1, otherwise 0.

[compare]
input = P1.1
compare = 0.5
ifless = 1
output = 01

You can change the default output value of 0 with the in-
put else. That specifies what happens if the condition
is not met. The following example outputs -1, if P1.1is
greater or equal to 0.5.

[compare]
input = P1.1
compare = 0.5
ifless = 1
else = -1
output = 01

Equality, analog unprecision

You can also check if two values are equal. This is done
with ifequal. Check this out:

DROID manual for blue-6

[compare]
input = B1.1
compare = 1
ifequal = 4
else = 8
output = 01

Now while you hold the button B1. 1 this circuit will out-
put the value 4 and otherwise 8.

Note: equality can be tricky when it comes to values from
analog things like inputs or potentiometers. They always
undergo tiny random fluctiations. So the following ex-
ample, that should compare the current voltages of two
inputs, will never really work:

[compare]
input = I1
compare = I2
ifequal = 1 # will never happen!
output = 01 # This won't work!

If you try this out, you will probably never get both in-
puts equal. Even a single electron too much could the-
oretically make the difference. So in order to make such
comparisons possible, there is a way to allow for a slight
unprecision when doing the comparison. This is set with
the precision parameter:

[compare]
input = I1
compare = I2
precision = 0.1
ifequal = 1
output = 01

165

Now the inputs I1 and I2 are being treated as equal as
long as their difference is 0.1 (1V) at most.

Makeing a three-way switch

It is possible to check all three relations at once. Make
sure that you apply a precision if you deal with analog
values:

[compare]
input = I1
compare = I2
precision = 0.1

ifless = 0
ifequal = 1
ifgreater = 2
output = 01

Now you get 0, 1 or 2, depending on wether I1 is less,
equal or greater than I2.

Note: Better do not use just ifless and ifgreater with-
out using ifequal or else. This lets the equality unde-
fined and will output O if for any chance the two input
values are equal. Better use ifless / ifgreaterin com-
bination with else if you are not interested in the exact
equality.

Omitted inputs

It is allowed to omit any of the inputs ifless, ifequal,
ifgreater or else. Any of these is treated as 0 with one
exception: If you omit all four, ifequal defaults to 1.
This make a super basic compare circuit just check if two
values are equal:

Table of contents at page 2

input = Bl.1
compare = 0
output = 01

This will output 1 if button B1.1 as the value 0 (is not
pressed).

Dynamic output values

As often, instead of using fixed values for ifless,
ifequal, ifgreater and else you can use dynamic val-
ues from somewhere else, of course. The following ex-
ample will output a sine wave at 01 if the pot is left of the
center or else a square wave:

sine = _SINE
square = _SQUARE

[compare]
input = P1.1
compare = 0.5
ifless = _SINE
else = _SQUARE

output = 01
[lfo]
hz = 2

Input Type Default Description
input (1) AL 0.0 A value to compare.
compare (c) AAN 0.0 A reference value to compare the input with.
ifgreater (g) AAN = Value to be output if input is greater than compare. If you patch nothing here, the value of the input else will be used.
ifless (1) AL~ = Value to be output if input is less than compare. If you patch nothing here, the value of the input else will be used.
ifequal (q) /\/\/\ = Value to be output if input is equal to compare within the precision defined by precistion. If you patch nothing here,

the value of the input else will be used.
else (e) AAN 0.0 Specifies the output value in case non of the stated conditions are met.
precision (pc) AL~ 0.0 An optional precision to be used by ifequal

Output Type

Description

5

output (o)

Here one of ifgreater, ifless or ifequal is output.

DROID manual for blue-6

166

Table of contents at page 2

16.13 contour - Contour generator

An enhanced version of the classic ADSR-
envelope generator with the six phases
predelay, attack, hold, decay, sustain and
release.

For triggering there are two alternative in-

puts: gate and trigger. Use trigger if you are not in-
terested in the length of the gate signal. There will be no
decay / sustain phase in that case.

The minimal patch just connects gate or trigger and
the output. It creates an envelope with standard timings,
triggered at I1 and output to 01:

[contour]
gate =11
output = 01

Assigning pots to the classic four inputs lets you use the
DROID just as a normal ADSR envelope:

[p2b8]

[p2b8]

[contour]
gate = I1
attack = Pl1l.1
decay = P1.2
sustain = P2.1
release = P2.2
output = 01

When you try this out, you will notice that the time range
of the attack parameter is much shorter than that of
decay and release. If fact it is just 55 of these. This
has been chosen in this way because | believe that this

DROID manual for blue-6

makes sense from a musical point of view. Very long at-
tack times are quite unusual and | wanted to be able to
directly map the four values to pots. But if you don’t like
that you can - of course - make all three timing parame-
ters have the same range simply by multiplying attack by
20:

[p2b8]

[p2b8]

[contour]
gate = I1
attack = P1.1 * 20
decay = P1.2
sustain = P2.1
release = P2.2
output = 01

If you do not change the shape parameter, the duration
of the attack phase is 0.1 sec at a value of 1. The phases
decay and release have a duration of 2.0 sec at a value of
1.

The Phases

In addition to the traditional ADSR phases this circuit also
has aanoptional predelay (P) phase - which acts like a de-
lay before the envelope starts - and an optional hold (H)
phase which keeps the envelope at maximum level for a
short time right after attack and before decay.

The following diagram shows an example envelope with
all six phases. The gate starts at 0 ms and ends at 200 ms.

167

10 | —F
A
—H
2
T 51 D
N S
— R
O,

0 50 100 150 200 250 300
time(ms)

Attack, Decay and Release

The phases attack, decay, release are phases where the
level of the envelope starts at one level and then ap-
proaches another level within a certain time. In the up-
per example all these phases had a linear characteristic.
That means that the output voltage changes by a con-
stant amount per time.

DROID’s contour allows you to control the shape of
these phases in order to get them bent in either direc-
tion. For that purpose there are the inputs attackshape,
decayshape and releaseshape.

Let’s take decay as an example. During the decay phase
the envelopes voltage falls from the maximum level of
10 V (you can change this with the input level) to the
sustain level defined by the input sustain. For simplic-
ity let’s assume that you have not used these inputs, so
the maximum level is 10 V (1.0) and the sustain level is
5V (0.5). Also we assume attack, predelay and hold to
beo0.o0.

When decayshape is not patched or otherwise set to its

Table of contents at page 2

default of 0.5, the shape of the decay curveis linear. This
means that it goes down by the same voltage each second
until it reaches 0.5.

10 | D
s
. —R
3 5
~
0,,

0 50 100 150 200 250 300

time(ms)

Now, if you set decayshape to 1.0, the curve is com-
pletely exponential

10 | D
s
. R
X 5
S
0,,
0 50 100 150 200 250 300

time(ms)

Such an envelope sounds completely different - of course
also depending on whether you feed this into a linear
VCA, exponential VCA or a VCF. For fine control you can
use any number between 1.0 and 0.5 of course. In that
case you will get a curve that is bent to a certain degree.
Assigning decayshape to a pot helps you listening to the
different sounds:

[contour]

gate =I1
decayshape = P1.1
output =01

If the shape gets a value less than 0.5, the curve is bent
into the opposite direction (some call this logarithmic
but mathematically this is not true). Here is an example
where decayshape is set t0 0.0:

10 | D
s
. R
3 5
S
0,,
0 50 100 150 200 250 300

time(ms)

Input

Type Default

Description

gate (g) i L=

I

trigger (t)

DROID manual for blue-6

Patch a gate signal here that triggers the envelope. Gate means that the length of the signal is relevant. While the gate
is high the sustain phase holds on. As soon as gate is going low the release phase is being entered.

This is an alternative method of starting the envelope. If you use trigger instead of gate, there are the following

differences:

- The duration of the trigger signal is being ignored.
+ Thereis no decay / sustain phase. Attack and hold are immediately followed by release. The inputs sustain and

decay have no impact anymore.

- The predelay and attack phases are continued until their end even when the trigger signal ends (When using
gate and the gate signal ends during predelay, the envelope does not start. When it ends during attack, decay /
sustain are being skipped and release starts at the current level of the envelope. That way short gates can result

in “quieter” envelopes).

168

Table of contents at page 2

Input Type Default Description

retrigger (rt) _ 1 If you patch @ or off here, a gate or trigger impulse will not immediately restart the envelope unless it already has
reached its release phase. The default on, which means that a trigger will immediately restart the envelope in any
case.

startfromzero (sz) _— 0 If you set this to 1 or on, a trigger or gate will reset the envelope’s current level immediately to zero. This is sometimes
called “digital mode”. In the normal analog mode the envelope resumes from where it is. This means that when a
trigger occurs right in the release phase where the level is still high, will start it’s attack not from zero but from this
hight value.

abortattack (aa) _— 0 This is an on / of f setting that decides what happens if the input gate goes off while the predelay or attack phase is
still not finished. Per default that phase will be finalized regardless of the gate state. If abortattack is on, the end of
the gate will immediately stop the attack phase and move on to hold. Note: In this case the value of the envelope will
not reach the maximum level. If the gate ends during the predelay phase, no envelope will be started at all.
Note: This setting is only functional when the gate input is being used for triggering the envelope. If you use trigger,
the attack phase is always completely executed and this setting has no influence.

loop (lo) _— 0 Thisisan on/off input that switches loop on or off. When loop is on, the envelope will immediately start again once
it has finished. It also starts without triggering. This converts contour into a kind of fancy LFO.
gate / trigger and loop can be combined. Any gate or trigger will restart the envelope just as usual - even in loop
mode.

predelay (pd) AL~ 0.0 The predelay phase inserts a delay between the incoming gate and the begin of the envelope. The length of the predelay
is 0.1 seconds per volt, so a value of 1.0 means 1 second

attack (a) AP 0.0 Length of the attack phase, i.e. the time from the beginning of the gate until the maximum level is reached. See the
general description for information about the scaling of this input.

hold (h) AL~ 0.0 If this is none-zero, the envelopes lingers a certain amount of time at its maximum level after the attack and before
the decay phase. The input value specifies a number of seconds. A value of 0.5 (this is 5 V) will create a hold time of
0.5 seconds.

decay (d) AAN 0.2 Time of the decay phase

sustain (s) 5 C 0.5 Sustain level

swell (sw) ol D1 0.0 If this jack is set to a value greater than 0.0, the level of the envelope will go up or down again during the sustain phase
until it reaches swelllevel.

swelltime (st) AAN 5.0 Time of the swell phase

swelllevel (s1) AL~ 1.0 Level the swell phase is approaching. Setting this to the same as sustatin effectively disables swell.

DROID manual for blue-6

169 Table of contents at page 2

zerocrossing (z)

Input Type Default Description

release (r) VAT 0.2 Timing of the release phase

level (1) AAN 1.0 Maximum level and scaling of the envelope. It is basically an output attenuator of the envelope. Sudden changes in
the level willimmediately have an (audible) impact on the envelope.

velocity (v) ol i 1.0 energy of the attack: The velocity is similar to the level, but is effective just during the attack phase. During that
phase that maximum voltage that is read from the velocity jack and will be used as the velocity of the envelope.
Further changes during the other phases will be ignored. This makes it ideal of using with a sequencer. For example
you can patch an accent output here and add some offset. Sudden changes in this input will not affect the shape of the
envelope.

pitch (p) » ov This is a one volt per octave input affecting all timings of the envelope. When you set this to 0 (the default), itis neutral.
A value of 0.1 (1 Volt) will exactly double the speed of all phases - just as one octave up doubles the frequency of an
oscillator. This jack can be used to easily implement envelopes where the length very naturally follows this pitch - just
like on a piano, glockenspiel or marimba lower notes last longer than higher ones.

taptempo (tt) I Tap tempo is an alternative method of specifying a pitch information. When you patch a clock to tap tempo, all time
parameters in the envelope are relative to that clock. If the clock speeds up, the envelope gets faster and vice versa.
The reference speed is 120 BPM. This means that if you patch a 120 BPM clock here, nothing changes. Clocks faster
than 120 BPM will speed up the envelope. Clocks slower than 120 BPM will slow it down.
Please see page 23 for details on using taptempo inputs.

shape (sh) 0(0:5)1 0.5 If you use this jack, it sets the shape for all of the relevant phases, which are attack, decay, swell and release. Note:
this input is only effective for those phases where the dedicated input (like attackshape, etc.) is not being used.

attackshape (as) 0(0:5)1 = Shape of the attack curve. If nothing is patched here, the value of shape will be used. See the general description for
how curve shapes work.

decayshape (ds) 0(0.5)1 = Shape of the curve in the decay phase. If nothing is patched here, the value of shape will be used.

swellshape (ss) olos)1 =3 Shape of curve during the swell phase. If nothing is patched here, the value of shape will be used.

releaseshape (rs) 0(0:5)1 = Shape of the curve in the release phase. If nothing is patched here, the value of shape will be used.

This is an experimental feature: If you patch the output of an oscillator here, an incoming gate or trigger signal will be
delayed until the next zero crossing of that signal. That allows you to start the envelope exactly when the audio signal
is at 0 and avoid nasty klicks, even if the attack is set to 0. It comes at a price, however. The delay between the trigger
and the first zero crossing might vary a lot from note to note and that could make your rhythm untight, especially if
the frequency of the oscillator is low.

DROID manual for blue-6

170 Table of contents at page 2

Output

Type

Description

output (o)
negated (n)

inverted (iv)

endofpredelay (ep)
endofattack (ea)
endofhold (eh)
endofdecay (ed)

endofrelease (er)

Main output of the envelope. Patch this to your filter, VCA or wherever you like.
The negated output is the same as the output but in negative voltage.

The inverted output always outputs positive voltages but is inverted relative to the level of the envelope. When the
normal output outputs OV, the inverted output outputs level and vice versa

This output will emit a trigger with a length of 10 ms when the predelay phase has ended.
This output will emit a trigger with a length of 10 ms when the attack phase has ended.
This output will emit a trigger with a length of 10 ms when the hold phase has ended.

This output will emit a trigger with a length of 10 ms when the decay phase has ended.

This output will emit a trigger with a length of 10 ms when the release phase has ended.

DROID manual for blue-6

171 Table of contents at page 2

16.14

This circuit is a simple utility that copies a
signal from aninput to an output. Since ev-
ery input generally can be attenuated and
offset this can be used for scaling and off-
setting a signal on its path.

Build a simple precision adder (CV mixer), that adds the
voltages of I1 and I2:

copy - Copy asignal, while applying attenuation and offset

input = I1 + I2
output = 01

Provide an attenuated signal from Il into an internal
patch cable:

[copy]
input = I1 * 0.5

Note: Previous versions of copy had an inverted output.
This has been removed in blue-3. But the same effect can
be achieved by substracting a signal from 1. This converts
OVinto10V,2Vinto8V, 10 Vinto 0V and so on:

[copy]
input = 10V - I1
output = 01

[copy] output = _INPUT_CV
Input Type Default Description
input (1) AL 0.0 Connect the signal you want to copy here.
Output Type Description
output (o) AL The resulting signal will be sent here.

DROID manual for blue-6

172

Table of contents at page 2

16.15 crossfader - Morph between 8 inputs

This utility circuit creates a CV controlled
mix of two out of up to eight inputs.

With two inputs this acts like a classical
cross fader. The following example lets
you fade between the signals at I1 and 12
by turning the pot P1.1:

[crossfader]
inputl = I1
input2 = I2
fade = P1l.1
output = 01

At fully CCW (0.0) only the signal of the first input is be-
ing output, at fully CW (1.0) only that of the second one.
In the center position (0.5) you get the average of both
inputs, namely 0.5xI1 + 0.5x1I2,

Using more than two inputs is possible. The fade input

then maps therange 0.0 ... 1.0 to a journey from the first
to the last input. Let’s see the following example:

[1fo]
hz =0.1
sawtooth = _FADE
[crossfader]
inputl =1I1
input2 = I2
input3 = I3
input4 = I4
fade = _FADE
output =01

Now during one LFO cycle of 10 seconds the output 01
begins with the signal at I1 and then morphs to that of
I2. It reaches 100% of I2 at a fade value of % Then it
continuesto I3, whichitreachesat % and finally - after 10
seconds - it ends at I4. After that it immediately jumps
back to I1, in order to begin the next cycle.

Values beyond 1.0 for fade are allowed and allow you to
morph from the last input to the first one. In the previ-
ous example that would be the range from1.0to 1.3333.
So if you scale up the sawtooth to a total range of 0.0 ...
1.3333 you will get a smooth cyclic morph between all
four inputs:

[1fo]

hz =0.1

sawtooth = _FADE
[crossfader]

inputl = I1

input2 = I2

input3 = I3

inputd = I4

fade = _FADE * 1.3333

output = 01

Input Type Default Description

inputl ... input8 (1) AL 0.0 The input signals that you want to crossfade between. At least inputl and input2 need to be patched. Otherwise
they are treated like 0 V signals.

fade (f) ol D4 0.5 This value decides which of the two inputs should be mixed and to which degree each one should go into the mix. At
0.0 the mix consists of 100% of the first inputs, at 1.0 of 100% of the last patched input.

Output Type Description

output (o) AL~ Output of the mix

DROID manual for blue-6

173

Table of contents at page 2

16.16 cvlooper - Clocked CV looper

Easy to use clocked CV looper that also
loops an additional gate and can do over-
lay and overdub.

This circuit is a very easy to use CV looper.

It records an incoming CV (and optionally

a gate as well) on a virtual tape loop with a resolution of
one sample per ms. The length of this tape is eight sec-
onds. If you need a longer loop time, you can reduce the
tape speed. At a speed of 0.5 you have a maximum loop
time of 16 seconds and a resolution of one sample per
2 ms (which is still pretty decent for most applications).

This looper is meant to be playable in a live situation as
easily as possible. For that purpose it does not imple-
ment the typical loop start — loop stop scheme - which
requires the musician to know beforehand that she will
start a loop. Instead the looper is always recording. The
loop length is specified in clock ticks. And as soon as the
looping is activated, the previous x clock ticks of CV in-
formation will be repeated over and over.

Here is an example for a simple looper for one CV without
a gate:

[button]
button = Bl.1
led =L11.1
[cvlooper]
cvin = I1
clock = I8 # steady clock
cvout =01
length = 16 # 16 clock ticks
loopswitch = L1.1

The button B1.1 is converted into a toggle button for ac-
tivating the looping. The CVisread from Ilandissentto

DROID manual for blue-6

01. As long as the loop switch is of f the looper is in by-
pass mode and simply copies I1to 01. At the same time
it is always recording to its internal endless tape. When
the loop switch is switched on, the last 16 clock ticks of
CVinformation is looped to 01 and Il isignored.

Please note: for your convenience the exact time when
the loop switch is switched on is quantized to the nearest
clock tick - may it be in the future or past. This makes
playing exactly in time much easier.

The second example adds a gate signal - such as out-
put by a ribbon controller. The gate is running through
I2—-02.

[button]
button = Bl.1
led = L1.1
[cvlooper]
cvin = I1
gatein = I2
clock = I8 # steady clock
cvout = 01
gateout = 02
length = 16 # 16 clock ticks
loopswitch = L1.1

Using a gate changes the behaviour of the CV looper. The
state of gatein (not the exact voltage) is being looped as
well. The CV is recorded to the tape only while the gate is
high.

Using a gate makes two additional features possible:

1. When overlay is on and the input gate is active,
the input CV will override that on the tape and in-
stead the source signal from cvin is bypassed to

174

the output. The tape’s content stays untouched.
This allows you to overlay the loop CV with your
own from time to time.

2. On the other hand, when overdub is on and the in-
putgateisactive, theinput CV will be written to the
tape and replaces the recorded CV at those places.
And it also will be routed to the output at the same
time.

Toggle buttons would fit nicely for these two functions.

Please note: you always need a clock! The CV looper is
useless without one. If you do not want to use an exter-
nal clock, you can make use of the LFO circuit for creating
aninternal clock.

What if you want to loop more than one CV? Just create
more cvlooper circuits - one for each CV. And control
them from the same set of buttons.

Changing the tape or clock speed

It is possible to change the tape speed on the fly in order
to slow down or speed up the recorded loop’s content. It
isimportant - however - to always change the tape speed
and clock speed at the same time and in the same manner.
Otherwise you will get stuttering effects. So if you dou-
ble the tapespeed you also need to double the frequency
of the clock.

Changing the length

Changing length parameter on the fly is supported and
just works. Remember: it does not set the length of the
tape loop but just the length of that part that is played

Table of contents at page 2

back. The recording is always done with the maximum
length. So if you increase the length while playing back
you will get access to the older parts of the CV history
that way. Just don’t make the length longer than the ac-
tual tape (see below).

Limitations

1. The value range of cvinand cvoutis-1..+1-or-10V
.. +10 V. If that range is not sufficient for you, you need to
scale it yourself. For example you could divide the value
by 10 before sending it to cvin and multiply it with 10 af-
terit arrives at cvout:

[cvlooper] 3. The total loop length can be 128 clock ticks at most. If
cvin = _INPUT_CV / 10 you need more ticks, you can divide the input clock down,
cvout = _OUT using clocktool:

[copy] [clocktool]
input = _OUT * 10 clock = G1
output = _OUTPUT_CV divide =2

output = _LOOP_CLOCK

2. Memory (RAM) is a valuable resource. The CV looper [cvlooper]

limits itself to 8000 samples in order not to waste too clock = _LOOP_CLOCK

much memory and leave space for other circuits as well cvin =I5

(the Droid master has about 100.000 bytes of memory tapespeed = 0.2 # max loop five x longer

and 8000 samples need 16.000 bytes). But if you want cvout = 05

to make longer loops, you can reduce the tape speed and Llength = 128 # = 256 original ticks

thus use less samples per second. loopswitch = _SOME_BUTTON

tapespeed (s)

loopswitch (1s) I Sy

DROID manual for blue-6

Input Type Default Description

cvin (ci) AAN 0.0 Input CV that should be looped.

gatein (gi) _— 1 Optional input gate. If you do not patch something here, the gate is assumed to be always high.

clock (c) I Input clock. The clock is mandatory and is the base for the definition of the loop length. Also the loop switch is quan-
tized in time to the nearest clock.

reset (r) I A trigger here resets the playback head immediately to the start of the loop, if you are in playback mode.

length (1) 10203 16 Length of the loop in clock ticks. Example: You get a length of 16 ticks by patching the number 16 to length. If you

want to set the length by means of an external CV that would require 160 Volts. So you need to multiply your input by
some useful number in that case.

Relative tape speed, where 1.0 is the normal speed. So a value of 0.5 slows down the speed thus increasing the effec-
tive tape length from 8 to 16 seconds while reducing the sampling rate from 1 ms to 2 ms per sample. Changing the
tape speed on the fly probably leads to interesting results.

Mandatory parameter: While the loop switchis of f the CV looper simply sends all input CV and gate to their respective
outputs. At the same time CV and gate are also recorded to the tape. When the loop switch is on, the CV and gate are
being read from the tape, instead. The input CV and gate are now ignored.

175 Table of contents at page 2

Input Type Default Description

pause (p) _ off This is a binary input. If you send a high signal here, the looper pauses. This is only works in playback mode. The
current CV value is hold the entire time. This is not the same as bypass, since in bypass mode the original CV